Power Electronics chapter01

download Power Electronics chapter01

of 15

Transcript of Power Electronics chapter01

  • 8/19/2019 Power Electronics chapter01

    1/37

    1

    1

    Power

    Electronics

    CHAPTER 1

    In t roduct ion

  • 8/19/2019 Power Electronics chapter01

    2/37

    2

    2

    Power

    Electronics

    Power electronic circuit vs electronic circuit

    Resistor Capacitor Inductor Transistor Diode

    Different circuit design methodologies used

  • 8/19/2019 Power Electronics chapter01

    3/37

    3

    3

    Power

    Electronics

    work

    power

    (energy)

    used

    heat energy

    sweat tired

    power consumption

    work

    power

    (energy)used

    heat energy

    Fan/heat sink

    power consumption

    Battery discharged

    How to work with less power consumption High efficiency required

    Human beings

    Electronics

  • 8/19/2019 Power Electronics chapter01

    4/37

    4

    4

    Power

    Electronics

    Electronic circuit is working

     I

    V

    +

    -

    0

    0

     I 

    0 P 

    How to design circuits with less power consumption and high efficiency

    Power electronics circuit

  • 8/19/2019 Power Electronics chapter01

    5/37

    5

    5

    Power

    Electronics

    Why power electronics so important

    Rapidly increasing energy

    demand

    Energy crisis & energy security

    Environmental issues Wide usage of portable devices

  • 8/19/2019 Power Electronics chapter01

    6/37

    6

    6

    Power

    Electronics

    High efficiency is essential.

    Power Electronics Circuits

    Pin Pout

    Ploss

    Ploss / Pout

    0.5

    1

    heat

    Power

    Electronic

    circuit

    lossout in   P  P  P   

    lossout 

    out 

    in

    out 

     P  P 

     P 

     P 

     P 

     

  • 8/19/2019 Power Electronics chapter01

    7/377

    7

    Power

    Electronics

    Input

    source

    Output

    load

    dc-dc

    converter

    ac-ac

    converter

    ac-dc

    rectifier

    dc-ac

    inverter

    Power electronic

    circuits

    Power Electronic Circuits

    DC

    AC

    DC

    AC

  • 8/19/2019 Power Electronics chapter01

    8/378

    8

    Power

    Electronics

  • 8/19/2019 Power Electronics chapter01

    9/379

    9

    Power

    Electronics

    Vdc   Vo

    How realized ?

    Simple AC-DC Converter

    Vdc   VoRload?

    Io = 10 A

    = 50 V

    = 100 V

    50V, 10A,500W

    + 50 V -

    Rconv = 5

    Io = 10 A

    = 50 V

    = 100 VRload = 5

    Simplest way is using resistive voltage divider

    dc-dc

    converterac-dc

    rectifier

    controllabledc

    uncontrollabledc

    raw ac

    input

  • 8/19/2019 Power Electronics chapter01

    10/3710

    10

    Power

    Electronics

    Most of loads have dynamic characteristics

    The resistance of the converter should change accordingly, with load condition changed.

    Simple AC-DC Converter

    Vdc   Vo

    + 50 V -

    Rconv : 5 1

    Io : 10 A 50 A

    = 50 V

    = 100 V

    Rload : 5 1

    3

    2

    1

    Converter should behave as a series/adjustable resistor  

  • 8/19/2019 Power Electronics chapter01

    11/3711

    11

    Power

    Electronics

    iD +

    -

    vDS

    A transistor can work as a variable resistor

    RDS 

    Simple AC-DC Converter

    vDS [V]

    iD [mA]

    RDS1 

    RDS2 

    RDS3 

    RDS4 

    Controlling gate voltage of a transistor can change resistor RDS 

    iD +

    -

    vDS

    Characteristic curve of transistor

  • 8/19/2019 Power Electronics chapter01

    12/3712

    12

    Power

    Electronics

    Vdc

    controller 

    Vo

    Vo.ref 

    Rload

    Transistor operates in linear-mode

    • Gate voltage control by feedback system

     Change effective resistor

    Only applied at low power levels

    Linear regulator

     AC-DC Converter with Linear Regulator

    Io = 10 A

    = 50 V

    = 100 V

    + 50 V -

    Pin = 1000 WPout = 500 W

    Ploss = 500 WHigh power loss

    in linear circuit

    dc-dc

    converterac-dc

    rectifier

    controllabledc

    uncontrollabledc

    raw ac

    input

  • 8/19/2019 Power Electronics chapter01

    13/3713

    13

    Power

    Electronics

    Switching Circuit based AC-DC Converter

    vDS [V]

    iD [mA]

    vDS [V]

    iD [mA]

