Power dissipation tradeoffs in analog front end … dissipation tradeoffs in analog front end...

28
Power dissipation tradeoffs in analog front end electronics for 2D detectors Paul O’Connor BNL

Transcript of Power dissipation tradeoffs in analog front end … dissipation tradeoffs in analog front end...

Power dissipation tradeoffs in analog front end electronics for 2D detectors

Paul O’Connor BNL

BES Detector Workshop Paul O'Connor BNL August 3, 2012 2

On-detector power density limited by cooling capacity

STAR TPC

PHX MVD

PHX PAD

M'pix2

EXAFS

PET

XAMPS1

barcode

LHC pixels

MAPS

LSST

DEPFET2DEPFET1

gamma cam

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

STAR TPC

PHX MVD

PHX PAD

DEPFET1

M'pix2

gamma c

am

EXAFSPET

XAMPS1

barco

de

LHC pi

xels

DEPFET2

MAPSLS

ST1998 2000 2002 2004 2006 2008Year

pixe

ls/c

m2

STAR TPC

PHX MVD

PHX PAD

M'pix2

EXAFS

PET

XAMPS1

barcode

LHC pixels

MAPS

LSST

DEPFET2DEPFET1

gamma cam

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

STAR TPC

PHX MVD

PHX PAD

DEPFET1

M'pix2

gamma c

am

EXAFSPET

XAMPS1

barco

de

LHC pi

xels

DEPFET2

MAPSLS

ST1998 2000 2002 2004 2006 2008

STAR TPC

PHX MVD

PHX PAD

M'pix2

EXAFS

PET

XAMPS1

barcode

LHC pixels

MAPS

LSST

DEPFET2DEPFET1

gamma cam

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

STAR TPC

PHX MVD

PHX PAD

DEPFET1

M'pix2

gamma c

am

EXAFSPET

XAMPS1

barco

de

LHC pi

xels

DEPFET2

MAPSLS

ST1998 2000 2002 2004 2006 2008Year

pixe

ls/c

m2

Pixel density trend

Thermal impedances

Limit of natural convection with 10° C temp. rise

Forced liquid cooling required

Power density limit Temp (K)

Leakage Speed

Noise

Temperature dependences

BES Detector Workshop Paul O'Connor BNL August 3, 2012 3

Multi-element 2D Area Detectors Detector

• more-or-less planar sensitive surface • covered with NPIX sensitive elements (“pixels”) • on-detector electronics measures

– quantity of charge – time of occurrence – fluence/grey level – etc.

• transmit to DAQ

TRACKER IMAGER SPECTROMETERPulsed - X XRandom X X XTriggered X - -Data-driven X X XIntegrating - X -Event-by-event X - XOccupancy <10% 100% <50%Time-tag? X - XDyn. Rng. (bits) 5 - 8 10 - 16 8 - 14

information content = no. of resolution elements (“bits”)

Signal characteristics

BES Detector Workshop Paul O'Connor BNL August 3, 2012 4

Power Efficiency Figure of Merit

Information generation rate

sNbits

pix fNIGR ××= 2 2Nbits: effective number of resolution elements. fs: event or frame rate [IGR] = resolution elements per second (“bits per second”)

Power efficiency

IGRPEB = A measure of the energy required

per resolution element. [EB] = Joule

similar measures used in computing and communications

P = steady-state power

BES Detector Workshop Paul O'Connor BNL August 3, 2012 5

Signal chain

preamp filter analog feature extraction/ analog memory

ADC DSP off-detector driver

detector can transfer charge/voltage/current

Nchan=1

matrix switch per pixel

Nchan=Ncol

wirebond

bump bond (hybrid) monolithic

Nchan=Npix

tileable

optional multiplexing

electronics organization

power to sustain IGR independent of parallel or serial organization

BES Detector Workshop Paul O'Connor BNL August 3, 2012 6

Preamplifier power efficiency Power vs. detector capacitance

• Dynamic range is determined by detector predicted EB has wide range (fJ…pJ), depending on the experiment.

