Power semiconductor device:...

46
Power semiconductor device: Basics Ichiro Omura Kyushu Institute of Technology Japan Since 1909 IEEE EDS Webinar Dec. 2, 2015 Ichiro Omura Kyushu Inst. Tech.

Transcript of Power semiconductor device:...

Power semiconductor device: Basics

Ichiro Omura Kyushu Institute of Technology

Japan

Since 1909 IEEE EDS Webinar Dec. 2, 2015

Ichiro Omura Kyushu Inst. Tech.

Outline • Introduction

– History

– Power electronics circuit

• Power semiconductor devices

– Power MOSFET / Super-junction MOSFET

– IGBT

– Thyristors

– Lateral devices

• Future possibility

• Related technology

Ichiro Omura Kyushu Inst. Tech.

1965 - "Moore's Law" Silicon Engine to drive ICT

Robert Noyce

Integrated circuit patent in 1959

Number of components

per integrated circuit

Ma

nu

fac

turi

ng

co

st

pe

r

co

mp

on

en

t

Gordon E. Moore

CMOS

To digital cost free => ICT for everybody Ichiro Omura Kyushu Inst. Tech.

AC power distribution system

Ichiro Omura Kyushu Inst. Tech.

www.cz-toshiba.com

transm.web.fc2.com

AC to AC Constant frequency

No active control function

100 years of power device development (High voltage)

Rotary converter (AC-DC)

Semiconductor Technology

Thyristor/GTO (AC-DC/DC-AC)

IGBT (AC-DC/DC-AC, MOS gate)

Electronics (Vacum Tubes)

Neutron doped FZ wafer

Carrier lifetime control

R&D Electric Machine

mm

0.1mm

10-100um

<1-10um

Advanced LSI Tech. (CMOS, DRAM)

1940 1960 1980 2000

Ichiro Omura Kyushu Inst. Tech.

Mercury arc rectifier (AC-DC)

Photos:

Nippon inst. tech, Museum

Nikkei

Tokyu Museum

JR Kyushu

Nagahama Railway Museum

Toshiba

IGBT

Insulated Gate

Bipolar Transistor

Thin wafer technology

Cosmic ray SEU

Chip Parallel operation

Carrier Injection Enhancement

Edge termination technology

R&D

PWM: Pulse Width Modulation

MotorAC

IGBT

PDS: Power Drive System

Carrier wave Modulation wave

Modulated signal to Power

Semiconductor switch (ON/OFF)

1. PWM signal control power semiconductors switch (ON / OFF)

2. Motor current follows the modulation wave

PWM

Ichiro Omura Kyushu Inst. Tech.

C

C

R

R

Ring gear

Sun gear

Carrier/Planetary gear

ICE

Motor Generator

Inverter for motor Inverter for generator

to Wheels

Half-bridge boost

converter

Battery

S

IGBT

Power Diode

Z. Shen and I. Omura. Proceeding of the IEEE, Vol.

95 No. 4, 2007.(Figure)

*A. Kawahashi et al., Proc. of ISPSD 2004, pp. 23-29,

2004.

Total chip area for IGBT

and power diode is more

than 40 cm2 of silicon

wafer for Toyota Prius[*].

Hybrid electric vehicle propulsion system

~200V

~500V

Ichiro Omura Kyushu Inst. Tech.

Power Semiconductor Devices

Ichiro Omura Kyushu Inst. Tech.

Power Semiconductor Devices

IGBT: Insulated Gate Bipolar Transistor

GTO: Gate Turn-off Thyristor

GCT: Gate Commutated Turn-off Thyristor

LTT: Light Triggered Thyrisotor (optical fiber coupled)

Power MOSFET

Low

High

IGBT

GCT/GTO

Syste

m P

ow

er

MOS-gate Bipolar gate

LTT

• MOS gate devices cover wide-power range. • Bipolar gate devices cover very high power applications(>10MW).

