Posterior Probability of Passing Compendial Test

47
The Posterior Probability of Passing a Compendial Test (Pa) Dave LeBlond, Principle Research Statistician, Abbott [email protected] Linas Mockus, Research Scientist, Purdue University [email protected] May 10, 2012 Bayes 2012, Aachen

description

Posterior Probability of Passing Compendial Test

Transcript of Posterior Probability of Passing Compendial Test

  • The Posterior Probability of Passing a Compendial Test (Pa)

    Dave LeBlond, Principle Research Statistician, Abbott [email protected]

    Linas Mockus, Research Scientist, Purdue University [email protected]

    May 10, 2012 Bayes 2012, Aachen

  • 2 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Outline

    Test Pass Probability, Pa

    Bayesian PQ Approach

    18th Century Statistics

    +

    Process Qualification (PQ)

    ASTM E2709

    Hierarchical process model

    Summary 21st Century cGMPs

    Prior Calibration Number of Batches for PQ?

    Operating Characteristics Application to Sample Data

    Cost Estimation 20th Century Computing

    Compendial Tests

    USP Dosage Uniformity

    19th Century Regulations

  • 3 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    What is a Compendial Test?

    Bright line standard of quality. batch should always pass.

    Bad Good

    Fail Pass

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    May use multi-stage sampling. USP & have 2 stages USP & have 3 stages

    May use complex limits Indifference zones Limits on means, individuals, RSDs, counts Zero tolerance limits

    Benchmark for setting batch acceptance criteria.

  • 4 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    FDA Process Validation Guidance

    Establishes 3 validation stages8 Process Design (QbD) Process Qualification (PQ) Continued Process Verification

    [PQ] criteria [should] allow for a science- and risk-based decision about the ability of the process to consistently produce quality products

    [and] include statistical metrics defining both intra-batch and inter-batch variability.8

    Place acceptance limits on Pa, the probability that future batches will pass the compendial test.

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 5 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Identify an acceptance region (AR) in parameter space: g( ) >= LB

    Choose a 100(1-)% confidence region (CR) method, given a sampling plan and data.

    ASTM E2709 Approach to PQ

    Derive g: Pa >= g( )

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Generate an acceptance table (AT): est such that CR is within AR.

    Identify est .

    Choose a sampling plan so that Prob( est is within AT) > some desired value.

    Obtain data. If est is within AT, there is 100(1-)% confidence that Pa >= LB on repeated sampling of that batch.

  • 6 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Praise for ASTM E2709

    This paradigm shift fundamentally changes how our industry should develop in-house specifications.2

    [This new] concept of meeting specification may begin to include estimates of statistical confidence as part of cGMP.3

    E2709 was highly effective in identifying nonconforming material.4 Available for USP & as CUDAL, a validated SAS

    program,10 and as an Excel Spreadsheet.11

    Clearly ASTM E2709 is a very positive step but ... Is anything missing?

    Can Bayesian tools make further improvement?

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 7 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    ASTM E2709 Limitations

    Parameters are fixed (cannot have a distribution). Pa is also denied a distribution. Prediction of failure rates for future lots requires integration

    over the uncertain Pa Not allowed.

    Confidence region approach Conservative approximations Biased predictions.

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Confidence regions are not unique.

    Qualifies 1 batch at a time. No inference about the process. What about cost?

  • 8 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    USP Uniformity of Dosage Units: Quality

    Stage Sample Size Requirements

    0

    2

    4

    6

    8

    70 100 130

    Pass

    Need stage 2 1

    10

    10SD

    10X

    2

    20 more 0

    2

    4

    6

    8

    70 100 130

    Pass Fail 30SD

    30X(+ individual limits met)

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 9 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    A Hierarchical Process Model

    1 2 B Batches ( )2,~ Biid

    i Nu Batch i mean potency:

    Process Process mean potency:

    Tablets ( )2,~ Ti

    iid

    ij uNy

    Tablet j(i) observed:

    [3]

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 10 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Actual Production Data: Joint 95% CI

    Each batch passed USP. B > 0 (Pvalue < 0.05)

