Poster at the International Biogeography Society Meetings in Bayreuth 2015

1
5 0 4 0 3 0 2 0 1 0 0 0 1 2 3 4 5 T i m e ( M a ) l n ( l i n e a g e s ) 0 5 0 1 0 0 2 0 2 5 3 0 3 5 4 0 4 5 N u m b e r o f s p e c i a t i o n e v e n t s ( e x t a n t s p e c i e s ) C o u n t s P e r i o d p r e Q u a t e r n a r y Q u a t e r n a r y Thanks! Nancy B. Simmons at the American Museum of Natural History; Robert J. Baker at the Museum of Texas Tech University; Chris Conroy at the Museum of Vertebrate Zoology of the University of California, Berkeley; Kris Helgen at the National Museum of Natural History; Burton Lim and Judith Eger at the Royal Ontario Museum; and Bruce Patterson and John D. Phelps at the Field Museum. This study was supported by the National Science Foundation (DEB-0949759) to LMD. DR was supported by Foundation for Science and Technology, Portugal (www.fct.pt), fellowship SFRH/BPD/97707/2013. The elusive case for neotropical refugia Danny Rojas, Departamento de Biologia, Universidade de Aveiro & Ecology and Evolution, Stony Brook University Omar M. Warsi, Ecology and Evolution, Stony Brook University Liliana M. Dávalos, CIDER & Ecology and Evolution, Stony Brook University, [email protected] ● Glacial refugia remain controversial as a mechanism of neotropical speciation ● We estimate ancestral areas and simulate diversification rates to test neotropical Pleistocene refugia ● Null models of constant speciation and extinction rates always show more speciation events in the Pleistocene ● The age of extant sister species fails to test glacial refugia as a mechanism of speciation ● Instead, testing the Pleistocene refugia hypothesis requires modeling diversification rates through time C h i r o d e r m a t r i n i t a t u m P l a t y r r h i n u s h e l l e r i P t e r o n o t u s p a r n e l l i i p a r n e l l i i A n o u r a l a t i d e n s P t e r o n o t u s p a r n e l l i i p o r t o r i c e n s i s S t u r n i r a p a u l s o n i S t u r n i r a m a g n a A r t i b e u s a z t e c u s A r t i b e u s w a t s o n i A r t i b e u s c i n e r e u s L o p h o s t o m a e v o t i s P l a t a l i n a g e n o v e n s i u m A r t i b e u s g n o m u s S t u r n i r a s p . L o n c h o r h i n a o r i n o c e n s i s M i c r o n y c t e r i s h i r s u t a N o c t i l i o a l b i v e n t r i s C h o e r o n y c t e r i s m e x i c a n a L o p h o s t o m a c a r r i k e r i P l a t y r r h i n u s a u r a r i u s P l a t y r r h i n u s b r a c h y c e p h a l u s S t u r n i r a b i d e n s S t u r n i r a l i l i u m B r a c h y p h y l l a c a v e r n a r u m M i c r o n y c t e r i s m i n u t a P t e r o n o t u s p a r n e l l i i r u b i g i n o s u s 3 A r t i b e u s a n d e r s e n i S t u r n i r a n a n a S t u r n i r a k o o p m a n h i l l i S t u r n i r a a n g e l i A r t i b e u s a m p l u s A r t i b e u s p h a e o t i s P l a t y r r h i n u s l i n e a t u s C a r o l l i a p e r s p i c i l l a t a T r i n y c t e r i s n i c e f o r i S t u r n i r a b a k e r i L i o n y c t e r i s s p u r r e l l i P y g o d e r m a b i l a b i a t u m A r t i b e u s p l a n i r o s t r i s M u s o n y c t e r i s h a r r i s o n i M i c r o n y c t e r i s s p . V a m p y r e s s a p u s i l l a B r a c h y p h y l l a n a n a n a n a P h y l l o p s f a l c a t u s A r t i b e u s l i t u r a t u s L a m p r o n y c t e r i s b r a c h y o t i s P h y l l o s t o m u s e l o n g a t u s R h i n o p h y l l a f i s c h e r a e P l a t y r r h i n u s a l b e r i c o i G l o s s o p h a g a l o n g i r o s t r i s A r t i b e u s j a m a i c e n s i s A m e t r i d a c e n t u r i o A r t i b e u s f i m b r i