    Switch open:

    iD = 0

    Switch closed:

    vDS = 0

    Ideal switch consumes zero power

    In both cases:

    P = VDS iD = 0

    iD +

    -

    vDS

    iD +

    -

    vDS

    A transistor can work as a switch

    idealized

    trioderegion

    Cut-offregion

    14

  • 8/19/2019 Power Electronics chapter01

    14/3714

    14

    Power

    Electronics

    on-time of S1

    Rload

    Io = 10 A

    Vo = 50 V

    Vdc 

    100 V

    +

    -

    +

    -

    Switching regulator

    Vs 

    +

    -

    Vs  Vdc  Vdc 

    S1 

    S2 

    S1 ON S2 ON S1 ON

     AC-DC Converter

    Ts 

    dc-dc

    converterac-dc

    rectifier

    controllabledc

    uncontrollabledc

    raw ac

    input

    D = duty cycle

    =Ts

    15

  • 8/19/2019 Power Electronics chapter01

    15/3715

    15

    Power

    Electronics

    The switching operation can change the dc voltage level

     AC-DC Converter

    Vs 

    Vdc  Vdc 

    S1 ON S2 ON S1 ON

    Vs,avg = DVdc

    Ts 

    increased dc

    voltage levellonger duration

        sT 

    dc s

     s

    avg  s   DV dt V T 

    V 0

    ,

    1

    DC component of Vs = average value

    16

  • 8/19/2019 Power Electronics chapter01

    16/3716

    16

    Power

    Electronics

     Addition of LC low-pass filter to remove high freq. components of V s

    Rload

    Io = 10 A

    Vo = 50 V

    +

    -

    +

    -

    +

    -

    S1 

    S2 

    LC low-pass

    filter

    Vs 

    Vdc 

    100 V L

    C

    Vs  Vdc  Vdc 

    Vo = Vs,avg + vripple

    S1 ON S2 ON S1 ON

     AC-DC Converter

    DC negligible

    17

  • 8/19/2019 Power Electronics chapter01

    17/3717

    17

    Power

    Electronics

    Rload

    Ideally no converter losses with switching approach

    Io = 10 A

    Vo = 50 V

    +

    -

    +

    -

    +

    -

    S1 

    S2 Vs 

    Vdc 100 V L

    C

    Ideally speaking,

    Switch  – no losses

    L, C  – no losses

     AC-DC Converter

    Ideally Ploss = 0

    Pin = 500 WP

    out

     = 500 W

    18

  • 8/19/2019 Power Electronics chapter01

    18/3718

    18

    Power

    Electronics

    Linear vs Switching circuit

    Linear regulator

    Large size and heavy weight

    High power losses

    Used in labs or very lowpower applications

    Switch-Mode Power Supply

    (SMPS)Switching regulator

    Small size and light weight

    Very low power losses

    Used in most electronics

    19

  • 8/19/2019 Power Electronics chapter01

    19/3719

    19

    Power

    Electronics

    Components of Power Electronic Circuits

    - Semiconductor switch: energy flow control from input to output

    - Inductor & capacitor: energy transmitter and filter for remove ripple component

    - Transformer: voltage gain control of input & output and galvanic isolation

    20

  • 8/19/2019 Power Electronics chapter01

    20/3720

    20

    Power

    Electronics

    1 2 1

    Rload Vo 

    +

    -

    +

    -

    +

    -

    S1 

    S2 

    Vs Vdc 

    100 V

    L

    C

     AC-AC Converter

    S4 

    S3 

    Vdc

     

    -Vdc 

    2 Vs modeMode 1: S1 & S4 ON

    Mode 2: S2 & S3 ON

    Vs = Vdc

    Vs = -VdcVs,avg = Vo 

    dc-ac

    inverterac-dc

    rectifier

    controllableac

    uncontrollabledc

    raw ac

    input

    21

  • 8/19/2019 Power Electronics chapter01

    21/3721

    21

    Power

    Electronics

    control input port

    Controller

    raw input source

    (DC or AC)

    regulated output

    (DC or AC)

    Raw power

    Uncontrolled magnitude

    Uncontrolled frequency

    Conditioned power

    Controllable magnitude

    Changeable frequency & phase

    Power

    input port

    Power

    Electronic

    Circuits 

    High efficiency

     Very

    important

    Power Electronics Systems

    Power/Energy processing

    measurement

    reference

    Power electronics process and control electrical power/energy flow bymanipulating voltage and current in optimal form suited for loads