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    B T

    Product Batches LB est UB est UB est UB A 3 100.0 100.0 100.1 0.0 0.0 3.1 4.3 B 32 100.8 101.8 102.8 2.2 3.1 3.0 3.2 C 85 100.7 101.6 102.5 3.5 4.2 3.3 3.5 D 49 100.2 100.6 101.0 1.2 1.5 1.5 1.6 E 2 99.7 100.1 100.4 0.0 9.9 2.5 3.9 F 32 100.1 101.2 102.2 2.4 3.3 2.5 2.8 G 10 98.3 99.8 101.3 1.6 2.3 2.1 2.2 H 4 98.7 100.8 102.8 1.7 7.4 1.1 1.5 I 14 99.4 100.7 101.9 2.0 3.4 2.6 3.0 J 16 98.9 100.0 101.2 1.8 3.0 3.5 4.0 K 4 98.9 99.8 100.6 0.7 3.0 0.8 1.1 L 4 101.7 102.6 103.6 0.7 3.4 1.7 2.2

  • 11 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Pa is a deterministic function of model parameters Use Monte-Carlo simulation to generate lookup table.

    T

    2

    4

    6

    95 100 105

    0.10

    0 0.100

    0.200

    0.200

    0.30

    0 0.300

    0.40

    0 0.400

    0.50

    0 0.500

    0.60

    0 0.6000.700

    0.8000.900

    0.9500.990

    0.999

    : B 295 100 105

    0.100

    0.100

    0.20

    0 0.200

    0.30

    0 0.300

    0.40

    0 0.400

    0.500

    0.5000.600

    0.7000.800

    0.9000.950

    0.990

    0.999

    : B 3.5

    95 100 105

    0.200

    0.200

    0.30

    0 0.300

    0.400

    0.400

    0.5000.6000.7000.800

    0.900

    0.950

    0.990

    : B 5

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Based on 10K simulated batches for each of 18K grid points. Use tri-linear interpolation to obtain Pa for any desired .

  • 12 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    A Bayesian Approach to PQ

    Generate (by simulation) an interpolation table for Pa = g( ) Choose PQ acceptance criteria (AC)

    lower bound (LB) for Pa. require that 100(1-)% of the Pa posterior mass be >= LB.

    Choose a sampling plan based on the simulated Operating Characteristics (OC).

    Obtain data. Obtain a posterior sample of . Obtain a posterior sample of Pa.

    If Pa posterior is acceptable, there is at least 100(1-)% probability that Pa >= LB for the process.

    Mean of Pa posterior = expected probability that future batches will pass the compendial test.

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 13 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Benefits of a Bayesian Approach to Qualification

    Direct inference on the parameter of interest (Pa) Posterior distribution of Pa

    Quantitative risk assessment (i.e., ICH Q9) Production planning (expected cost and throughput)

    Leverage prior knowledge (if justified) [The qualification report should consider] the entire compilation

    of knowledge and information gained from the design stage through the process qualification stage.8

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 14 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Proposed Bayesian PQ Acceptance Criterion The confidence level selected can be based on risk analysis as it relates to the

    particular attribute under examination.8

    Pa

    Per

    cent

    of T

    otal

    0

    5

    10

    15

    20

    25

    0.2 0.4 0.6 0.8

    24 batches Median(Pa)=0.89

    Pa

    Per

    cent

    of T

    otal

    0

    5

    10

    15

    20

    25

    30

    0.2 0.4 0.6 0.8

    4 batches Median(Pa)=0.92

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Propose: median(Pa posterior) 0.9 ( = 0.5, LB = 0.9) mean would be computationally simpler, more discriminating

    Examples of simulated borderline cases = 105, B = 2, T = 4, 10 units/batch, Noninf Priors, 10K MCMC draws

  • 15 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Prior Calibration Using Simulated Data

    B T Pa* Ps* 2 2 102 1.00 0.00 5 2 102 0.98 0.03 2 5 102 0.97 0.27 5 5 102 0.78 0.44 2 2 107 1.00 0.02 5 2 107 0.87 0.17 2 5 107 0.49 0.72 5 5 107 0.50 0.67

    * based on 100K simulated batches each.

    Simulated qualification data from 3, 4, 6, 12, or 24 batches 4 weakly informative priors examined

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    102 107

    5

    2

    5

    2

    B

    T

  • 16 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Weakly Informative, Independent Priors Used None Least More Most

    70-130

    N(100,10002) N(100,10002) N(100,152) N(100,102)

    0-20

    RIG(.001,.001) Undefined

    mean df = 0

    Half Cauchy* infinite mean

    df = 1

    Half t* mean = 70.7,

    df = 2

    Half t* mean = 14.1

    df = 2

    T 0-20

    RIG(.001,.001) Undefined

    mean df = 0

    RIG(.001,.001) Undefined

    mean df = 0

    RIG(0.5,8) Mean = 4

    df = 1

    RIG(.001,.001) Undefined

    mean df = 0

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 17 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    % Bias in Pa Posterior Mean

    All priors exhibit conservative (low) mean(Pa) Non-informative prior is least conservative.

