Potassium in the deep Earth: Radioactivity under...

13
Potassium in the deep Earth: Radioactivity under pressure Kanani K. M. Lee June 30, 2008 [email protected] http://www.physics.nmsu.edu/~kanani Collaborators: Gerd Steinle-Neumann, Sofia Akber-Knutson, David Dolenc

Transcript of Potassium in the deep Earth: Radioactivity under...

  • Potassium in the deep

    Earth: Radioactivity

    under pressure

    Kanani K. M. Lee

    June 30, 2008

    [email protected]

    http://www.physics.nmsu.edu/~kanani

    Collaborators: Gerd Steinle-Neumann, Sofia Akber-Knutson, David Dolenc

  • www.gridclub.com/fact_gadget/ 1001/earth/earth/99.html

    Heat Dynamics

    SOURCES

    Primordial:

    • accretion

    • differentiation

    Radioactivity:

    • K, U, Th

  • Geodynamic motivation

    Buoyancy forces powering dynamo:

    • Secular cooling• Chemical buoyancy• Latent heat release

    Superheating of core before 2 Ga.

    Geodynamo paradox in the young

    Earth?

    Solutions:

    • Power requirements of thedynamo smaller than 1 TW. (Christensenand Tilgner, 2004)

    • Radioactive heat sources in core.• Radioactive elementsaccumulated near CMB.

    (Buffett, 2003)

  • Potassium in the deep Earth

    K in the core:• partitioning during core formation• partitioning at CMB

    K in the deep mantle:• partitioning between LM phases• dynamic stability of possiblereservoir

    Geochemical constraints:• silicate Earth depleted in K relativeto chondrites

    • degree of volatile loss unclear

    • concentration of K in mantle low, separate phase unlikely to exist.

    (e.g. Ito et al., 1993; Gessmann and Wood, 2002; Murthy et al., 2003)

    (Humayun and Clayton, 1996)

    (McNamara and Zhong, 2004; Farnetani, 1997)

  • Possible reservoirs in the deep Earth

    Reservoir K (U/Th) partitioning

    • core Fe - mantle silicates

    • lower mantle:D” pv - ppv

    DTCP/ULVZ ???

  • Approach

    Energetics of chemical reactions over wide pressure range

    Lower mantle:

    with M = Fe, Al.

    Core:

    with A=32, 48, 96.

    KD expG

    kBT

    =

    xK, pv( ) 1 xK, ppv( )xK, ppv( ) 1 xK, pv( )

    KD expG

    kBT

    =

    xK ,pv( ) 1 xK ,Fe( )xK ,Fe( ) 1 xK ,pv( )

    Mg30MK( )Si32O96 pv[ ] + Mg32Si32O96 ppv[ ]

    Mg30MK( )Si32O96 ppv[ ] + Mg32Si32O96 pv[ ]

    Mg30FeK( )Si32O96 pv[ ] + AFe

    Mg30Fe2( )Si32O96 pv[ ] + FeA 1K

  • Energetics

    G(P,T)=U+PV-TS

    PV from cold equation of state

    S = Svib+Smix

    Smix for Fe - silicate partitioning

    Smix cancels for pv-ppv due to arrangements

    KD expG

    kBT

  • -15

    -10

    -5

    0

    5

    10

    Enth

    alp

    y (

    meV

    /ato

    m)

    1501251007550250

    Pressure (GPa)

    K in pv

    K in ppv

    (Mg30

    FeK)Si32

    O96

    ppv + (Mg32

    )Si32

    O96

    pv (Mg30

    FeK)Si32

    O96

    pv + (Mg32

    )Si32

    O96

    ppv

    (Mg30

    AlK)Si32

    O96

    ppv + (Mg32

    )Si32

    O96

    pv (Mg30

    AlK)Si32

    O96

    pv + (Mg32

    )Si32

    O96

    ppv

    Lower mantle partitioning

    M=Al

    M=Fe

    Lee et al., under review, 2008

  • 0.1

    1

    10

    100

    Equilib

    rium

    consta

    nt,

    KD

    1501251007550250

    Pressure (GPa)

    Lower mantle partitioning

    M=Al

    M=Fe

    KD expG

    kBT

    =

    xK, pv( ) 1 xK, ppv( )xK, ppv( ) 1 xK, pv( )

    3000 K

    5000 K

    3000 K

    5000 K

    Lee et al., under review, 2008

  • Core partitioning

    -50

    -40

    -30

    -20

    -10

    0

    10

    Gib

    bs

    Fre

    e E

    nerg

    y (

    meV

    /ato

    m)

    1501251007550250

    Pressure (GPa)

    A = 32 0 K A = 48 2000 K A = 96 5000 K

    (Mg30FeK)Si32O96 + AFe (Mg30Fe2)Si32O96 + FeA-1K

    K in pv

    K in Fe

    KD expG

    kBT

    =

    xK ,pv( ) 1 xK ,Fe( )xK ,Fe( ) 1 xK ,pv( )

    Lee et al., in preparation, 2008

  • Conclusions: K partitioning in deep Earth

    K-rich?

    less K-rich?

    K-poor?

    • Partitioning of K is favored in pv between Al- or Fe-bearing MgSiO3 pv and ppv

    • Partitioning of K is favored in pv between crystalline Fe-bearing MgSiO3 pv and crystalline Fe

  • Conclusions: K partitioning in deep Earth

    Caveats

    • These are static computations! • Svib (Oganov and Price, 2005) • Fe melt• Role of light element in the core (O, S, Si) (Gessmann and Wood, 2002)• Other incorporation mechanisms: oxygen vacancies?• Other phases (MgO, CaSiO3) (Tronnes and Frost, 2002; Murakami et al., 2005)

    • Partitioning of K is favored in pv between Al- or Fe-bearing MgSiO3 pv and ppv

    • Partitioning of K is favored in pv between crystalline Fe-bearing MgSiO3 pv and crystalline Fe

  • Supported by:

    Alexander von Humboldt Foundation

    Bayerisches Geoinstitut (Bayreuth)

    CDAC (Department of Energy)

    Los Alamos National Laboratory