Opt- turn-on

Ichiro Omura Kyushu Inst. Tech.

1kW

1GW

Photos:

Infineon

Toshiba

ABB

TMEIC

GTO GCT

LTT

IGBT

Power MOS

Vertical device

Types of power semiconductors(Switch)

GateN-source Source

Drain

N-sub

P-well

N-drift

P-base

N-base

N-emitter

P-emitter

GateCathode

Anode

N

P

PN

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

P

P

N

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

P

P

N

Power MOSFET IGBT

Thyristors (GTO,GCT)

IGBT: Insulated Gate Bipolar Transistor

GTO: Gate Turn-off Thyristor

GCT: Gate Commutated Turn-off Thyristor

1. MOS-gate (voltage) control or bipolar gate (current) control 2. Unipolar conduction or bipolar conduction in high resistive layer(N-)

N+

P

N-

-

N

-

Ichiro Omura Kyushu Inst. Tech.

MOS control +

Unipolar

MOS control +

Bipolar

Current control +

Bipolar

Remark: Vertical Device Structure

Edge termination area

Ele

ctri

c C

urr

en

t

Vo

ltag

e

Ichiro Omura Kyushu Inst. Tech.

Top view Cross section of active area

Cell

Active area

Power MOSFET

Low

High

IGBT

GCT/GTO

Syste

m P

ow

er

MOS-gate Bipolar gate

LTT

Opt- turn-on

Ichiro Omura Kyushu Inst. Tech.

1GW

Photos:

Infineon

Toshiba

ABB

TMEIC

GTO GCT

LTT

IGBT

1kW

Power MOS

Power MOSFET

Power MOSFET

Gate N-source Source

Drain

N-sub

P-well

N-drift

Conduction carrier…… Electron or hole Switching control ……. MOS-gate Switching Freq. ………. High

Source

Drain

Gate

De-coupling Capacitor

Imput Voltate

Sync. Rect. MOSFET

High Side MOSFET

Inductor

Output Capacitor

CPU-chip

DC to DC Converter CPU=Load

Current

Ichiro Omura Kyushu Inst. Tech.

Function of N-drift layer

Source

Drain

(VB)

Ey

drift

dy

DL

E

dy

dEqN

dE

S

D

G

Source

Drain

Ey

Charge

neutrality

Voltage Blocking Conduction

p

n+

n-drift

drift

condDncondDnn

L

VNqENqJ

condE

electron

driftL

Function of N-drift layer: 1. Voltage blocking (higher breakdown voltage) 2. Current conduction (lower resistivity)

Blocking state (Poisson eq.) Conduction state (current eq.)

n: electron mobility

donor

Ichiro Omura Kyushu Inst. Tech.

driftcritB LEV 2

1

3

24

critn

Bdrift

E

VR

Ey

critE

driftL

y drift

critD

L

EqN

Drift layer doping, length and drift layer resistance

0.0

5.0

1.0

1.5

2.0

2.5

3.0

1012 1013 1014 1015

X105 V/cm

Critica

l E

lectr

ic F

ield

fo

r S

ilico

n (

Ecrit)

N-drift Donor Concentration (/cm3)

p n-

Ecrit

B

critD

qV

EN

2

2

crit

Bdrift

E

VL

2

Drift layer doping

Drift layer length

drift

condDnn

L

VNqJ

Drift layer resistance

[Wcm2]

10V 100V 1kV 10kV

0.1mW

1mW

10mW

100mW

1000mW

RON

Ecrit: critical E-field strength

Ichiro Omura Kyushu Inst. Tech.

1. Cell size reduction for channel density 2. Trench gate for channel density and JFET resistance removal 3. Charge compensate (Vertical Field Plate) technology for drift

resistance reduction.

