Power semiconductor device: Past , Present, and the...

41
Power semiconductor device: Past , Present, and the Future Ichiro Omura Kyushu Institute of Technology Japan Since 1909 Plenary Talk [June 2 (Tue.) / 11:50~12:30]

Transcript of Power semiconductor device: Past , Present, and the...

Page 1: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Power semiconductor device: Past , Present, and the Future

Ichiro Omura Kyushu Institute of Technology

Japan

Since 1909 Plenary Talk Ⅱ [June 2 (Tue.) / 11:50~12:30]

Page 2: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Outline

• Introduction: – Moore’s law

– Power electronics trends and Negawatt cost

• Past and Present overview of power semiconductor – Dr. Newell prediction, 1973 talk in PESC

– Types of discrete devices

• Present status explanation – Power MOSFET

– IGBT

– Lateral Device

– Wafer technology (Silicon)

– Simulation technology

• Future

H. Ohashi et al. “Role of Simulation Technology for

the Progress in Power Devices and Their

Applications,” IEEE T-ED, Vol. 60, issue 2, 2013.

Page 3: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Vision, theory and producing for ICT world

Vannevar Bush

Steve Jobs

“As we may think”

July 1945

Alan Turing John von Neumann

George Boole Charles Babbage Ken Thompson

Dennis Ritchie John Backus

Claude Shannon

Page 4: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

1965 - "Moore's Law" Silicon Engine to drive ICT

Robert Noyce

Integrated circuit patent in 1959

Number of components

per integrated circuit

Ma

nu

fac

turi

ng

co

st

pe

r

co

mp

on

en

t

Gordon E. Moore

CMOS

Toward digital cost free => ICT for everybody

Page 5: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

“More-than-Moore”(MtM) White Paper

Is power electronics less

than peripheral?

They are trying to change the game.

Page 6: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

FOMs, Roadmaps, Trends for PE Efficiency

Cost , Reliability, Loss etc. in addition to power density

Prof. Kolar, ETH Zurich Negawatt Cost ?

Output Power Density

H. Ohashi, Proc. of 4th Int. Conf. on Integrated Power

Systems, June 2006, Naples (Italy), pp. 153-156.

Page 7: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

“Negawatt cost”

Key factor for energy saving by Power Elec.

Efficiency Improvement

Prevalence (Cost reduction)

Negawatt cost definition

as index for wide use of PE

technology

Negawatt cost =

Initial cost + Total maintenance cost

Saved power × Total operating time

Cost

of

gen

erati

on

( U

S c

en

t p

er w

att

)

COP3→COP6

Power generation cost comparison with Negawatt cost

Payback time of power electronics equipment sufficiently competes with another renewable energy

Page 8: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Power electronics and micro electronics

Hardware

Micro-

electronics

Service

LSI, Adv. CMOS

Power Semi.

Power Circuit, Control Legacy Power-

Electronics

Energy network

Software, Sensing, Protocol Legacy Micro-

Electronics

Power-

electronics

Digital network

Networking

Clustering

Integrating

Actuating Lighting Heating Cooling E-Storage

High speed

communication

Cloud

Internet

SNS

I. Omura, SIIQ report, Oct. 2012, in Japanese

Negawatt cost will be discussed up to network level.

Page 9: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Outline

• Introduction: – Moore’s law

– Power electronics trends and Negawatt cost

• Past and Present overview of power semiconductor – Dr. Newell prediction, 1973 talk in PESC

– Types of discrete devices

• Present status explanation – Power MOSFET

– IGBT

– Lateral Device

– Wafer technology (Silicon)

– Simulation technology

• Future

Page 10: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

100 years of power device development (High voltage)

Rotary converter

Silicon Technology

CMOS DRAM

Thyristor Gate turn-off Thyristor (GTO)

(AC-DC/DC-AC)

IGBT / IEGT (AC-DC/DC-AC)

Thin wafer technology

Carrier Injection Enhancement

Cosmic ray

Edge termination technology

Chip Parallel operation

Electronics (Tubes)

Mercury arc rectifier (AC-DC)

Neutron doped FZ wafer

Carrier lifetime control

R&D

Electric Machine

mm

0.1mm

10-100um

<1-10um

Advanced LSI Tech.