    Number of Batches

    % B

    ias

    in P

    a es

    timat

    e

    -40-30-20-10

    0

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    -40-30-20-100

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches%

    Bia

    s in

    Pa

    estim

    ate

    -40-30-20-10

    0

    5 10 15 20

    : T 2 : B 2

    : 107

    : T 5 : B 2

    : 107

    : T 2 : B 5

    : 107

    5 10 15 20

    -40-30-20-100

    : T 5 : B 5

    : 107

    Least More Most None

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 18 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    % RMSE in Pa Posterior Mean

    In most cases Non-informative prior has lower RMSE.

    Number of Batches

    % R

    MS

    E in

    Pa

    estim

    ate

    010203040

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    010203040

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches%

    RM

    SE

    in P

    a es

    timat

    e0

    10203040

    5 10 15 20

    : T 2 : B 2

    : 107

    : T 5 : B 2

    : 107

    : T 2 : B 5

    : 107

    5 10 15 20

    010203040

    : T 5 : B 5

    : 107

    Least More Most None

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 19 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    90% Credible Interval Coverage of Pa

    Non-informative prior has coverage closest to nominal

    Number of Batches

    90%

    Inte

    rval

    Cov

    erag

    e fo

    r Pa

    0.750.800.850.900.95

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0.750.800.850.900.95

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches90

    % In

    terv

    al C

    over

    age

    for P

    a

    0.750.800.850.900.95

    5 10 15 20

    : T 2 : B 2

    : 107

    : T 5 : B 2

    : 107

    : T 2 : B 5

    : 107

    5 10 15 20

    0.750.800.850.900.95

    : T 5 : B 5

    : 107

    Least More Most None

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 20 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Summary and Final Choice of Prior

    % Bias in Pa Posterior mean Bias increases from -10% to 0% as #batches grows (3 to 24) In all cases, Non-informative prior shows least bias

    % RMSE in Pa Posterior mean RMSE asymptotes from +10-30% to zero as #batches grows Non-informative prior shows least RMSE

    Coverage of 90% Credible Interval Nominal coverage in most cases, some cases only 80% Non-informative prior coverage closest to nominal

    Non-informative prior used here

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 21 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Establishing a PQ Sampling Plan

    Pa = quality metric

    Poor Quality

    Good Quality

    Pa 0.4 1

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    RQL AQL How many batches (more/less) ?

    Requires Monte-Carlo simulation

    0.95

    AQL

    Acceptable Quality Level

    0.10

    RQL

    Rejectable Quality Level Pro

    b(Pa

    ss P

    Q) Operating Characteristic

    Curve(OC)

    Does OC depend on ?

  • 22 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    OC of Proposed Approach

    27 grid points 1000 data sets per grid point Vary number of batches

    102 107 112

    8

    5

    2

    8 5

    2

    B

    T

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Number of Batches

    Population Pa

    (Pro

    b(m

    edia

    n(P

    a)

    0.9))1

    4

    0

    0.05

    0.1

    0.5

    0.95

    0.0 0.2 0.4 0.6 0.8 1.0

    3 4 6 12 24

    OC independent of ?

  • 23 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Using AQL and RQL to Set Number of Batches

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Number of Batches

    Population Pa

    (Pro

    b(m

    edia

    n(P

    a)

    0.9))1

    4

    0

    0.05

    0.1

    0.5

    0.95

    0.0 0.2 0.4 0.6 0.8 1.0

    3 4 6 12 24

    0.10 0.95

    AQL RQL

  • 24 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Popn.beta

    102 107

    Pop

    n.si

    g.T

    2

    00.20.40.60.8

    1

    Y 2

    5

    00.20.40.60.8

    1

    Y 5

    Popn.sig.T

    2 4 6 8 10 12Number of Batches

    2 4 6 8 10 12Number of Batches

    Popn.sig.B=5

    Pa=0.98

    Pa=0.87

    Pa=0.78 Pa=0.50

    = 5

    PQ Pass Rates(=0.5, LB=0.90) : Bayes vs E2709

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Popn.beta

    102 107

    Pop

    n.si

    g.T

    2

    00.20.40.60.8

    1

    Y 2

    5

    00.20.40.60.8

    1

    Y 5

    Popn.sig.T

    2 4 6 8 10 12Number of Batches

    2 4 6 8 10 12Number of Batches

    Popn.sig.B=2

    Pa=1.00 Pa=1.00

    Pa=0.97 Pa=0.49

    Pro

    babi

    lity

    of P

    assi

    ng P

    Q

    = 2

  • 25 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Actual Production Data

    Note: Each lot passed USP.