Low Voltage MOSFET (Vertical)

N-drift layerP-well

N-source

GateSource

Drain

Breakdown voltage (V)

10 100 1000

1000

100

10

1

0.1

RonA

(mW

cm

2)

Si-limit

10 100 1000

1000

100

10

1

0.110 100 1000

1000

100

10

1

0.1

1997

2002

2007

2012

Fig from Lecture Slide by W. Saito, Toshiba

Ichiro Omura Kyushu Inst. Tech.

DMOSFET

P/N column drift layer

Easy to deplete for high impurity concentration

Low Ron + High Breakdown Voltage

SJ-MOSFET

0

5

10

15

20

25

0 5 10 15 20 25 30

P/N column pitch (m)

On-r

esis

tan

ce

Ro

nA

(mW

cm

2)

VB=700V

Hig

her c

olum

n do

ping

Breakdown voltage (V)

10 100 1000

1000

100

10

1

0.1

RonA

(mW

cm

2)

Si-limit

10 100 1000

1000

100

10

1

0.110 100 1000

1000

100

10

1

0.1

1997

2002

2007

2012

Fig from Lecture Slide by W. Saito, Toshiba

Super Junction MOSFET

Charge compensate (Super Junction) technology for drift resistance reduction.

Ichiro Omura Kyushu Inst. Tech.

Column doping(ND) and Breakdown Voltage(VB)

Source

Drain

Ey

holE

Ex

VB

Ex

Ey

1. Horizontal field for P/N column depletion

Vertical

field

column

holxD

W

E

dx

dEqN

2

columnWcolumnW

vertE

driftvertB LEV

2.Vertical field for voltage blocking

between drain and source

Electric field in SuperJunction structure high drift layer donor doping 1. Horizontal electric field for depletion of PN junction in narrow columns 2. Vertical electric field for sustain blocking voltage across drift layer

condDnn ENqJ 2

1

3. A half area of drift layer contribute

current conduction

Ichiro Omura Kyushu Inst. Tech.

VB

Ehol

Evert

|E|<Ecrit

2

Ecrit

2

Ecrit

column

critD

qW

EN

2

source

Drain

Ey

holE

Ex

VB

Horizontal field

columnWvertE

drift

condDncondDnn

L

VNqENqJ

2

1

2

1

Drift N-column

doping

Drift layer length

driftvertB LEV

column

holD

W

EqN

2

2

crithol

EE

2

critvert

EE

crit

Bdrif

E

VL

2

Drift layer resistance

[Wcm2] 2

2

critn

colomnBdrift

E

WVR

Drift layer doping, length and drift layer resistance

Assumption: N-column and P-column are same width Ichiro Omura Kyushu Inst. Tech.

1GW

IGBT Insulated Gate Bipolar Transistor

Low

High

GCT/GTO

Syste

m P

ow

er

Bipolar gate

LTT

Opt- turn-on

Ichiro Omura Kyushu Inst. Tech.

Photos:

Infineon

Toshiba

ABB

TMEIC

GTO GCT

LTT

Power MOSFET

1kW

Power MOS

IGBT

MOS-gate

IGBT

1. Bipolar Transistor + MOSFET (before IE-effect) 2. High current capability 3. ~0.8V collector-emitter threshold voltage for conduction 4. Medium switching speed (15kHz for motor drive, 100kHz for ICT

current supply and FPD driver )

Collector

Gate

Emitter

IGBT

50

100

1985 1990 1995 2000 2005

200

300

500

Rate

d C

urr

ent

Density(A

/cm

2) Thin wafer NPT

Thin wafer PT

Trench gate

NPT-IGBT

Carrier enhancement effect

Non latch-up IGBT

IPM

Year

2010 2015

Thermal management

High Temp.

Protection

Noise control

Vce

Ic

0.8V

Shen, Omura, “Power Semiconductor Devices for Hybrid,

Electric, and Fuel Cell Vehicles” Proc. Of the IEEE, Issue 4, 2007

Ichiro Omura Kyushu Inst. Tech.