Noise (rms e-) 10 100 1000

Pow

er (W

)

10-6

10-4

10-2

10µs

τs=10ns

100ns

1µs

Power vs. ENC

Cdet=1pF Usually optimized for minimum ENC, which depends on detector capacitance and shaping time.

100

Pow

er (W

)

10-6

Det. capacitance (pF) 0.1 1 10

ENC= 10e-

τs=1µs

10-5

10-4

10-3

10-2

10-1

20e- 50e- 100e- 200e-

500e-

Pow

er (W

)

10n Pulse shaping time (s)

100n 1u 10u

Cdet=1pF

10-6

10-5

10-4

10-3

10-2

10-1

ENC=50e-

100e-

200e-

500e-

Power vs. shaping time

BES Detector Workshop Paul O'Connor BNL August 3, 2012 7

Charge sensitive preamp power efficiency (empirical)

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0

0.180.250.350.50.81.2hybrid

EB, p

J

CD, pF

1.0

.001

.01

0.1

10

• values cluster around 1pJ • no trend with technology feature size

charge preamplifier:

Q

sdB Q

PEσ

τ/max

⋅=

BES Detector Workshop Paul O'Connor BNL August 3, 2012 8

ADC power efficiency

1pJ (12b) 1pJ (10b)

A. Matsuzawa, “Trends in High Speed ADC Design”, ASICON 10/07

• EB in same range (1pJ) as charge preamplifier

BES Detector Workshop Paul O'Connor BNL August 3, 2012 9

Signal chain components EB compared • Expresses the power cost of achieving SNR and speed • Useful rules of thumb during design partitioning

Typical Best

1.5pJ 0.005pJ

1pJ 0.05pJ

20pJ 7.5pJ

charge amplifier:

Q

pdB Q

PE

στ/max

⋅=

ADC:

sENOB

dB f

PE⋅

=2

off-chip serial link:

bit

dB f

PE =note: pJ = mW/Mbps

BES Detector Workshop Paul O'Connor BNL August 3, 2012 10

Net power dissipation

othersp

drvrB

sp

ADCBSAMPpreampB P

nE

nE

NEIGRP ++×+×= )(21

det

where IGR = information generation rate EB,preamp, EB,ADC, EB,drvr are energy per bit of preamp, ADC, and driver resp. NSAMP = no. of ADC samples per pulse nsp1, nsp2 = sparsification ratio into ADC, driver resp. Pother = power in analog/digital memory, DSP, regulators, control & monitoring functions, etc.

Common sources of wasted power: • digitize more than minimum no. of samples • digitize faster than minimum rate • digitize with more than needed no. of bits of resolution • inefficient voltage regulators

BES Detector Workshop Paul O'Connor BNL August 3, 2012 11

Examples: Trackers

RatCAP tomograph

32-channel RatCAP ASIC 0.18um CMOS

image of conscious rat brain

24-channel ASIC preamp/shaper

sampling/digitizing board

ALICE pixel (CERN)

RatCAP (BNL)

LEGS TPC (BNL)

ATLAS CSC (BNL)

Area

Pixels

Rate

DR

IGR

P

1.7

8000

2M

150

3.0e12

0.8

15

380

2M

3200

6.4e9

1.5

1000

8000

700K

1.3e5

8.7e10

16

1e4

1000

2.4e7

960

2.3e10

250

cm2

-

cps/fps

-

s-1

W

BES Detector Workshop Paul O'Connor BNL August 3, 2012 12

Examples: Imagers MWASIC (BNL)

"diff DSI" outp

+

-

5K

+

-5K

Vref Vref

Vref

5K100pF

Vref

5K

inp

inm

outp

"diff DSI" outm

100pF

Vref

outm

2p8p

10K

10K

+

-

CDS

(switches)2k

8k

Medipix-2 (CERN) LSST (IN2P3,Harvard, Penn, UTenn, Purdue, BNL)