    Product C Product D

    LotPotency

    10 25 40

    85100

    115

    Lot

    Potency

    10 25 40

    85100

    115

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 26 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Joint Posterior Samples after 3, 6, and 20 batches Product C

    T

    B

    Product D

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 27 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    0.05, 0.50 & 0.95th Posterior Quantiles for Product D

    REML Point Estimates = 100.6 B = 1.2 T = 1.5

    # of lots

    Qua

    ntile

    s of

    Pa

    10 25 400

    0.5

    1 Cumulative Analysis (lots 3 to 45)

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    For very good process 3 may be enough.

  • 28 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    0.05, 0.50 & 0.95th Posterior Quantiles for Product C

    REML Point Estimates = 101.6 B = 3.5 T = 3.3

    # of lots

    Qua

    ntile

    s of

    Pa

    10 25 400

    0.5

    1 Cumulative Analysis (lots 3 to 45)

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    For challenging processes >3 required.

  • 29 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    How Many Batches for a PQ?

    2 approaches: Prospectively: use simulated OC curves, or Cumulative stability of Pa quantiles.

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 30 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Cost Estimates

    Not a regulatory consideration Important for Manufacturer

    Stage testing increases analytical costs Failures risk supply of critical drugs Resource planning

    Need Pa to estimate cost For multi-stage compendial tests, also need Ps, the probability

    of stage testing.

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 31 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    USP Uniformity of Dosage Units: Cost Let Ct = Cost of testing 10 tablets ( ~ $3K ) Cm = Cost of manufacturing 1 batch ( ~ $200K ) Ci = Cost of a failure investigation ( ~ $2K )

    Then E[total cost] = Ct + 2CtPs + Cm +Cm (1-Pa) + Ci (1-Pa)

    Stage 2 triples testing cost Failure doubles manufacturing cost and requires a

    failure investigation.

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 32 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Posterior Distribution of Future Costs for Product C

    Estimation after first 6 batches

    Pa Posterior

    Per

    cent

    of T

    otal

    0

    20

    40

    60

    0.6 0.7 0.8 0.9

    Ps Posterior

    Per

    cent

    of T

    otal

    0

    10

    20

    30

    40

    50

    60

    0.1 0.2 0.3 0.4

    Total Cost ($1K) Posterior

    Per

    cent

    of T

    otal

    0

    20

    40

    60

    200 250 300 350

    Pa Mean = 0.97 Ps Mean = 0.05 Total Cost Mean = $209K

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

    Production costs per batch (posterior expectation): Testing: $3.3K Manufacturing: $206K Investigation: $60

  • 33 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Future Work

    Compare Stringency of Proposed Bayesian Criterion with CUDAL.10, 11

    Dependence of OC curve on ? Non-normal populations? Excel tool? Extension to any compendial test

    Same principles Most will be trivial extensions, compatible with Excel

    Dissolution & disintegration multi-stage tests USP, ,

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 34 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Conclusions

    Pa, is a key quality metric in PQ. Ps may also be of interest to manufacturers. ASTM E2709 is a breakthrough in PQ thinking. PQ requires a model for between-batch variance. Bayesian hierarchical modeling provides

    Direct inference on Pa and Ps Basis for sampling plan choice Manufacturing cost projections

    Process Qualification ASTM E2709 USP905 Bayesian Approach Prior Calibration Number of Batches? Sample Data Summary

  • 35 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    References 1. American Society for Testing and Materials (ASTM) Standard E11 2709-10, May, 2010 2. Torbeck, LD (May 2, 2010) Statistical solutions: Bergums method recognized, Pharmaceutical

    Technology. 3. Jon Clark (September 29, 2010) Confidence- critical to batch release: Application of ASTM E2709,

    presented at QbD/PAT Conference, University of Heidelberg. 4. Lunney, P.D., Anderson, C.A., Investigation of the Statistical Power of the Content Uniformity Tests