    Power

    output port

    22

  • 8/19/2019 Power Electronics chapter01

    22/37

    22

    22

    Power

    Electronics

     Applications  – Charger & PMIC

  • 8/19/2019 Power Electronics chapter01

    23/37

    24

  • 8/19/2019 Power Electronics chapter01

    24/37

    24

    24

    Power

    Electronics

     Applications  – Display

    25

  • 8/19/2019 Power Electronics chapter01

    25/37

    25

    25

    Power

    Electronics

     Applications

    Elevator HVDC Transmission

    26

  • 8/19/2019 Power Electronics chapter01

    26/37

    26

    26

    Power

    Electronics

     Applications - Trains

    KTX Sancheon (2010)

    Maglev (Magnetic Levitation) train

    Subway

    27

  • 8/19/2019 Power Electronics chapter01

    27/37

    27

    27

    Power

    Electronics

     Applications  – EV/HEV

    28

  • 8/19/2019 Power Electronics chapter01

    28/37

    28

    28

    Power

    Electronics

     Applications  – New renewable energy systems

    29

  • 8/19/2019 Power Electronics chapter01

    29/37

    29Power

    Electronics

     Applications  – New renewable energy systems

    30

  • 8/19/2019 Power Electronics chapter01

    30/37

    30Power

    Electronics

    Electronic Switches

    switches ON   short circuit

    switches OFF open circuit

    instantaneous transition

     Ideal switch model

     Desirable practical switch

    1) Higher allowable current and lower on-resistance when switch is on

    2) Higher blocking voltage across switch when switch is off

    3) Faster transition between on-off states

    4) Lower power consumption to drive switch

  • 8/19/2019 Power Electronics chapter01

    31/37

    32

  • 8/19/2019 Power Electronics chapter01

    32/37

    32Power

    Electronics

    Diode

    i-v curveidealized i-v curve

    reverse recovery current

     limits high-frequency operation

    reverse recovery time

     Fast recovery diode (FRD) Schottky diode

    Idealized

    forward voltagedrop VF = 0

    on-resistance Rd 

    = 0

    Metal-silicon than PN junction

    Small VF and little reverse

    recovery, but small reverseblocking voltage

    uncontrolled-on & uncontrolled-off switch

    unidirectional current-flow & unidirectional voltage blocking

    switching

    33

  • 8/19/2019 Power Electronics chapter01

    33/37

    33Power

    Electronics

    Thyristor (SCR: Silicon Controlled Rectifier)

     SCR turned on v AK > 0 & gate current applied

    Once SCR is on, it keeps on with no gate current (it works as diode) pulse gate current

      SCR turned off SCR current goes down to minimum level (almost 0)

     Highest current and voltage rating, but slow switching frequency

     High power level applications only

    controlled-on & uncontrolled-off switch

    unidirectional current-flow & unidirectional voltage blocking

    switching

    34

  • 8/19/2019 Power Electronics chapter01

    34/37

    34Power

    Electronics

    MOSFET

     MOSFET turned off vGS = 0

     MOSFET turned on vGS applied with 5V/15V

     No power loss to drive MOSFET

     on-state resistance r DS(on) increases rapidly with blocking voltage rating

     limited to small blocking voltage switch

     High switching frequency (typically a few hundred kHz)

    voltage controlled switch

    controlled-on & controlled-off switch

    unidirectional current-flow, but possible reverse current flow through body-diode

    unidirectional voltage blocking

    body diode: useful

    for rectifier &

    inverterapplications

    switching

    35

  • 8/19/2019 Power Electronics chapter01

    35/37

    35Power

    Electronics

    BJT

     BJT turned off  base current iB = 0

     BJT turned on sufficient base current provided (even a few ampere)

     considerable power loss to drive BJT

     small on-state voltage Vce(sat) (typically 1 ~ 2 V)  low conduction loss Slower switching speed than MOSFET

     Rarely used as electronic switch after invent of IGBT, only used for linear regulator

    current controlled switch

    controlled-on & controlled-off switch

    unidirectional current-flow & unidirectional voltage blocking

    switching

    36

  • 8/19/2019 Power Electronics chapter01

    36/37

    36Power

    Electronics

    IGBT(Insulated Gate Bipolar Transistor)

    MOSFET

    No power loss

    (Good)

    high power loss

    (Bad)

    high RDS(on) with

    high blocking

    voltage (Bad)

    Small on-state

    voltage drop(Good)

    BJT IGBT

     IGBT turned off  vGE = 0

     IGBT turned on  vGE applied with 5V/15V

     No power loss to drive IGBT as MOSFET

     small on-state voltage Vce(sat)  low conduction loss as BJT

     Higher current and voltage ratings than MOSFET

     Slower switching frequency than MOSFET (typically a few ten kHz)

    voltage controlled switch

    37

    S it h l ti

  • 8/19/2019 Power Electronics chapter01

    37/37

    Power

    Switch selection