a t u s A n o u r a g e o f f r o y i D i p h y l l a e c a u d a t a M o n o p h y l l u s r e d m a n i M i c r o n y c t e r i s g i o v a n n i a e D i a e m u s y o u n g i R h i n o p h y l l a p u m i l i o L o n c h o p h y l l a d e k e y s e r i C h o e r o n i s c u s m i n o r B r a c h y p h y l l a n a n a p u m i l a R h i n o p h y l l a a l e t h i n a P t e r o n o t u s p a r n e l l i i r u b i g i n o s u s 2 A r i t e u s f l a v e s c e n s L o p h o s t o m a s i l v i c o l u m c e n t r a l i s S t u r n i r a l u i s i M i m o n c r e n u l a t u m P t e r o n o t u s p e r s o n a t u s p s i l o t i s S t u r n i r a p a r v i d e n s A n o u r a c u l t r a t a P l a t y r r h i n u s n i g e l l u s S t u r n i r a l u d o v i c i G l y p h o n y c t e r i s s y l v e s t r i s T h y r o p t e r a t r i c o l o r T h y r o p t e r a d i s c i f e r a C a r o l l i a c a s t a n e a M e s o p h y l l a m a c c o n n e l l i A n o u r a c a u d i f e r V a m p y r e s s a m e l i s s a V a m p y r u m s p e c t r u m L i c h o n y c t e r i s o b s c u r a A r t i b e u s f r a t e r c u l u s L o n c h o p h y l l a h a n d l e y i L e p t o n y c t e r i s c u r a s o a e S t u r n i r a b u r t o n l i m i P t e r o n o t u s m a c l e a y i i P l a t y r r h i n u s m a s u G l o s s o p h a g a s o r i c i n a M i m o n b e n n e t t i i P t e r o n o t u s d a v y i f u l v u s S t u r n i r a h o n d u r e n s i s G l y p h o n y c t e r i s d a v i e s i S t u r n i r a t i l d a e S t u r n i r a o p o r a p h i l u m L o n c h o r h i n a i n u s i t a t a V a m p y r e s s a n y m p h a e a V a m p y r e s s a t h y o n e M o r m o o p s m e g a l o p h y l l a S t u r n i r a e r y t h r o m o s M i c r o n y c t e r i s b r o s s e t i P t e r o n o t u s p a r n e l l i i p u s i l l u s L o n c h o r h i n a a u r i t a C a r o l l i a b e n k e i t h i P t e r o n o t u s p e r s o n a t u s p e r s o n a t u s L o n c h o p h y l l a m o r d a x P h y l l o s t o m u s d i s c o l o r M a c r o t u s w a t e r h o u s i i m e x i c a n u s G l o s s o p h a g a c o m m i s s a r i s i M i c r o n y c t e r i s h o m e z i M i c r o n y c t e r i s m e g a l o t i s A r t i b e u s g l a u c u s P l a t y r r h i n u s m a t a p a l e n s i s L o n c h o p h y l l a c h o c o a n a P l a t y r r h i n u s i s m a e l i E n c h i s t h e n e s h a r t i i P h y l l o s t o m u s l a t i f o l i u s M a c r o t u s c a l i f o r n i c u s P t e r o n o t u s d a v y i d a v y i P h y l l o n y c t e r i s p o e y i p o e y i A r t i b e u s b o g o t e n s i s L o n c h o p h y l l a r o b u s t a V a m p y r o d e s m a j o r P l a t y r r h i n u s i n c a r u m C h o e r o n i s c u s g o d m a n i P l a t y r r h i n u s d o r s a l i s M i c r o n y c t e r i s m a t s e s P h y l l o s t o m u s h a s t a t u s M a c r o t u s w a t e r h o u s i i w a t e r h o u s i i M y z o p o d a a u r i t a L o p h o s t o m a s i l v i c o l u m l a e p h o t i s A r t i b e u s i n c o m i t a t u s L e p t o n y c t e r i s y e r b a b u e n a e M i c r o n y c t e r i s m i c r o t i s V a m p y r o d e s c a r a c c i o l i U r o d e r m a b i l o b a t u m L o p h o s t o m a s c h u l z i T o n a t i a b i d e n s T h y r o p t e r a l a v a l i T o n a t i a s a u r o p h i l a M a c r o p h y l l u m m a c r o p h y l l u m F u r i p t e r u s h o r r e n s C a r o l l i a s u b r u f a M y s t a c i n a t u b e r c u l a t a A r t i b e u s s c h w a r t z i D e s m o d u s r o t u n d u s T r a c h o p s c i r r h o s u s A r t i b e u s o b s c u r u s S p h a e r o n y c t e r i s