POWER ELECTRONICS - ARPA-E · POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E...

47
www.arpa-e.energy.gov POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Transcript of POWER ELECTRONICS - ARPA-E · POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E...

Page 1: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

www.arpa-e.energy.gov

POWER ELECTRONICS

Rajeev Ram, Professor, MIT

March 1, 2010

ARPA-E Pre-Summit Workshop

Page 2: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Image:Henderson, Infineon

ELECTRICAL POWER

Transmission

Workshop Objective: Identify science and engineering challenges for

improving efficiency in the utilization of electrical power

Page 3: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

2

Overview of Electrical Energy Consumption

Application Landscape

ARPA-E Workshop

Workshop Findings

World Liquid Fuel

1.4-1.8%/yr

Natural Gas

0.4%/yr

Electricity

1.7-1.9%/yr

US Coal

2-3.9%/yr

Page 4: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

0.3% per year

8.7% growth

Transportation

1,925 (33%)

Buildings (fossil)

&Industrial

1,530 (26%)

Electric Power

2,359 (41%)

2008

5,814million metric

tons

2035

6,320million metric

tons

Transportation

2,115 (33%)

Buildings

(fossil)

&Industrial

1,571 (25%)

Electric Power

2,634 (42%)

Source: Annual Energy Outlook 2010

ELECTRIC POWER CONTRIBUTION

TO CO2 EMISSION

Historically, electrical power has been the largest source of CO2

emissions, the main contributor to climate change. But in the

upcoming decades electricity can become a key lever in evolving

towards a low carbon economy.- International Electricity Partnership, Dec. 2009

Page 5: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

3-year rolling average percent

growth

Projections

History

Period Annual Growth

1950s 9.8

1960s 7.3

1970s 4.7

1980s 2.9

1990s 2.4

2000-2008 0.9

2008-2035 1.0

Source: Annual Energy Outlook 2010

EFFICIENCY IMPROVEMENTS IN

ELECTRICAL POWER

Page 6: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

WHAT IS POWER ELECTRONICS?

“The task of power electronics is to process and control the

flow of electric energy by supplying voltages and

currents in a form that is optimally suited to the load.”

AC/DC Conversion

Power

SourceLoad

ControlControl

ControlControl ControlControl

ControlControl ControlControl

DC/AC Conversion

DC/DC Conversion AC/AC Conversionbattery

Page 7: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Power electronics is the electrical version of a gear box/transmission

Imagine driving a car always in 4th gear…

...imagine what this would do to fuel efficiency and drivability

Power

SourceLoad

ControlControl

Power

SourceLoad

ControlControl

WHAT IS POWER ELECTRONICS?

Page 8: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

7

Overview of Electrical Energy Consumption

Application Landscape

ARPA-E Workshop

Workshop Findings

Page 9: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Share of Electricity Consumed by

Major Sectors of the Economy, 2008Primary Energy Use by Sector

Source: Energy Information Administration,

Annual Energy Review 2008

• 150 W/lm solid-state lighting would allow 89% reduction in energy (rel. to 60W bulb)

• 20% energy loss in industrial motors due to mechanical throttling

• Goal:1M plug-in hybrid cars on road by 2015. 20% of material cost is power electronics

• ‘No bleed’ More Electric Airplanes give 41% reduction in non-thrust power

POWER ELECTRONICS IMPACT

About 19% of commercial

and residential electricity

consumption is lighting

Page 10: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

9

LIGHTING

Phillips ColorKinetics, 2009

Dimmable

Lamp

Driver Efficiency

Commercial

(not

dimmable)

87%

Commercial

(dimmable)

additional

-5 to -10%

Lab 92-98%

$80 Luminaire = 58 lm/W

LED = 75 lm/W

Commercial

Lab

Driver = 37-50% of cost

Page 11: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

INDUSTRIAL MOTORS

Two-thirds [65%] of world‟s industrial electricity runs electric motors and only 5% of these

use variable speed drives [3% with power less than 2.2kW], which consume 1/8 of the energy

as constant speed drive.

Peter Zwanziger, Siemens

Semiconductor Industry Association, "Doing More Using Less"

Page 12: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

CONVENTIONAL GRID-TIED

PHOTOVOLTAICS

Maximum AC Power Output 3000 Watts

AC Output Voltage (Nominal) 240 VAC

AC Output frequency (Nominal) 60 Hz

DC Input Voltage Range 195-600 VDC

CEC Efficiency 94%

PV installation failure is primarily in the inverter.