    Using Simulation Studies, Journal of Pharmaceutical Innovation, pp 24-35, 13March2009. 5. US Pharmacopoeia 34 (2011) General Chapter Uniformity of Dosage Units (harmonized with JP

    and EP). 6. LeBlond, DJ (Spring, 2005) Methodology for predicting batch manufacturing risk. MS Thesis, Colorado

    State University. 7. LeBlond DJ (August, 2009) Risk Assessment of Drug Product Content Uniformity Release Failure: A

    Bayesian Approach, Joint Statistical Meetings, Washington DC 8. FDA CDER, CBER, CVM (January 2011) Guidance for Industry, Process Valdiation: General Principles

    and Practices, rev 1. 9. Gelman, A (2006) Prior distributions for variance parameters in hierarchical models, Bayesian Analysis

    1(3), 515-533 10. J.S. Bergum and L. Hua (October 2, 2007), Acceptance Limits for the New ICH USP 29 Content-

    Uniformity Test, Pharm. Technol. Online http://pharmtech.findpharma.com/pharmtech/article/articleDetail.jsp?id=463577), accessed Apr. 4, 2012, October 2007.

    11. P. Cholayudth (2009), Establishing Acceptance Limits for Probability of Passing Multiple Stage Tests in Proces Validation through a Process Capability Approach, Jrnl. of Validat. Technol. 15 (4), 7790.

    12. Y. Hu and D. LeBlond (2011) Assessment of Large-Sample Unit-Dose Uniformity Tests, Pharmaceutical Technology 35(10) 82-92.

  • 36 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Backup Slides

  • 37 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Full Conditionals for Gelmans Half-t Prior9

    m ( )

    2

    2 2 11

    1| | ,2 2

    i

    B

    iBp IG

    =

    + + =

    ( )

    ( )

    2 2

    12

    1 1

    | , , , | ,2 2

    i

    T T T T

    B

    ii

    TB

    ij ii j

    i i

    N Sp IG a b

    where

    N T

    S y u

    u

    =

    = =

    = + +

    =

    =

    = +

    y

    ( )( ) 2

    1 122 2

    2 22 2

    1 1

    | , , , | ,

    iTB

    i iji j T

    T B BT T

    i i i ii i

    yp N

    T TA A

    = =

    = =

    =

    + +

    y

    ( )( )2 2 2

    2 2 12 2 2 2 2 2| , , , , | ,

    iT

    ijTi

    i T iT i T i

    yp N

    T T

    =

    =+ +

    y

    ( )( )2 20 0 2 2

    1 12 02 2 2 20 0

    | , , , | ,

    iTB

    T ij ii j T

    TT T

    yp N

    N N

    = =

    +

    = + +

    y

    2 2 2B =

  • 38 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    %Bias in posterior mean

    Non-informative prior is least biased at lower number of batches Bias may be induced by prior mean

    Number of Batches

    % B

    ias

    in ^

    -1.0

    -0.5

    0.0

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    -1.0

    -0.5

    0.0

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches%

    Bia

    s in

    ^

    -1.0

    -0.5

    0.0

    5 10 15 20

    : T 2 : B 2

    : 107

    : T 5 : B 2

    : 107

    : T 2 : B 5

    : 107

    5 10 15 20

    -1.0

    -0.5

    0.0

    : T 5 : B 5

    : 107

    Least More Most None

  • 39 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    %RMSE in posterior mean

    Virtually identical for =107 Non-informative prior has lowest loss based on MSE

    Number of Batches

    % R

    MS

    E in

    ^

    1

    2

    3

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    1

    2

    3

    : T 5 : B 5

    : 102

    Least More Most None

  • 40 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    90% Interval Coverage of beta

    Coverage is nearly nominal for Non-informative prior regardless of number of batches.

    Number of Batches

    90%

    Inte

    rval

    Cov

    erag

    e fo

    r

    0.85

    0.90

    0.95

    1.00

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0.85

    0.90

    0.95

    1.00 : T 5 : B 5

    : 102

    Least More Most None

  • 41 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    % Bias in sB and sT Posterior Means

    Virtually identical for beta = 107 Non-informative prior has lowest bias. Bias may be induced by prior

    mean.