1940 1960 1980

2000

Page 11: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

William E. Newell, 1973 PESC Keynote

Page 12: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

POWER ELECTRONICS WILL IN FACT EMERGE AS A FULL-FLEDGED DISCIPLINE AND PROFESSION OF THE FUTURE

1) Solid-state power control systems will

continue to become increasingly prevalent,

supplanting electromechanical equipment,

and opening new applications never before

feasible. Fewer and fewer new applications

can be satisfied by the efficiency, the

degree of control, the reliability, or the

response speed obtainable from anything

but a solid-state switch.

Page 13: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

2) Computer-oriented circuit analytical and

device modeling techniques will be

developed and will displace present

design techniques, making possible

greater optimization, increased reliability,

and reduced cost in both standardized and

custom equipment.

Eventually the insight gained will lead to

new unified theoretical approaches suited

to the analog versus digital, time versus

frequency, device versus circuit, steady-

state versus dynamic dilemmas which

constrain present approaches. In other

words, power electronics will have become

a discipline.

Synopsys

Silvaco

Ansys

Page 14: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

3) As the dollar volume of the high-power

solid-state device market grows, greater

research and development in this area will be

justifiable. A thorough understanding of charge

dynamics and thermal flow will lead to new

and improved power device technology,

analogous to the rapid evolution which is

characteristic of small-signal device

technology. Turn-off devices will become

commonplace, and conventional devices will

be manufactured with smaller spreads in key

parameters to permit easier cascading in

series/parallel arrays.

Page 15: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

4) Standardized, general-purpose switching

modules will become available to serve a greater

variety of functions. Increased production runs

and the elimination of custom design of many

individual units will permit cost reductions without

sacrificing reliability. Most low-level control

circuits will be assembled from standard types of

integrated or hybrid circuits.

5) University education

6) Professional society, conference

Page 16: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Types of power semiconductors(Switch)

GateN-source Source

Drain

N-sub

P-well

N-drift

P-base

N--collector

N-emitter

N+

Base Emitter

Collector

P-base

N--collector

N-emitter

N+

Base Emitter

Collector

P-base

N-base

N-emitter

P-emitter

GateCathode

Anode

N

P

PN

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

P

P

N

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

P

P

N

Power MOSFET IGBT

Bipolar Tr (BJT) GTO(GCT)

IGBT: Insulated

Gate Bipolar

Transistor

GTO: Gate

Turn-off

Thyristor

GCT: Gate

Commutated

Turn-off

Thyristor

1. MOS-gate (voltage) control or bipolar gate (current) control 2. Unipolar conduction or bipolar conduction in high resistive layer(N-)

N+

P

N-

-

N

P

N+

N-

N+

-

Page 17: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

1988-Proc. of the IEEE Power semiconductor Devices: An Overview

Phil Hower, Proc. of the IEEE, Vol. 76, No. 4, 1988

Conduction

charge

1993 Injection Enhancement

(Trench gate)

1998 Super-Junction

1996

GCT

1. Majority carrier control by MOS channel

2. Increase in stored (conduction) charge

3. Integration (Gate drive circuit etc.)

IGBT: Insulated Gate Bipolar Transistor

GTO: Gate Turn-off Thyristor

GCT: Gate Commutated Turn-off Thyristor

Many candidates in 1988

LTT

See also, by the same author “Current Status and

Future Trends in Silicon Power Devices”, Tech. digest

IEDM 2010, pp. 13.1.1-13.1.4, 2010

Minority carrier

control by MOS

gate

Page 18: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Types of Power Semiconductors

High voltage

IGBT

IGBT: Insulated Gate Bipolar Transistor

GTO: Gate Turn-off Thyristor

GCT: Gate Commutated Turn-off Thyristor

LTT: Light Triggered Thyrisotor (optical fiber coupled)

Power MOSFET

Low

High

IGBT

GCT/GTO

Syste

m P

ow

er

MOS-gate bipolar gate

LTT

• MOS gate devices cover wide-power

range.

• Bipolar gate devices cover very high

power applications(>10MW).

Opt-

turn-on

Page 19: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

200V-600V 5A-40A

4.5kV-2600A

650V-50A

Power

MOSFET

IGBT

Silicon Power Devices (Switches)

IGBT:Insulated Gate Bipolar Transistor

Advanced CMOS (FIVR)

Page 20: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Outline

• Introduction: – Moore’s law

– Power electronics trends and Negawatt cost

• Past and Present overview of power semiconductor – Dr. Newell prediction, 1973 talk in PESC

– Types of discrete devices

• Present status explanation – Power MOSFET

– IGBT

– Lateral Device

– Wafer technology (Silicon)

– Simulation technology

• Future

Page 21: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Power MOSFET

Page 22: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Low Voltage MOSFET (Vertical)

N-drift layerP-well

N-source

GateSource

Drain

Breakdown voltage (V)

10 100 1000

1000

100

10

1

0.1

RonA

(m

cm

2)

Si-limit

10 100 1000

1000

100

10

1

0.110 100 1000

1000

100

10

1

0.1

1997

2002

2007

2012

Fig from Lecture Slide by W. Saito, Toshiba

1. Cell size reduction for channel density

2. Trench gate for channel density and JFET resistance

removal

3. Charge compensate (Vertical Field Plate) technology

for drift resistance reduction.