t o x o p h y l l u m S t u r n i r a p e r l a A r t i b e u s i n t e r m e d i u s C h i r o d e r m a s a l v i n i E c t o p h y l l a a l b a S t e n o d e r m a r u f u m M i m o n c o z u m e l a e A r d o p s n i c h o l l s i S t u r n i r a m o r d a x C e n t u r i o s e n e x P h y l l o d e r m a s t e n o p s M o r m o o p s b l a i n v i l l e i C h i r o d e r m a d o r i a e C h i r o d e r m a v i l l o s u m H y l o n y c t e r i s u n d e r w o o d i N o c t i l i o l e p o r i n u s P l a t y r r h i n u s i n f u s c u s M i c r o n y c t e r i s s c h m i d t o r u m L o p h o s t o m a b r a s i l i e n s e C h i r o d e r m a i m p r o v i s u m A r t i b e u s c o n c o l o r P t e r o n o t u s q u a d r i d e n s C h r o t o p t e r u s a u r i t u s A r t i b e u s h i r s u t u s S t u r n i r a b o g o t e n s i s E r o p h y l l a s e z e k o r n i C a r o l l i a s o w e l l i M o n o p h y l l u s p l e t h o d o n S t u r n i r a a r a t a t h o m a s i E r o p h y l l a b o m b i f r o n s P t e r o n o t u s g y m n o n o t u s C a r o l l i a b r e v i c a u d a G l o s s o p h a g a l e a c h i i P l a t y r r h i n u s v i t t a t u s G l o s s o p h a g a m o r e n o i P l a t y r r h i n u s r e c i f i n u s V a m p y r e s s a b r o c k i U r o d e r m a m a g n i r o s t r u m A r t i b e u s i n o p i n a t u s L o n c h o p h y l l a t h o m a s i A r t i b e u s t o l t e c u s L o n c h o p h y l l a h e s p e r i a P t e r o n o t u s p a r n e l l i i r u b i g i n o s u s 1 V a m p y r e s s a b i d e n s P h y l l o n y c t e r i s poeyi o b t u s a P h y l l o n y c t e r i s a p h y l l a Holocene Pleistocene Pliocene Miocene Oligocene Eocene Quaternary Neogene Paleogene 95% High probability density interval Posterior probability 1.0 0 Time-calibrated Bayesian phylogeny of New World Noctilionoidea. Maximum clade credibility tree summarizing Bayesian posterior molecular phylogenies (log-likelihood = -161972 ± 17). Color of the circles at the nodes represents Bayesian posterior probabilities. Bars at the nodes represent the 95% high probability density intervals of node ages. Colors of the epochs follow the International Chronostratigraphic Chart. Outgroups appear in gray font. Paraphyletic genera appear in color. Cladogenesis in the phylogeny of New World Noctilionoidea. Left: number of Quaternary and pre-Quaternary speciation events for extant species across the uncorrelated posterior sample of 871 time-calibrated trees of noctilionoids. Right: lineage-through-time (LTT) plot for the posterior sample of trees (gray), maximum clade credibility tree shown in black. Quaternary and pre-Quaternary speciation events between extant species across trees simulated using birth-death models with different speciation (b) and extinction (d) rates. 0 10 20 30 40 Ma S o u t h A m e r i c a ( S ) C e n t r a l a n d N o r t h A m e r i c a ( C ) A n t i l l e s ( A ) S + C S + A C + A S + C + A Biogeographic analysis of New World Noctilionoidea. The best-fit to the geographic distributions was the Dispersal- Extinction Cladogenetic model with founder-event speciation (DEC+J, log-likelihood = -294). Rates in events per million years: rate of anagenetic range expansion (d) = 0.025, rate of anagenetic range contraction (e) = 0.1 × 10 -11 , relative per-event weight of jump dispersal at cladogenesis (j) = 0.031. Pie charts at nodes up to generic level indicate marginal maximum likelihood probabilities for estimated ancestral areas. Genera are indicated with vertical (two or more species) or horizontal (monotypic genus) lines to the right of the current distribution of taxa. Ecology & Evolution