[Inverter failure is primarily electrolytic

capacitor.]W. Bower, Prog. Photovolt. Res. Appl., 2000

Page 13: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

INEFFICIENCY FOR MISMATCHED

MODULES

Data: N. Chaintreuil, et al. INES R.D.I., Laboratory for Solar Systems

Lowest performing module in

series determines the current

for the string

Micro-converters (DC or AC) allow

optimization for each module.

Risk: reduced

reliability per module

& access for replacement

Page 14: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

PV FIRE SAFETY

Fires started by PV Firefighters and PV•Solar panels are not disabled

by a disconnect

•Today, we can only zero DC

voltage by blocking the

sunlight

Code: 690.11 Arc-Fault Circuit Protection (DC)

PV systems with dc source and/or output circuits

on or penetrating a building operating at a PV

system maximum system voltage of 80 volts or

greater shall be protected by a listed (DC) arc

fault circuit interrupter, PV type, or other system

components listed to provide equivalent

protection.San Jose, CA FD

Page 15: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

WIND TURBINE GENERATORSPOWER ELECTRONICS REPLACES

GEARBOX

Gearbox Direct Drive

• Reduces frictional losses

• Increases reliability

-gearbox is dominant failure mode

• Reduces noise and vibration

• Increases mechanical stiffness

Page 16: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

TRANSPORTATION: MORE ELECTRIC

AIRPLANES

Future Aircraft (K. Karimi, Senior Fellow, Boeing)

• Higher voltage systems

• High temperature power electronics

• Adaptive and intelligent power systems

• Power electronics integration

Source: Pat Wheeler, Keynote at EPE 2011

Page 17: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

TRANSPORTATION: CARS

Power electronics

• 20% of the material costs for HEV

• Cooled to 85 C (especially important for HEV)

• Diminishing margin for voltage surge

Images: Semiconductor Today, June/July 2009

Page 18: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

APPLICATIONS NEEDS

Low-cost intelligent controllers

Low-cost efficient power supplies

Higher voltages & operating temperatures

…with improved reliability

Page 19: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Overview of Electrical Energy Consumption

Application Landscape

ARPA-E Workshop

Workshop Findings

The opportunity is significant (20-30% reduction in electricity consumption)

The market has responded to many of these needs

Where does the industry need federal investment?

Page 20: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Photo: Ian Livingston (flickr)

WORKSHOP STRUCTURE

FEBRUARY 9TH 2010

Academia

13 participants

Presentation: Fred Lee

Director, CPES, Virginia Tech

“Integrated Point of Load Converters”

Government

8 participants outside ARPAE

Presentation: Ward Bower

PM DOE SEGIS, Sandia National Labs

“PV Systems: Power Technology”

Industry

11 participants

Presentation: Le Tang

CTO, ABB

“HVDC Technologies”

Page 21: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Name Organization Name Organization

Rajeev Ram MIT Fred Lee Virginia Tech

Dushan Boroyevich CPES Virginia Tech Mark Johnson NC State University

Karim Boutros HRL Laboratories, LLC Christopher Murray U. Pennsylvania

Ward Bower Sandia National Laboratory Burak Ozpineci Oak Ridge National Laboratory

Deepak Divan Georgia Tech Tomas Palacios MIT

Charles Eddy U.S. Naval Research Laboratory John Palmour Cree, Inc.

Robert Erickson University of Colorado David Perreault MIT

Keith Evans Kyma Technologies, Inc. Satish Prabhakaran General Electric Global Research

Martin Fornage Enphase Energy Mark Rosker DARPA/MTO

John Glaser General Electric Global Research Ranbir Singh GeneSiC Semiconductor Inc

Robert Havemann SRC Mike Soboroff DOE/OE

Allen Hefner NIST Charles Sullivan Dartmouth

Alex Huang NC State University Le Tang ABB

Reynold Kagiwada Northrop Grumman Robert Trew National Science Foundation

Barbara Kenny NSF Shan Wang Stanford University

Refik Kortan DOE-BES Masahiro Yamaguchi Tohoku University, Japan

Philip Krein University of Illinois Jeffrey Yang Northrop Grumman

Shashank Krishnamurthy United Technologies Research Center

POWER TECHNOLOGIES

WORKSHOP PARTICIPANTS

Page 22: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Overview of Electrical Energy Consumption

Application Landscape

ARPA-E Workshop

Workshop Findings

Page 23: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Switches Magnetics

CapacitorsConverters

Integrated

WBG

>13kV WBG

Unipolar

SiC

Si

High

Flux Soft

Magnets

Hard

Magnets

High

voltage,

High energy

density,

High speed

>10 W, >95%

Single-Chip

Single Chip

AC

High

Efficiency

WORKSHOP FINDINGS

1st Priority2nd Priority

3rd Priority

Page 24: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

MAGNETICS AND COST

Overwhelmingly the workshop attendees cited magnetics

(inductors & transformers) as the primary limit to cost, size,

weight, manufacturing.