Area

Pixels

Rate

DR

IGR

P

0.16

64

190K

330K

6.1e10

0.32

2.0

66K

300

8K

1.6e11

0.52

3200

3.2G

0.06

240K

4.5e12

600

cm2

-

cps/fps

-

s-1

W

BES Detector Workshop Paul O'Connor BNL August 3, 2012 13

Examples: Spectrometers

Analog Residual Output

Digital OutputA-D

mux

serialreadout

controllerSlot Control (SC)CLOCKS

configuration registers

SERIAL INTERFACE

BIAS16

CP Channels 16COLUMNS INPUT

Thr. Global DAC

RST

Auxiliary Output Controller

A-Dmux

Test Pulser

316

Analog Residual Output

Digital OutputA-D

mux16

CP Channels 16COLUMNS INPUTA-Dmux

316

Analog Residual Output

Digital OutputA-D

mux16

CP Channels 16COLUMNS INPUTA-Dmux

316

Analog Residual Output

Digital OutputA-D

mux16

CP Channels 16COLUMNS INPUTA-Dmux

316

16

16

16

16

Analog Residual Output

Digital OutputA-D

mux

serialreadout

controllerSlot Control (SC)CLOCKS

configuration registers

SERIAL INTERFACE

BIAS16

CP Channels 16COLUMNS INPUT

Thr. Global DAC

RST

Auxiliary Output Controller

Auxiliary Output Controller

A-DmuxA-Dmux

Test PulserTest Pulser

316

Analog Residual Output

Digital OutputA-D

mux16

CP Channels 16COLUMNS INPUTA-DmuxA-Dmux

316

Analog Residual Output

Digital OutputA-D

mux16

CP Channels 16COLUMNS INPUTA-DmuxA-Dmux

316

Analog Residual Output

Digital OutputA-D

mux16

CP Channels 16COLUMNS INPUTA-DmuxA-Dmux

316

16

16

16

16

BES Detector Workshop Paul O'Connor BNL August 3, 2012 14

TrackerImagerSpectrometer

Power efficiency compared

108 1010 1012 1014 .01

1

100

.1

10

1000 CSC

LEGS TPC

RatCAP ALICE

MAIA

NSASIC

FEXAMPS

LSST

MWASIC

Medipix2

DSC

IGR (s-1)

P (W

)

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15

IGR/A, bits/s/cm2

E B, J

Efficiency – density correlation?

BES Detector Workshop Paul O'Connor BNL August 3, 2012 15

Conclusions

• Powering and cooling on-detector electronics poses engineering challenges in large 2D detectors.

• Power/performance ratio EB measures electronics efficiency.

• Preamp, ADC, and driver are the largest power consumers in typical signal chain.

• CMOS technology evolution provides limited opportunity to reduce analog power consumption.

• Sparsification and derandomization, as early as possible and preferably in analog domain, are important for efficient architecture.

• Planning for power efficiency should be part of the detector development process from the earliest phases.

BES Detector Workshop Paul O'Connor BNL August 3, 2012 16

THE END

BES Detector Workshop Paul O'Connor BNL August 3, 2012 17

REFERENCES • P. O'Connor; Low Noise CMOS Signal Processing IC for Interpolating Cathode Strip Chambers; BNL 61085;

IEEE Trans. Nucl. Sci. NS-42 (1995) 824-829. • P. O'Connor and G.De Geronimo; Prospects for charge sensitive amplifiers in scaled CMOS; Nucl. Instrum. &