Transcript of Poster at the International Biogeography Society Meetings in Bayreuth 2015

50 40 30 20 10 0

0

1

2

3

4

5

Time (Ma)

ln(li

neag

es)

0

50

100

20 25 30 35 40 45Number of speciation events (extant species)

Cou

nts

Periodpre QuaternaryQuaternary

Thanks!Nancy B. Simmons at the American Museum of Natural History; Robert J. Baker at the Museum of Texas Tech University; Chris Conroy at the Museum of Vertebrate Zoology of the University of California, Berkeley; Kris

Helgen at the National Museum of Natural History; Burton Lim and Judith Eger at the Royal Ontario Museum; and

Bruce Patterson and John D. Phelps at the Field Museum. This study was supported by the National Science

Foundation (DEB-0949759) to LMD. DR was supported by Foundation for Science and Technology, Portugal (www.fct.pt), fellowship SFRH/BPD/97707/2013.

The elusive case for neotropical refugiaDanny Rojas, Departamento de Biologia, Universidade de Aveiro & Ecology and Evolution, Stony Brook University

Omar M. Warsi, Ecology and Evolution, Stony Brook UniversityLiliana M. Dávalos, CIDER & Ecology and Evolution, Stony Brook University, [email protected]

● Glacial refugia remain controversial as a mechanism of neotropical speciation ● We estimate ancestral areas and simulate diversification rates to test neotropical Pleistocene refugia

● Null models of constant speciation and extinction rates always show more speciation events in the Pleistocene● The age of extant sister species fails to test glacial refugia as a mechanism of speciation

● Instead, testing the Pleistocene refugia hypothesis requires modeling diversification rates through timeCh

irode

rma t

rinita

tum

Platyrrhinus helleri

Pteronotus parnellii parnellii

Anoura latidens

Pteronotus

parnellii p

ortoricen

sis

Sturnira

paulson

i

Sturnir

a magn

a

Artibeus aztecus

Artibeus watsoni

Artibeus cinereus

Lophostoma evotis

Platalina genovensium

Artibeus gnomus

Sturni

ra sp.

Lonchorhina orinocensis

Micro

nycte

ris hi

rsuta

Noctilio albiventris

Choeronycteris mexicana

Lophostoma carrikeri

Platyrrhinus aurarius

Platyrrhinus brachycephalus

Sturnira bi

dens

Sturnira l

ilium

Brachyphylla cavernarumMi

crony

cteris

minu

ta

Pteronotus parnellii rubiginosus 3

Artibeus anderseniSturn

ira nana

Sturni

ra ko

opma

nhilli

Sturnira a

ngeli

Artibeus amplus

Artibeus phaeotis

Platyrrhinus lineatus

Carollia perspicillata

Trinycteris nicefori

Sturnir

a bake

ri

Lionycteris spurrelli

Pygoderma bilabiatum

Artibeus planirostris

Musonycteris harrisoni

Micro

nycte

ris sp

.

