Possible disk emission in the BLR of AGN Edi Bon Astronomical Observatory Belgrade, Serbia...

30
Possible disk emission in the BLR of AGN Edi Bon Astronomical Observatory Belgrade, Serbia [email protected] L. Č. Popović 1 , D. Ilić 2 1- Astronomical Observatory Belgrade, Serbia 2- University of Belgrade, Faculty of Mathematics Department of Astronomy

Transcript of Possible disk emission in the BLR of AGN Edi Bon Astronomical Observatory Belgrade, Serbia...

Possible disk emission in the BLR of AGN

Edi BonAstronomical Observatory Belgrade, Serbia

[email protected]

L. Č. Popović1 , D. Ilić2 1- Astronomical Observatory Belgrade, Serbia

2- University of Belgrade, Faculty of Mathematics Department of Astronomy

Intro:I – Here we investigated the structure of broad emission profiles

(Hα, Hβ…)II – To explain the structure of these profiles we simplified the

things using “two-component model”, with assumption that the wings of the lines originated in the disk, and a spherical region that surrounds the disk contributes to the core of the lines.

III – we applied this model to the profiles of 14 single-peaked AGN (that we observed at INT), that already had a proof of the disk existence in X domain of spectra

IV – the fitting to this model allowed as to do only ruff estimation of parameters, because of luck of shoulders or bumps and the large number of parameters of our model

V – in order to determine better fit, we simulated our model for different parameters so we could estimate influence of the disk flux in the profiles

Unification Scheme of

AGN

Grand Unification Scheme

Grand Unification Scheme

Unification Scheme of AGN

BLR

BAL

Torus

masers

Emmering, Blandford & Shlosman 1992

• Torus – samo oblast u vetru akrecionog diska

AGN Clumpy Torus

I()=IAD()+IG()Where:

IAD() the emissions of the relativistic accretion disk

IG() the emissions of the spherical region around the disk

The whole line profile can be described by the relation:

•The disk is contributing to the wings of the lines,•a spherical medium arround the disk to the core of the lines.

Two-component model

Disk model

Chen & Halpern (1989).

Sl. 1: Dekompozicija Hβ linije posmatrana na INT-u. Isprekidana linija pretstavlja posmatranja,dok puna linija pretstavlja najbolji fit. Na dnu su gausove komponente i isprekidana linija koja pretstavlja doprinos Fe II multipleksa

Sl. 2: Isto kao Sl. 1, samo za Hα liniju. Pored uske Hα centralne komponente, prisutne su dve slabe uske [NII] linije: na 7136 Å i 7174 Å 

Fit

a) the comparison of all line profiles (dashed lines) with an averaged one (solid line); b) fit of the averaged line profile. c),d),e),f) represent fit of Lyα, Mg II, Hβ and H α lines, resp.

IIIZw2

MODEL IIIZw2

zdisk – shift of the disk komponent

s – width of Gaussianin the disk

Rinn inner radius Rout outer radius zG shift of the Gaussian

WG width of the Gaussian

< AV > averaged prfile FD/FG flux ratio

Averaged Hβ and Hα profiles.

Two fits of 3C 273 with the two-component model the disk parameters are: a) i=14°, Rinn=400 Rg, Rout=1420 Rg, Wd=1620 km/s, p=3.0 (WG=1350 km/s); b) i=29°, Rinn=1250 Rg, Rout=15000 Rg, Wd=700 km/s, p=2.8 (WG=1380 km/s)

The random velocities of a spherical region (ILR) as a function of the local random disk velocities. The dashed line represents the function VILR = VDisk [km s−1].

Ratio of FWHM & width @ 10-40% of hight in function of inclination.

over 25% disk is weak

Fluks gausijana dva putamanji od fluksa diska

0

2

4

6

8

10

12

0 20 40 60 80inklinacija

Wx/

W50

10

20

30

40

Gaussian flux = 1/2 disk flux

Ratio of FWHM & width @ 5-45% of hight in function of inclination.

over 40% disk is weak

Fluks gausijana tri puta manji od fluksa diska

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

inklinacija diska

Wx/

W50

5

10

15

20

25

30

35

40

45

Gaussian flux = 1/3 disk flux

Ratio of FWHM & width @ 2-30% of hight in function of inclination.

over 10% disk is weak

Fluks gausijana tri puta veci odfluksa diska

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

inklinacija diska

Wx/

W50

2

3

4

5

6

7

8

9

10

15

20

25

30

Gaussian flux = 3 x disk flux

Ratio of FWHM & width @ 5-35% of hight in function of inclination.

over 10-15% disk is not detectable.

ww1xg2

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80inclination

Wx/

W50

5

10

15

20

25

30

35

Gaussian flux = 2 x disk flux

Ratio of FWHM & width @ 3-30%.

w11

0

2

4

6

8

10

12

0 20 40 60 80inklinacija diska

Wx/

W50

3

6

10

15

20

25

30

Gaussian flux = disk flux

Gaussian flux = disk flux, for inclination i=30, Fixed ring, width 800, Rinn from 200 to 1200

za i=30 , Rout-Rinn=800 new1-11-zai30

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500Rinn

Wx

/W5

0

5

10

20

30

40

50

Gaussian flux = disk flux, for inclination i=30, Weith response to emisivity

za i=30 po emisivnosti qnew12-18-i30

0

1

2

3

4

5

6

7

0 1 2 3 4q

Wx

/W5

0

5

10

15

20

20

Gaussian flux = disk flux, for inclination i=20, Fixed ring, width 800, Rinn from 200 to 1200

za i=20, Rout-Rinn 800

0

1

2

3

4

5

6

0 500 1000 1500Rinn

Wx/

W50

5

10

15

20

25

30

3c120

10 % - 2.867891

20 % - 1.915054

Height [%]

Wx/W50

3c12010 %: 2.867891 20 %: 1.915054

na 10% for i=20 2.9 => Rinn=600na 20% for i=20 1.9 => Rinn=1000---------------------------------------------------------------

Flux of Gaussian = 1/2 fluks of disk10% 2.9 => i=2020% 2 => i=25

Flux of Gaussian = 1/3 fluks of disk10% 2.9 => i=2620% 1.9 => i=25

Flux of Gaussian = 3 x fluks of disk10% 3 => i=1520% 1.65 => i=15 max

Flux of Gaussian = fluks of disk10% 2.8 => i=1520% 1.9 => i=12

Flux of Gaussian = 2 x fluks of disk10% 2.6 => i=1520% 1.75 => i=20 max

Fixed ring for i=10

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500

Rinn

Wx/

W50 10%

20%

30%

Fixed ring for i=12

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500

Rinn

Wx

/W1

0 10%

20%

30%

Fixed ring for i=15

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400

Rinn

Wx/

W50

10%

20%

30%

na 10% za i=10 2.9=> Rinn=170na 20% za i=10 1.9=> Rinn=230

na 10% za i=12 2.9=> Rinn=200na 20% za i=12 1.9=> Rinn=250

na 10% za i=15 2.9=> Rinn=320na 20% za i=15 1.9=> Rinn=600

Future work:

• To simulate for finer grid of inclinations and rings

• To apply for large number of real spectra of AGN

• To analyze expectations of the disk influence in the fluxes of emission line profiles of the AGN spectra

• ...