Meth. A484 (2002) 713-725. • G. De Geronimo, P. O'Connor, A. Kandasamy; Analog peak detector and derandomizer for high rate

spectroscopy; IEEE Trans. Nucl. Sci. 49 (2002) 1769-1773. • P. O’Connor , G. De Geronimo and A. Kandasamy, Amplitude and Time Measurement ASIC with analog

derandomization, Nucl. Instrum. & Meth. A505 (2003), 352 – 357. • G. De Geronimo, P. O’Connor, MOSFET Optimization in deep submicron CMOS technology for charge

amplifiers, IEEE Trans. Nucl. Sci. 52 (2005), 3223 – 3232. • B. Yu et al., A GEM based TPC for the LEGS experiment, 2005 IEEE Nucl. Sciences Symposium Conference

Record, 924 – 928. • P. O’Connor, Future Trends in Microelectronics - Impact on Detector Readout, International Symposium on

Detector Development, April 3 – 6 2006, SLAC http://www.slac.stanford.edu/econf/C0604032/proceedings.htm#twelve

• J-F. Pratte et al., Front-end electronics for the RatCAP mobile animal PET scanner, IEEE Trans. Nucl. Sci. 51 (2004), 1318-1323.

• G. De Geronimo, A. Dragone, J. Grosholz, P. O’Connor, E. Vernon, ASIC With multiple energy discrimination for high-rate photon counting applications, IEEE Trans. Nucl. Sci. 54 (2007), 303 – 312.

• M. Campbell, PS Applications, Joint Workshop on Detector Development for Future Photon Science and Particle Physics Experiments, DESY, Oct. 14, 2008, https://indico.desy.de/materialDisplay.py?contribId=7&amp;sessionId=2&amp;materialId=slides&amp;confId=1036

• D.P. Siddons, Detector R&D for NSLS-II, X-ray Photon Correlation Spectroscopy & Microbeam SAXS at NSLS-II Workshop, Jan. 11, 2008, http://www.bnl.gov/nsls2/workshops/docs/XPCS/XPCS_Siddons.pdf

• G. De Geronimo et al., Front-end ASIC for high resolution X-ray spectrometers, IEEE Trans. Nucl. Sci. 55 (2008), 1604 – 1609.

• G. Haller, N. Van Bakel, Two dimensional detectors for LUSI science, LCLS FAC Oct 2007, http://silicondetector.org/download/attachments/9175610/Haller-FAC-LUSI--Detectors-10-07-v1.ppt?version=1

• A. Dragone, J-F. Pratte, P. Rehak, G. Carini, R. Herbst, P. O’Connor, D.P. Siddons, XAMPS detector readout ASIC for LCLS, 2008 IEEE Nucl. Sci. Symposium Conference Record, N44-8 (2008).

• http://www.google.com/corporate/datacenters/measuring.html

BES Detector Workshop Paul O'Connor BNL August 3, 2012 18

BACKUPS

BES Detector Workshop Paul O'Connor BNL August 3, 2012 19

Outline

• 2D area detectors • Optimizing power/performance

– Device and Circuit Level – System level

• Examples

BES Detector Workshop Paul O'Connor BNL August 3, 2012 20

Input transistor (M1) optimization

• Optimize for total (white + 1/f) series noise: – adjust W,L while holding Id and tp constant

• Correct modeling of weak, moderate, and strong inversion (EKV model): – dependence of gm, Cg, γ on operating point

• Low-frequency noise: – dependence on Lg

– spectral dependence • Predict result of scaling to new technologies

P. O’Connor, Proc. FEE2003 Snowmass G. De Geronimo, P. O’Connor, TNS52(6),3223 (2005)

BES Detector Workshop Paul O'Connor BNL August 3, 2012 21

Preamplifier power efficiency N

oise

(rm

s e-

)

10

100

1000

Det. capacitance (pF) 0.1 1 10

P=1µW

P=10mW

τs=1µs

Equivalent Noise Charge vs. detector capacitance and shaping time

Noi

se (r

ms

e-)

10

100

1000

10n Pulse shaping time (s)

100n 1u 10u

Cdet=1pF P=1µW

P=10mW • Dynamic range is determined by detector predicted EB has wide range (fJ…pJ), depending on the experiment.