Operation mechanism of IGBT

Ionized impurity (donor)

0E

0E

0E

0E

Electron

0)(

nNqdx

EdD

0)(

npNqdx

EdD

npND , npni

Conduction modulation in N-base

positive negative

Hole

)(2 np

kT

q

i enpn

2

inpn

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

P

P

N

GateN-source

Emitter

Collector

P-emitter

P-base

N-base

P

P

N

np

Vce

Ic

0.8V

IGBT

MOSFET

PN-junction built-in

potential

Conduction

modulation

Unipolar

N-base

Conduction modulation 1. Both hole and electron contribute to current

conduction 2. High stored carrier density in N-base (>1016cm-3) 3. Built-in voltage with the stored carrier

Ichiro Omura Kyushu Inst. Tech.

Epitaxial layer

with carrier

lifetime control

Electric field at

blocking state

Low resistance

P-type Substrate

Stored Carrier

during on-state

P-emitter

N-buffer

N-base

P-base N-source

Gate

Emitter

Collector

High minority carrier

(hole) injection efficiency

Punch-through IGBT (PT-IGBT)

1. Epi grown N-buffer (field stop) and short / lightly doped N-base

2. High minority (hole) carrier injection from P-emitter

3. Low-conduction loss and large switching loss

4. Carrier lifetime control (high energy electron irradiation etc.) required

Ichiro Omura Kyushu Inst. Tech.

Electric Field at

blocking state

Neutron

transmutation

doped wafer

Stored Carrier

during on-state

Shallow P-emitter

N-base

P-base N-source

Gate

Emitter

Collector

M. Tanenbaum and A. D. Mills J. Electrochem. Soc., vol. 108, pp.171 1961 J. Cornu and R. Sittig IEEE Trans. Electron Devices, vol. ED-22, pp.108 1975 IAEA-TECDOC-1681, Neutron Transmutation Doping of Silicon at Research Reactors, 2012

Neutron transmutation doping

Low minority carrier

(hole) injection efficiency

Non-Punch-through IGBT (NPT-IGBT)

1. NTD wafer without N-buffer 2. Low minority (hole) carrier

injection from P-emitter 3. Higher-conduction loss and

lower switching loss 4. No carrier lifetime control

required Ichiro Omura Kyushu Inst. Tech.

Electric field at

blocking state

Stored Carrier

during on-state

N-buffer

N-base

Shallow P-emitter

NTD wafer

etc.

P-base

N-source

Gate

Emitter

Collector

Thin wafer IGBT technology

N-base length Short Long Short

Carrier lifetime

in N-base Short Long Long

P-emitter hole

injection High Low Low

PT NPT Thin-wafer-PT

Thin Wafer Technology -Reduction of turn-off tail current with short N-base -Reduction of conduction loss with short N-base

Low Hole Injection P-emitter with long carrier lifetime -Reduction of turn-off tail current with low hole injection -Better thermal coefficient without carrier lifetime control

Ichiro Omura Kyushu Inst. Tech.

=FS-IGBT

Stored Carrier during

on-state

N-base

Pemitter

N-buffer

P-base N-source

Gate

Collector

Emitter

Hole current

Electron

current

Problem in High Voltage IGBT Device Design

High conduction resistance for high voltage IGBT

Carrie

r sto

rage

Ichiro Omura Kyushu Inst. Tech.

Stored Carrier

during on-state

Pemitter

N-buffer

P-base

N-source

Gate

Collector

Emitter

Hole current

Electron

current

Electron Injection Enhancement Effect

Trench gate technology with special structure enhances majority carrier (electron) injection in N-base Low conduction loss under high current density

Kitagawa et al. “A 4500 V injection enhanced insulated gate bipolar

transistor (IEGT) operating in a mode similar to a thyristor,” IEDM’93,

1993.

Omura et al. “Carrier injection enhancement effect of high voltage MOS

devices-device physics and design concept,” ISPSD 97, pp. 217-220,

1997.