Page 23: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

DMOSFET

P/N column drift layer

Easy to deplete for high impurity concentration

Low Ron + High Breakdown Voltage

SJ-MOSFET

0

5

10

15

20

25

0 5 10 15 20 25 30

P/N column pitch (m)

On-r

esis

tan

ce

RonA

(m

cm

2)

VB=700V

Hig

her c

olum

n do

ping

Breakdown voltage (V)

10 100 1000

1000

100

10

1

0.1

RonA

(m

cm

2)

Si-limit

10 100 1000

1000

100

10

1

0.110 100 1000

1000

100

10

1

0.1

1997

2002

2007

2012

Fig from Lecture Slide by W. Saito, Toshiba

Super Junction MOSFET

Charge compensate (Super Junction)

technology for drift resistance reduction.

=> Fabrication process challenge

Page 24: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

IGBT

Insulated Gate Bipolar Transistor

Page 25: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

1. Bipolar Transistor + MOSFET (before IE-effect) 2. High current capability 3. ~0.8V collector-emitter threshold voltage for conduction 4. Medium switching speed (15kHz for motor drive, 100kHz for ICT

current supply and FPD driver )

Collector

Gate

Emitter

IGBT

50

100

1985 1990 1995 2000 2005

200

300

500

Rate

d C

urr

ent

Density(A

/cm

2) Thin wafer NPT

Thin wafer PT

Trench gate

NPT-IGBT

Carrier enhancement effect

Non latch-up IGBT

IPM

Year

2010 2015

Thermal management

High Temp.

Protection

Noise control

Vce

Ic

0.8V

Shen, Omura, “Power Semiconductor Devices for Hybrid,

Electric, and Fuel Cell Vehicles” Proc. Of the IEEE, Issue 4, 2007

Page 26: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Summary of IGBT Technology

N-base

P-emitter

Gate

•Thin Wafer Technology – Reduction of turn-off tail current with short N-base

– Reduction of conduction loss with short N-base

•Trench Gate for Low Vce(sat)

–Electron injection enhancement and carrier

storing for higher carrier density

–Reduction of channel resistance etc. •Low Hole Injection P-emitter + Long Carrier Lifetime

– Reduction of turn-off tail current

– Better thermal coefficient without carrier lifetime killer

Page 27: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Examples of High Power IGBT Package Shen+Omura, Proc. of the IEEE, 2007

125mm

42 Chips

15mm

Shen, Omura, “Power Semiconductor Devices for Hybrid, Electric, and Fuel Cell Vehicles” Proc. Of the IEEE, Issue 4, 2007

Page 28: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Lateral Power Device

Page 29: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

High compatibility to CMOS for high performance and new functions

Power IC VBK in ISPSD papers

Digital Rich

Power IC

Omura, ECPE workshop Jan. 2012

Future HV Power IC will be …

ISPSD 2010

Toronto Univ

Ichiro Omura Kyushu Inst. Tech.

Page 30: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Higher power range to cover volume zone

1

10

100

1000

10000

0.1 1 10 100 1000

Current(A)

Vo

lta

ge(V)

Max(

Vin

, V

out)

CPU Power Supply

(POL)

Appliances

Mobile Power Supply

Transmissions

High power motor

drives

Vicor VIChip

DIP IPM

Max(Iin, Iout)

HEV IPM

Pow

er ICs on P

CB

SOI single chip inverter

Single chip power supply

Transfer molded pow

er

devices / Pow

er SiP

on PCB

IPM

with ceram

ic

Insulator

Pow

er SoC

High power

Industrial Drives

EV/HEV

High P

ower M

odules

/ PPIs

On board Power Supply

Industrial IPM

Omura, CIPS 2010

Kilowatt

Power IC

Future HV Power IC will be …

Heat pumping Ichiro Omura Kyushu Inst. Tech.