“For forty years the inductors haven‟t changed.”

AC/DC Converter

Magnetics

largest, most

expensive part of the

converter

Page 25: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

WHY DO WE NEED MAGNETICS?

Switches convert DC to Distorted AC

Inductors (L) and Capacitors (C) clean AC

Transformer changes AC voltage level

Clean voltages require L & C

Changing voltages efficiently

requires L (or C)

Page 26: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Behavior in circuit is determined by impedance (Z=V/I)

Same function (Z) for smaller L at higher frequency

Z = jωL

FOR MAGNETICS SPEED CAN

REDUCE SIZE

• So faster switching (w) can reduce magnetics (L) size, cost, weight

Source: Shan Wang, Stanford

Page 27: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

MINIATURIZATION DOESN’T WORK

AT HIGHER POWERP

ow

er

de

ns

ity

W/in3

100

1000

500

700

1A 40A20A10A

300

Wafer level integration

DeltaLineage

5A 10A 15A

100

300

500

1A 20A 25A

Artesyn

Power One

Linear TechEnpirion

700Fuji

Vishay

LineageW/in3

40A

Murata

Cross-section view

Page 28: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

LIMITS TO SCALING WITH

FREQUENCY & POWER

At hi-freq loss increases Physical Origin of Core

Loss

100 kHz 1 MHz

40 mT

200 mT

plotted for loss = 300 mW/cm3

Energy lost in rotating recalcitrant domains…

requires soft magnets, low coercive fields

Energy lost induced electrical current…

requires electrically insulating material

(>1 mOhm.cm)

Page 29: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Iron powder (Ferroxcube Ui=40~90)

Kool Mu (Magnetics Ui=60)

NiZn (Ferrocube 4F1

Ui=80)

DB=40mT

MnZn (Ferrocube 3F51

Ui=650)

Core

-Loss

Densi

ty (

Kw

/m3)

Frequency (KHz)

CORE LOSS DENSITY VS

FREQUENCY

Page 30: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

TRADE-OFF IN MAGNETICS

SCALING

Increasing the frequency, decreases required inductance…

…inductor can get smaller for fixed impedance

Increasing the frequency, decreases the working flux density…

…inductor is bigger for fixed power

With existing materials…

…miniaturization and integration only work for relatively low power

Page 31: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

NEW CIRCUIT TOPOLOGIES CAN

HELP

Conventional Boost @ 500 kHz Φ2 Resonant Boost at 110 MHz

Single inductor, 10 μH 3 inductors, largest 33 nH

Circuit design is making lemonade from lemons

Trade-off between inductor and capacitor…

…still has to fight for efficiency

Source: D J Perreault, et al.

Page 32: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

31

Ferromagnetic (coupled particles)

High resistivity (300 ~ 600 μΩ∙cm) controls eddy-current loss

independent of flux direction.

Some have strong anisotropy for low permeability and low

hysteresis loss

Ceramic

(3~5 nm Co

Particles)

(Al2O3, ZrO2, etc.)

Co

O

Si

100 nm

NEW MATERIALS: METAL

NANOCOMPOSITES

Source: C Sullivan, et al.

-200 -100 0 100 200-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

M (

T)

Field (Oe)

Easy

Axis

Hard Axis:

Near-perfect

lossless loop

Magnetic Metal

Page 33: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Iron powder (Ferroxcube Ui=40~90)

Kool Mu (Magnetics Ui=60)

NiZn (Ferrocube 4F1

Ui=80)

DB=40mT

MnZn (Ferrocube 3F51

Ui=650)

Electroplated

alloy (CoNiFe)

Granular film (Co-Zr-O)

Core

-Loss

Densi

ty (

Kw

/m3)

Frequency (KHz)

Fe/SiO2 composite

CORE LOSS DENSITY VS

FREQUENCY

Page 34: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

10 W 1000 W 100 kW 10 MW

50 kHz N/A Now: ferrite,

amorphous

Now

amorphous,

ferrite,

nanocrystalline

Future:

exisitng and

new

materials

500 kHz Now: ferrite Now: ferrite

Future: new

materials

Future: new

materials

5 MHz Now: thin-

film

Future: new

materials

50 MHz Future: thin-

film and air

core

DISCUSSION GROUP SUMMARY

Thermal management

low surface-area to volume ratio

Page 35: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

DISCUSSION GROUP

RECOMMENDATIONS

Measure material loss for new granular (thin film) materials

Physical models for behavior of granular thin films

• Ferromagnetic coupling with low electrical conductivity

• Low electrical conductivity with high thermal conductivity

Fabrication processes for chip-scale integration of granular

thin films

Demonstration of similar performance in bulk granular

materials

Page 36: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Modified from an Application Note of Powerex, Inc. Youngwood, PA.