Omura, “High Voltage MOS Device Design: Injection Enhancement and

Negative Gate Capacitance, (ETH thesis 2000), Series in

Microelectronics Vol. 150, Hartung-Gorre Verlag, 2005.

N-base

Carrie

r sto

rage

Ichiro Omura Kyushu Inst. Tech.

Summary of IGBT Technology

N-base

P-emitter

Gate

•Thin Wafer Technology – Both conduction and turn-off loss reduction with

with short N-base

•Trench Gate

–Conduction loss reduction with electron injection enhancement

–Channel resistance, JFET resistance reduction

•Low Injection P-emitter + Long Carrier Lifetime

– Turn-off loss reduction with low hole storage in N-base

– Better thermal coefficient without carrier lifetime control

Ichiro Omura Kyushu Inst. Tech.

N-base

Pemitter

N-buffer

Floating P

Gate

Collector

Emitter

Hole

current

Electron

current

Ey

Voltage blocking

E-field

n

Conduction (flat carrier distribution is assumed)

Ey

E-field

Ch

arge neu

trality

p

Electron hole

storedn

crit

Bbasen

crit

B

E

VL

E

V 2

storednnp

N-base length

Stored Carrier

density

Conduction and Breakdown Voltage

i

stroedinbuilt

n

n

q

kTV ln2

critstoredpn

BbaseN

Enq

VR

)(

2~1

N-base conduction

resistance

PN-junction built-in

potential

Vce 0.8V

IGBT

MOSFET Ic

Ichiro Omura Kyushu Inst. Tech.

DMOSFET

Drift Layer Doping

(Stored carrier density)

Drift Layer Length

(N-base length) crit

Bdrif

E

VL

2

Drift Layer Resistance

(N-base conduction

resistance) 3

24

critn

Bdrift

E

VR

B

critD

qV

EN

2

2

column

critD

qW

EN

2

crit

Bdrif

E

VL

2

2

2

critn

colomnBdrift

E

WVR

Device Structure

Assumption: N-column and P-

column are same width

IGBT

N-base

Pemitter

N-buffer

Floating P

Gate

Collector

Emitter

Hole

current

Electron

current

storedn

crit

Bbasen

E

VL

2~1

critstoredpn

BbaseN

Enq

VR

)(

2~1

(flat carrier stored carrier

distribution is assumed

(>1016cm-3)

SJ-MOSFET

PN-junction

built-in potential none none

i

storedinbuilt

n

n

q

kTV ln2

600V class device 80-100 mWcm2 <10 mWcm2 ~1.5V at 200A/cm2

Omura et. al, International Workshop on Physics of Semiconductor Devices, 2007. IWPSD 2007, pp. 781 – 786, 2007

.

Ichiro Omura Kyushu Inst. Tech.

DMOSFET

Device Structure

IGBT

N-base

Pemitter

N-buffer

Floating P

Gate

Collector

Emitter

Hole

current

Electron

current

SJ-MOSFET

V-I

characteristics

Omura et. al, International Workshop on Physics of Semiconductor Devices, 2007. IWPSD 2007, pp. 781 – 786, 2007

.

Switching

charge (turn-off

charge)

Vce

Ic

inbuiltV

VDS

ID baseNR

VDS

ID driftON RR

driftON RR

Charge in main-junction

capacitance Stored carrier sweep out

PN-column depletion

charge

Ichiro Omura Kyushu Inst. Tech.

Types of Power Semiconductors

Low

High

Syste

m P

ow

er

Ichiro Omura Kyushu Inst. Tech.