    Number of Batches

    % B

    ias

    in ^

    B

    0100200300400500

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0100200300400500

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches%

    Bia

    s in

    ^T

    0

    2

    4

    6

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0

    24

    6

    : T 5 : B 5

    : 102

    Least More Most None

  • 42 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    % RMSE in sB and sT Posterior Means

    Virtually identical for beta = 107 For sigB, Non-informative prior has least RMSE. For sigT, prior choice

    is irrelevant.

    Number of Batches

    % R

    MS

    E in

    ^B

    0

    200

    400

    600

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0

    200

    400

    600 : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches%

    RM

    SE

    in ^

    T

    68

    101214

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    68101214

    : T 5 : B 5

    : 102

    Least More Most None

  • 43 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Coverage of 90% interval estimates of sB and sT

    Virtually identical for beta = 107 For sigB, Non-informative prior coverage is a little low in some cases.

    For sigT, prior has little effect on coverage.

    Number of Batches

    90%

    Inte

    rval

    Cov

    erag

    e fo

    r B

    0.80

    0.85

    0.90

    0.95

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0.80

    0.85

    0.90

    0.95

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches90

    % In

    terv

    al C

    over

    age

    for

    T

    0.880.890.900.910.92

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0.880.890.900.910.92

    : T 5 : B 5

    : 102

    Least More Most None

  • 44 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    % Bias and % RMSE in the Ps Posterior Mean

    The % bias for 102, 2, 2 was extremely high because the population Ps is so close to zero. The % RMSE is nearly identical because the bias is the largest contributor to MSE Non-informative prior has lowest % Bias

    Number of Batches

    % B

    ias

    in P

    s es

    timat

    e

    050

    100150200250

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    050100150200250

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches%

    Bia

    s in

    Ps

    estim

    ate

    050

    100150200250

    5 10 15 20

    : T 2 : B 2

    : 107

    : T 5 : B 2

    : 107

    : T 2 : B 5

    : 107

    5 10 15 20

    050100150200250

    : T 5 : B 5

    : 107

    Least More Most None

  • 45 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Coverage of the 90% Credible Interval for Ps

    Non-informative prior has coverage closest to nominal Number of Batches

    90%

    Inte

    rval

    Cov

    erag

    e fo

    r Ps

    0.40.50.60.70.80.9

    5 10 15 20

    : T 2 : B 2

    : 102

    : T 5 : B 2

    : 102

    : T 2 : B 5

    : 102

    5 10 15 20

    0.40.50.60.70.80.9

    : T 5 : B 5

    : 102

    Least More Most None

    Number of Batches90

    % In

    terv

    al C

    over

    age

    for P

    s0.40.50.60.70.80.9

    5 10 15 20

    : T 2 : B 2

    : 107

    : T 5 : B 2

    : 107

    : T 2 : B 5

    : 107

    5 10 15 20

    0.40.50.60.70.80.9

    : T 5 : B 5

    : 107

    Least More Most None

  • 46 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    OC of Proposed Approach: Effect of model parameter (one at a time, Non-informative prior)

    Population parameters varied beta: 100-120 with

    sigT=sigB=3 sigB: 2-15 with sigT=2 and

    beta=102 sigT: 2-15 with sigB=2 and

    beta=102

    In principle, the median(Pa) and its variability may depend on: Population Pa Population Parameters.

    This graph shows that model parameter has a minor affect on the OC curve, the OC curve is controlled largely by the population Pa. Population Pa

    Pro

    b[m

    edia

    n(P

    a) >

    = 0.

    9]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0 0.2 0.4 0.6 0.8 1.0

    : B 3

    VariedbetasigB

    sigT

  • 47 Posterior Probability of Passing a Compendial Test Dave LeBlond May 10, 2012

    Operating Characteristics of Proposed Approach: Effect of prior, number of batches, choice of statistic

    Non-Informative Prior least sensitive to sample size Mean(Pa) is more conservative than median(Pa)

    Population Pa

    Pro

    b[m

    edia

    n(P

    oste

    rior P

    a)>0

    .9]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.5 0.6 0.7 0.8 0.9 1.0

    : Prior Least : Prior More

    : Prior Most

    0.5 0.6 0.7 0.8 0.9 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0 : Prior None

    Number of Batches34

    612

    24

    Population PaP

    rob[

    mea

    n(P

    oste

    rior P

    a)>0

    .9]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.5 0.6 0.7 0.8 0.9 1.0

    : Prior Least : Prior More

    : Prior Most

    0.5 0.6 0.7 0.8 0.9 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0 : Prior None

    Number of Batches34

    612

    24