GTO

DISCRETE

MOSFET

TRI-MOD

IGBT-MOD

MOSFET

MOD

TRANSISTOR

MODULES

IGBTMODTM

MODULES

100M

10M

1M

100

10

Po

wer

(VA

)

100K

10K

1K

10 100

Operation Frequency (Hz)

1K 10K 100K 1M

MINIATURE (FAST) MAGNETICS

NEEDS FAST SWITCHES

Page 37: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Bandgap (energy to „free electron‟) increases

Breakdown voltage increases

Drift region can be decreased

Reduces transit time

Increases frequency

Reduces on-resistance

PHYSICAL ORIGIN OF SWITCH

SCALING

Source: International Rectifier

Page 38: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

www.arpa-e.energy.gov

Silicon Carbide Applications

Rate

d C

urr

en

t (A

)

100000

50000

10000

5000

1000

500

100

50

10

5

1

10 50 100 500 1000 5000 10000 50000 100000

Rated Voltage (V)

Electric Transmission PE

HEV

EV

Industrial Motors

Household

Appliances

Package

Air

Conditioners

Automotive

Electrical

Equipment

DC/DC

Converters

Routers

Notebook

PCs HDD

PPC

Telecommunication

Equipment

Power Supply

Switching

Power Supplies

Server WSs

AC Adapters

Electrical

Railway Drive

New Silicon Carbide Applications

Toyota/Rohm SiC inverter

Beyond Si

integration

Beyond

13kV

Switches

Page 39: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

HV SWITCH TECHNOLOGY

Today:

Tomorrow:

Si Thyristor Si IGBT

6400 MW,

800kV

2400 MW,

320 KV

2-4% loss 4-5% loss

Higher speed HV switches could

eliminate transformers

HV switches at 60Hz

Page 40: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

INTEGRATED WIDE BANDGAP

POWER ELECTRONICS

Source: International Rectifier

GaN-on-Si good initial indication but still not at integrated, efficient (>90%) devices

Today voltages are below 20 V…

Page 41: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Po

wer

de

ns

ity

W/in3

100

1000

500

700

1A 40A20A10A

300

Wafer level integration

DeltaLineage

5A 10A 15A

100

300

500

1A 20A 25A

Artesyn

Power One

Linear TechEnpirion

700Fuji

Vishay

LineageW/in3

40A

Murata

INTEGRATION ONLY OF DC/DC

CONVERTERS

So far, AC line voltage converters

have not been integrated…why?

Page 42: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

AC LINE VOLTAGE CONVERTERS

0

1

2

3

4

Storage (J)

Power (kW)

0 0.5 1

50 Hz

60 Hz

f

PW

2min

Source: P T Krein

AC line voltage conversion requires capacitors

with large energy density and fast charge times (1/120 sec)

Page 43: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

HIGH ENERGY DENSITY

CAPACITORS

High surface area (A), high dielectric constant (e), small thickness (d)

Source: Nichicon

Page 44: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

43

RELIABILITY OF ELECTROLYTIC

CAPACITORS

Type Failure Rate (%/1000h)

Ceramic 0.025

Paper 0.05

Tantalum 0.1

Electrolytic 0.2

Source: Nichicon

Reliability of power

supplies often limited by

electrolytic capacitors

Physics: electrolyte dries out

or breaks down

Page 45: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

ULTRACAPS ARE SLOW & LOW

VOLTAGE

The charge of ultracapacitors, IEEE

Spectrum Nov. 2007

Traditional capacitor Ultracapacitor Ultracapacitor with

carbon nanotubes

Page 46: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop

Switches Magnetics

CapacitorsConverters

Integrated

WBG

>13kV WBG

Unipolar

SiC

Si

High

Flux Soft

Magnets

Hard

Magnets

High

voltage,

High energy

density,

High speed

>10 W, >95%

Single-Chip

Single Chip

AC

High

Efficiency

WORKSHOP FINDINGS

1st Priority2nd Priority

3rd Priority

Page 47: POWER ELECTRONICS - ARPA-E ·  POWER ELECTRONICS Rajeev Ram, Professor, MIT March 1, 2010 ARPA-E Pre-Summit Workshop