Photos:

Infineon

Toshiba

ABB

TMEIC

Power MOSFET

1kW

Power MOS

IGBT

MOS-gate

1GW IGBT GCT/GTO

Bipolar gate

LTT

Opt- turn-on

GTO GCT

LTT

N-emitter

N-base

Cathode Anode

Stored carrier concentration

under current conduction

Impurity

concentr

ation

P-base P-emitter

Light Triggered Thyristor(LTT) Photos: http://dbnst.nii.ac.jp/

Ichiro Omura Kyushu Inst. Tech.

Forward

blocking Conduction

Reverse

blocking

Trigger pulse

1. PNPN structure 2. Light triggered turn-on 3. Cannot turn-off by gate 4. One wafer per one device 5. Pressure contact package 6. Highest power per single semiconductor

1.4GW system by Toshiba

ABB GTO(GCT)

Integrated gate circuit

5.5kV, 5kA HPT IGCT

Gate drive current

ABB

ABB

GCT: Gate Commutated Turn-off Thyristor

1. PNPN structure 2. One wafer per one device 3. > 100um cell size 4. Pressure contact package 5. Very low stray inductance

integrated gate driver for couple of kA gate current

6. Highest power per single semiconductor turn-off device

Ichiro Omura Kyushu Inst. Tech.

Motor Driver

Audio Speaker Driver

~1kV

<100V

Oxide

BOX

Emitter Collector

Substrate

Lateral Devices Control and Power = Power IC

P n+ n+ n-drift

Source Drain Gate

Trypath datasheet

Toshiba

Ichiro Omura Kyushu Inst. Tech.

Breakdown at vertical

PN-junction

N-drift Dose

Bre

akdo

wn v

oltag

e

Breakdown

near N+

Breakdown

near P

RESURF principle for breakdown voltage design

N-drift dose (atm/cm2) is the key parameter for breakdown voltage design (~1e12/cm2)

Figure J. A. Appels

et al. IEDM1979, pp.

238- 241, 1979

P

P-

N+

Gate

Source Drain

High dose N-drift

GND

Ey

ExElectric

field

N-driftN+

P

P-

N+

Gate

Source Drain

Ex

Low dose N-drift

GNDElectric

field

N+ N+

N-drift

P

P-

N+

Gate

Source Drain

Medium dose N-drift

GND

Ey

ExElectric

field

N-drift

Ichiro Omura Kyushu Inst. Tech.

Oxide

D. Disney et al. A new 600V lateral PMOS device with a buried conduction layer, pp.41-44, ISPSD’ 03

Gate

P-buried

N

P-substrate

Drain Source X2 amount of

conduction carriers Oxide Gate

P-buried

N

P-substrate

P-buried

Lateral “Super Junction” MOSFET

Ichiro Omura Kyushu Inst. Tech.

SOI IGBT

Oxide

BOX

GND

Emitter

Substrate

Nbase Ey

Future Power ICs Power IC VBK in ISPSD papers

Digital Rich

Power IC

Omura, ECPE workshop Jan. 2012

Future HV Power IC will be …

Ichiro Omura Kyushu Inst. Tech.

1

10

100

1000

10000

0.1 1 10 100 1000

Current(A)

Vo

lta

ge(V)

Max(

Vin

, V

ou

t)

CPU Power Supply

(POL)

Appliances

Mobile Power Supply

Transmissions

High power motor

drives

Vicor VIChip

DIP IPM

Max(Iin, Iout)

HEV IPM

Pow

er ICs on P

CB

SOI single chip inverter

Single chip power supply

Transfer molded pow

er

devices / Pow

er SiP

on PCB

IPM

with ceram

ic

Insulator

Pow

er SoC

High power

Industrial Drives

EV/HEV

High P

ower M

odules

/ PPIs

On board Power Supply

Industrial IPM

Omura, CIPS 2010

Kilowatt

Power IC

Future Possibility

Ichiro Omura Kyushu Inst. Tech.

Ichiro Omura Kyushu Inst. Tech.