Vamp

yress

a pus

illa

Brachyphylla nana nana

Phyllops falcatus

Artibeus lituratus

Lampro

nycter

is brac

hyotis

Phyllostomus elongatus

Rhinophylla fischerae

Platyrrhinus albericoi

Glossophaga longirostris

Artibeus jamaicensis

Ametrida centurio

Artibeus fimbriatus

Anoura geoffroyi

Diph

ylla e

caud

ata

Monophyllus redmani

Micro

nycte

ris gi

ovan

niae

Diae

mus y

oung

i

Rhinophylla pumilio

Lonchophylla dekeyseri

Choeroniscus minor

Brachyphylla nana pumila

Rhinophylla alethina

Pteronotus parnellii rubiginosus 2

Ariteus flavescens

Lophostoma silvicolum centralis

Sturnira

luisi

Mimon crenulatum

Pteronotu

s person

atus psi

lotis

Sturnir

a parv

idens

Anoura cultrata

Platyrrhinus nigellusSturn

ira lu

dovic

i

Glyphonycteris sylvestris

Thyroptera tricolor

Thyroptera discifera

Carollia castanea

Meso

phyll

a mac

conn

elli

Anoura caudifer

Vamp

yress

a meli

ssa

Vamp

yrum

spec

trum

Lichonycteris obscura

Artibeus fraterculus

Lonchophylla handleyi

Leptonycteris curasoae

Sturni

ra bu

rtonli

mi

Pteronotu

s macle

ayii

Platyrrhinus masu

Glossophaga soricina

Mimo

n ben

nettii

Pteronot

us davy

i fulvus

Sturni

ra ho

ndure

nsis

Glyphonycteris daviesi

Sturni

ra tild

ae

Sturnira o

poraphil

um

Lonchorhina inusitata

Vamp

yress

a nym

phae

a Vampyressa thyone

Mormoops megalophylla

Sturnir

a eryth

romos

Micro

nycte

ris br

osse

ti

Pteronotu

s parnell

ii pusillu

s

Lonchorhina aurita

Carollia benkeithi

Pteronotu

s person

atus per

sonatus

Lonchophylla mordax

Phyllostomus discolor

Macrotu

s wate

rhousi

i mexi

canus

Glossophaga commissarisi

Micro

nycte

ris ho

mezi

Micro

nycte

ris m

egalo

tis

Artibeus glaucus

Platyrrhinus matapalensis

Lonchophylla chocoana

Platyrrhinus ismaeli

Enchisthenes hartii

Phyllostomus latifolius

Macrotu

s calif

ornicu

s

Pteron

otus d

avyi da

vyi

Phyllonycteris poeyi poeyi

Artibeus bogotensis

Lonchophylla robusta

Vampyrodes major

Platyrrhinus incarum

Choeroniscus godmani

Platyrrhinus dorsalis

Micro

nycte

ris m

atses

Phyllostomus hastatus

Macrotu

s wate

rhousi

i wate

rhousi

i

Myzopoda aurita

Lophostoma silvicolum laephotis

Artibeus incomitatus

Leptonycteris yerbabuenae

Micro

nycte

ris m

icroti

s

Vampyrodes caraccioli

Urod

erma b

iloba

tum

Lophostoma schulzi Tona

tia bi

dens

Thyroptera lavali

Tona

tia sa

urop

hila

Macro

phyll

um m

acro

phyll

um

Furipterus horrens

Carollia subrufa

Mystacina tuberculata

Artibeus schwartzi

Desm

odus

rotun

dus

Trac

hops

cirrh

osus

Artibeus obscurus

Sphaeronycteris toxophyllum

Sturni

ra pe

rla

Artibeus intermedius

Chiro

derm

a salv

ini

Ectophylla alba

Stenoderma rufum

Mimo

n coz

umela

e

Ardops nichollsi

Sturni

ra mo

rdax

Centurio senex

Phylloderma stenops

Mormoops blainvillei

Chiro

derm

a dor

iaeCh

irode

rma v

illosu

m

Hylonycteris underwoodi

Noctilio leporinus

Platyrrhinus infuscus

Micronyc

teris s

chmidto

rum

Lophostoma brasiliense

Chiro

derm

a imp

rovis

um

Artibeus concolor

Pteronotu

s quadr

idens

Chro

topter

us au

ritus

Artibeus hirsutus

Sturni

ra bo

goten

sis

Erophylla sezekorni

Carollia sowelli

Monophyllus plethodon

Sturnira a

ratathom

asi

Erophylla bombifronsPtero

notus

gymnon

otus

Carollia brevicauda

Glossophaga leachii

Platyrrhinus vittatus

Glossophaga morenoi

Platyrrhinus recifinus

Vamp

yress

a bro

cki

Urod

erma m

agnir

ostru

m

Artibeus inopinatus

Lonchophylla thomasi

Artibeus toltecus

Lonchophylla hesperia

Pteronotus parnellii rubiginosus 1

Vamp

yress

abide

ns

Phyllonycteris poeyiobtusa

Phyllonycterisaphylla

HolocenePleistocenePlioceneMioceneOligoceneEocene

Quaternary

Neogene

Paleogene

95% High probability density interval

Posterior probability

1.0

0

Time-calibrated Bayesian phylogeny of New World Noctilionoidea. Maximum clade credibility tree summarizing Bayesian posterior molecular phylogenies (log-likelihood = -161972 ± 17). Color of the circles at the nodes represents Bayesian posterior probabilities. Bars at the nodes represent the 95% high probability density intervals of node ages. Colors of the epochs follow the International Chronostratigraphic Chart. Outgroups appear in gray font. Paraphyletic genera appear in color.

Cladogenesis in the phylogeny of New World Noctilionoidea. Left: number of Quaternary and pre-Quaternary speciation events for extant species across the uncorrelated posterior sample of 871 time-calibrated trees of noctilionoids. Right: lineage-through-time (LTT) plot for the posterior sample of trees (gray), maximum clade credibility tree shown in black.

Quaternary and pre-Quaternary speciation events between extant species across trees simulated using birth-death models with different speciation (b) and extinction (d) rates.

010203040 Ma

South America (S)Central and North America (C)Antilles (A)S + CS + AC + AS + C + A

Biogeographic analysis of New World Noctilionoidea. The best-fit to the geographic distributions was the Dispersal- Extinction Cladogenetic model with founder-event speciation (DEC+J, log-likelihood = -294). Rates in events per million years: rate of anagenetic range expansion (d) = 0.025, rate of anagenetic range contraction (e) = 0.1 × 10-11, relative per-event weight of jump dispersal at cladogenesis (j) = 0.031. Pie charts at nodes up to generic level indicate marginal maximum likelihood probabilities for estimated ancestral areas. Genera are indicated with vertical (two or more species) or horizontal (monotypic genus) lines to the right of the current distribution of taxa.

Ecology & Evolution