Page 31: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

High switching frequency for new applications

Mega-Hz

Power IC

Future HV Power IC will be …

Saito et al.(Toshiba) PESC 2008

Electrode-less lamp with GaN-HEMT (Toshiba)

Page 32: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Wafer technology

Page 33: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Silicon wafer trend

Strong productivity of wafer to meet huge demands

Page 34: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Silicon wafer technology Productivity

Quality Functionality

Low voltage commodity

Low voltage high spec

6500V IGBT

1200V IGBT 1200V PiN diode

High voltage power MOS

Thyrisotrs

>300mm, CZ, MCZ

150-200mm FZ Epi, SOI, SJ-structure etc

(Pre-structured wafer)

Special Power Devices

6500V PiN diode

Long carrier lifetime

Material (wafer) engineering will share the major part of total power device design, fabrication and

PE application

Large Market, Short time to market

Smaller Market, Long term Integration, Game change

Page 35: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Simulation technology

Synopsys

Silvaco

Ansys

Tanaka ISPSD 2015

Page 36: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

10k

100k

1M

10M

100M

1960 1970 1980 1990 2000 2010

Thyristor

Light Trigger Thyristor

Gate

Turn-off

Thyristor

Bipolar

Transistor

IGBT (module)

IGBT (PPI)

Based on Toshiba

Data Sheets Rate

d P

ow

er

based o

n

data

sheet

(W)

Analytical equation model 1-D PiN diode numerical simulation

1-D Thyristor numerical simulation

2-D Guard-ring simulation

Non-latch-up IGBT simulation

IGBT compact model

Device failure simulation

Year

Simulation Technology advancement and new device R&D

Page 37: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Simulation technology

See also Prof. Wachutka, ISPSD 2014 Plenary

H Ohashi, I Omura - IEEE transactions on electron devices, 2013

Tanaka ISPSD 2015

Virtual prototyping and testing Power electronics system design Hardware embedded (real-time) simulation

Page 38: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Outline

• Introduction: – Moore’s law

– Power electronics trends and Negawatt cost

• Past and Present overview of power semiconductor – Dr. Newell prediction, 1973 talk in PESC

– Types of discrete devices

• Present status explanation – Power MOSFET

– IGBT

– Lateral Device

– Wafer technology (Silicon)

– Simulation technology

• Future

Page 39: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

SSDM 2012, Kyoto

Power Integrated

Circuit area

Power Integrated

Circuit area

GaN HEMT/MOS/SBD

Wide band-gap semiconductor Platform (SiC::2010 ~、GaN::2015 ~ Diamond::2025~)

SiC MOS/SIT/SBD

SiC IGBT/PiN

Blocking voltage [v]

1 10 100 1k 10k

Diamond FET/ BJT/PiN/Field

emitter

CMOS, MOSFET (SJ)/SBD, PiN

IGBT, Thyristor/PiN

Si-MOS(SJ) SiC-SBD

Si-IGBT SiC-SBD, SiC-PiN

Silicon

Silicon

GaAs-FET

Advanced power devices Road map

Silicon platform (~2030)

Hybrid pair platform of Si-switching device and SiC diode (2013~2035)

H. Ohashi et al. “Role of Simulation Technology for the Progress in Power Devices and Their Applications,” IEEE

T-ED, Vol. 60, issue 2, 2013.

Page 40: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

Future possibility

• 1) Si-power devices still have much room for development toward ultimate MOSFETs and IGBTs.

• 2) The combination of Si-switching devices and SiC freewheeling diodes will be a significant step not only for strengthening the SiC market but also for Si-device development.

• 3) Si-IGBT will be replaced by SiC MOSFET in the voltage range of more than 1000 V in some applications, and SiC-IGBT has the potential to be used for applications of more than 10 kV. (Si-IGBT for volume market, SiC for high end market)

• 4) GaN power devices will replace some of Si-power ICs and will be used for faster switching applications.

• 5) The unique properties of diamond have potential for new power devices particularly in high-voltage applications.

• 6) The ultimate CMOS has the potential to be used for power integrated devices in ICT applications.

H Ohashi, I Omura - IEEE transactions on electron devices, 2013

Page 41: Power semiconductor device: Past , Present, and the …power.kyutech.ac.jp/pdf/ICPE2015ECCE_Asia_Korea_omura_Final.pdf · Power semiconductor device: Past , Present, ... • Past

H. Ohashi et al. “Role of Simulation Technology for

the Progress in Power Devices and Their

Applications,” IEEE T-ED, Vol. 60, issue 2, 2013.