Noise (rms e-)

10 100 1000 Po

wer

(W)

10-6

10-4

10-2

10µs

τs=10ns

100ns

1µs

Power vs. ENC

Cdet=1pF

Usually optimized for minimum ENC, which depends on detector capacitance and shaping time.

BES Detector Workshop Paul O'Connor BNL August 3, 2012 22

Parameters for detector comparison

Project Type unit pixels power (W) area (cm2) 2^ENOB rate (Hz) IGR (s-1) EB(J) IGR/A (cm-2s-1) P/A (W/cm2)LEGS T plane 8000 16.00 1010.0 1.31E+05 6.6E+05 8.7E+10 1.8E-10 8.6E+07 0.02RatCAP T ring 384 1.50 15.4 3.20E+03 2.0E+06 6.4E+09 2.3E-10 4.2E+08 0.10ALICE T chip 8192 0.82 1.7 1.50E+02 2.0E+10 2.9E+12 2.8E-13 2.1E+08 0.47CSC T chamber 1000 250.00 10000.0 9.60E+02 2.4E+07 2.3E+10 1.1E-08 2.3E+06 0.03Medipix-2-img I chip 65536 0.52 2.0 8.19E+03 2.0E+07 1.6E+11 3.3E-12 8.1E+10 0.26MWASIC-img I chip 64 0.32 0.2 3.28E+05 1.9E+05 6.1E+10 5.2E-12 3.8E+11 2.00LSST I FPA 3.20E+09 600.00 3220.0 2.40E+04 5.9E-02 4.5E+12 1.3E-10 1.4E+09 0.19DSC I FPA 1.00E+07 33.93 1.1 1.68E+07 1.0E+00 1.7E+14 2.0E-13 1.6E+14 31.42NSASIC S chip 14 0.05 2.2 4.38E+02 2.1E+06 9.2E+08 4.9E-11 4.1E+08 0.02FEXAMPS S 1K^2 det 1.00E+06 24.19 81.0 2.00E+04 1.0E+03 2.0E+13 1.2E-12 2.5E+11 0.30MAIA S 96-pad detector 96 2.91 1.0 1.28E+04 8.0E+06 1.0E+11 2.8E-11 1.7E+09 3.03

BES Detector Workshop Paul O'Connor BNL August 3, 2012 23

MOSFET Scaling

• Voltages, dimensions reduced by α • Results:

αα

/ Speed

1 eCapacitanc

const. / eConductancconst.

CVI

VIE =

const. density Power Density

1 Power/gate

1 energy Switching

2

22

32

αα

α

fCV

CV

20V 4V

BES Detector Workshop Paul O'Connor BNL August 3, 2012 24

Industry Scaling Roadmap

• New generation every ~2 years with α = √2 • Lg (1970) 8 µm (2007) 18 nm

180

BES Detector Workshop Paul O'Connor BNL August 3, 2012 25

Can Scaling Continue? • Until 180nm node:

– follow classical scaling with α = √2 – 2.8X performance per generation

• Now: – thermal voltage prevents further voltage

scaling – continue (super) scaling Lg – VDD, VTH have stopped scaling

• Gate density and speed continue to scale • Increase of E, conductance • Switching energy decreases only by 1/α

not 1/α3

• Power density increase ~ α • Static power from leakage, gate tunneling

make power problem worse

BES Detector Workshop Paul O'Connor BNL August 3, 2012 26

CMOS Scaling – impact on analog • more, faster transistors • better radiation resistance • reduced gain • poorer matching • lower noise margins • dynamic range limited by low supply voltage

0.1 1Min. Feature Size, um

103

104

Dyn

am

ic R

an

ge

10 uW100 uW1000 uW

BES Detector Workshop Paul O'Connor BNL August 3, 2012 27

Mixed-signal chips

BES Detector Workshop Paul O'Connor BNL August 3, 2012 28