Power Integrated

Circuit area

Power Integrated

Circuit area

GaN HEMT/MOS/SBD

Wide band-gap semiconductor Platform (SiC::2010 ~、GaN::2015 ~ Diamond::2025~)

SiC MOS/SIT/SBD

SiC IGBT/PiN

Blocking voltage [v]

1 10 100 1k 10k

Diamond FET/ BJT/PiN/Field

emitter

CMOS, MOSFET (SJ)/SBD, PiN

IGBT, Thyristor/PiN

Si-MOS(SJ) SiC-SBD

Si-IGBT SiC-SBD, SiC-PiN

Silicon

Silicon

GaAs-FET

Advanced power devices Road map

Silicon platform (~2030)

Hybrid pair platform of Si-switching device and SiC diode (2013~2035)

H. Ohashi et al. “Role of Simulation Technology for the Progress in Power Devices and Their Applications,” IEEE

T-ED, Vol. 60, issue 2, 2013.

Future possibility

• 1) Si-power devices still have much room for development toward ultimate MOSFETs and IGBTs.

• 2) The combination of Si-switching devices and SiC freewheeling diodes will be a significant step not only for strengthening the SiC market but also for Si-device development.

• 3) Si-IGBT will be replaced by SiC MOSFET in the voltage range of more than 1000 V in some applications, and SiC-IGBT has the potential to be used for applications of more than 10 kV. (Si-IGBT for volume market, SiC for high end market)

• 4) GaN power devices will replace some of Si-power ICs and will be used for faster switching applications.

• 5) The unique properties of diamond have potential for new power devices particularly in high-voltage applications.

• 6) The ultimate CMOS has the potential to be used for power integrated devices in ICT applications.

H Ohashi, I Omura - IEEE transactions on electron devices, 2013

Ichiro Omura Kyushu Inst. Tech.

Related Technology

Ichiro Omura Kyushu Inst. Tech.

Examples of High Power IGBT Package

125mm

42 Chips

15mm

Shen, Omura, “Power Semiconductor Devices for Hybrid, Electric, and Fuel Cell Vehicles” Proc. Of the IEEE, Issue 4, 2007

Ichiro Omura Kyushu Inst. Tech.

Wafer technology(Silicon)

Productivity

Quality Functionality

Low voltage commodity

Low voltage high spec

6500V IGBT

1200V IGBT 1200V PiN diode

High voltage power MOS

Thyrisotrs

300mm, CZ, MCZ

150-200mm FZ Epi, SOI, SJ-structure etc

(Pre-structured wafer)

Special Power Devices

6500V PiN diode

Long carrier lifetime

Material (wafer) engineering will share the major part of total power device design, fabrication and

PE application

Large Market, Short time to market

Smaller Market, Long term Integration, Game change

Ichiro Omura Kyushu Inst. Tech.

Power electronics and micro electronics forming Cyber-Physical System

Hardware

Micro-

electronics

Service

LSI, Adv. CMOS

Power Semi.

Power Circuit, Control Legacy Power-

Electronics

Energy network

Software, Sensing, Protocol Legacy Micro-

Electronics

Power-

electronics

Digital network

Networking

Clustering

Integrating

Actuating Lighting Heating Cooling E-Storage

High speed

communication

Cloud

Internet

SNS

IoT, Industrie 4.0

I. Omura, SIIQ report, Oct. 2012, in Japanese

Integration

Ichiro Omura Kyushu Inst. Tech.

Generating

Electron devices are the key technology for future energy networking New phase of electronics has started with close link between power

and micro electronics for future sustainable society

Z. John Shen, Ichiro Omura

Article Power Semiconductor Devices for Hybrid, Electric, and Fuel

Cell Vehicles

Proceedings of the IEEE 05/2007; 95(4-95):778 - 789.

H. Ohashi and I. Omura “Role of Simulation Technology for the

Progress in Power Devices and Their Applications,” IEEE T-ED, Vol.

60, issue 2, 2013.

Ichiro Omura Kyushu Inst. Tech.

See also