Porfidos Cu Mirador SE Ecuador

25
0361-0128/13/4080/11-25 11 Introduction THE MIRADOR porphyry Cu-Au district is located in the Cordillera del Condor, in the southernmost sector of the northern Andean Cordillera in southeastern Ecuador, 340 km south of Ecuador’s capital city of Quito (Fig. 1), in the province of Zamora-Chinchipe. Elevations range from about 800 to 1,800 m above sea level. The area has a wet equatorial climate with an average rainfall of 2,300 mm/yr. Over the past decade, this subandean region has emerged as a significant metalliferous belt bridging important, world-renowned dis- tricts in northern Peru and Colombia. The Mirador district comprises two main porphyry Cu-Au ± Ag ± Mo deposits, Mirador and Mirador Norte, as well as a subparallel, inter- connected series of narrow, mineralized structures known collectively as Chancho (Norte, Central, and Sur zones). At the time of writing, total indicated resources for Mirador and Mirador Norte, using a 0.4% Cu cut-off, were estimated at 609 million metric tons (Mt) of 0.58% Cu, containing 7.8 bil- lion pounds (Blb) of Cu, 3.2 million ounces (Moz) of Au, and 22 Moz of Ag. Additional inferred resources, at the same cut- off, are estimated at 281 Mt of 0.52% Cu (Drobe et al., 2008). The related Panantza and San Carlos porphyry deposits, lo- cated 40 km to the north, contain additional inferred re- sources of 463 Mt at 0.66% Cu, and 600 Mt at 0.59% Cu, re- spectively, using a 0.4% Cu cut-off. Thus, these four deposits taken together contain approximately 25 Blb of Cu. The Mirador deposits were considered Late Jurassic in age (Drobe et al., 2008) based on their similar geology and assumed age equivalency with Panantza and San Carlos, which had been radiometrically dated (Coder, 2001). Prior to dating, sedimentary rocks of the Aptian (base at 125 Ma) Hollin Formation (Tschopp, 1953), which unconformably overlie the south margin of the Mirador deposit, provided a minimum age constraint for Mirador. This unconformable re- lationship is also present at Panantza and the Sutzu porphyry deposit, located 15 km south of Panantza. Host rocks for these deposits are reported by Chiaradia et al. (2009) as being between 160 to 153 Ma ( 40 Ar/ 39 Ar method), with mineraliza- tion between 158 to 153 Ma (Re-Os, molybdenite). The geochronological ages presented here confirm a Middle Jurassic age for plutonic rocks of the Zamora batholith (ca. 164 Ma), and a Late Jurassic age for both the hosting subvol- canic intrusions and the mineralization (156 Ma). Mineraliza- tion is related to and slightly postdates the onset of subvol- canic igneous activity at Mirador. This study presents the first geochronological dates for the Mirador district and describes their significance to both the local and regional geology. The local geology of these deposits is based on detailed mapping and sampling of stream out- crops and tropical saprolite profiles along drill trails and ridge crests, combined with logging of nearly 52 km of diamond drill core. Despite the heavy jungle cover at surface, drill holes spaced at approximately 75-m centers at Mirador and 100-m centers at Mirador Norte permit a robust interpreta- tion of lithology, alteration, and mineralization relationships. By dating multiple intrusive phases and their related min- Geology, Mineralization, and Geochronological Constraints of the Mirador Cu-Au Porphyry District, Southeast Ecuador JOHN DROBE, 1,† DARRYL LINDSAY, 2, * HOLLY STEIN, 3 AND JANET GABITES, 4 1 Dorato Resources Inc., 2300 - 1177 West Hastings Street, Vancouver, British Columbia, Canada V6E 2K3 2 ExplorCobres S.A., Av. República de El Salvador #1082 y NN.UU., Ed. Mansión Blanca, Torre París, Mezanine 3 AIRIE Program, Department of Geosciences, Colorado State University, Fort Collins, Colorado 80523-1482, and Geological Survey of Norway, 7491 Trondheim, Norway 4 Pacific Center for Isotopic and Geochemical Research, Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada V6T 1Z4 Abstract The Mirador porphyry Cu-Au district is located in the southernmost sector of the northern Andean Cordillera, in Zamora-Chinchipe province, southeastern Ecuador. The district contains two significant por- phyry Cu-Au ± Ag ± Mo deposits, Mirador and Mirador Norte, and an interconnected series of narrow, min- eralized structures known collectively as Chancho. The principal mineralization in the porphyries is dissemi- nated to blebby chalcopyrite developed primarily in potassic alteration, with overlying chalcocite supergene enrichment zones. Prior to radiometric dating presented in this study, these deposits were considered Late Jurassic based on close similarity, and therefore assumed age equivalence, with the well-dated Panantza, San Carlos, and Sutzu porphyry copper deposits located 40 km to the north. New U-Pb zircon ages confirm a Mid- dle Jurassic age for granodiorite of the Zamora batholith at this location (163.8 ± 1.9 Ma), and Late Jurassic ages for subvolcanic intrusions (156.2 ± 1.0 and 153.1 ± 1.3 Ma). Re-Os molybdenite ages average 156 ± 1.0 Ma and indicate coeval mineralization between Mirador and Mirador Norte. Mineralization and related sub- volcanic igneous activity are closely associated at Mirador and represent the same temporal event recorded at Panantza-San Carlos and Sutzu, as well as coeval porphyry, skarn, and epithermal Au mineralization extending at least 80 km south, defining a north-south Cu-Au metallogenic belt spanning over 120 km. Corresponding author: e-mail, [email protected] *Present address: Batero Gold Corp., 3703-1011 Cordova St., Vancouver, BC V6C 0B2, Canada. ©2013 Society of Economic Geologists, Inc. Economic Geology, v. 108, pp. 11–35 Submitted: April 21, 2011 Accepted: April 5, 2012

Transcript of Porfidos Cu Mirador SE Ecuador

Page 1: Porfidos Cu Mirador SE Ecuador

0361-0128/13/4080/11-25 11

IntroductionTHE MIRADOR porphyry Cu-Au district is located in theCordillera del Condor, in the southernmost sector of thenorthern Andean Cordillera in southeastern Ecuador, 340 kmsouth of Ecuador’s capital city of Quito (Fig. 1), in theprovince of Zamora-Chinchipe. Elevations range from about800 to 1,800 m above sea level. The area has a wet equatorialclimate with an average rainfall of 2,300 mm/yr. Over the pastdecade, this subandean region has emerged as a significantmetalliferous belt bridging important, world-renowned dis-tricts in northern Peru and Colombia. The Mirador districtcomprises two main porphyry Cu-Au ± Ag ± Mo deposits,Mirador and Mirador Norte, as well as a subparallel, inter-connected series of narrow, mineralized structures knowncollectively as Chancho (Norte, Central, and Sur zones). Atthe time of writing, total indicated resources for Mirador andMirador Norte, using a 0.4% Cu cut-off, were estimated at609 million metric tons (Mt) of 0.58% Cu, containing 7.8 bil-lion pounds (Blb) of Cu, 3.2 million ounces (Moz) of Au, and22 Moz of Ag. Additional inferred resources, at the same cut-off, are estimated at 281 Mt of 0.52% Cu (Drobe et al., 2008).The related Panantza and San Carlos porphyry deposits, lo-cated 40 km to the north, contain additional inferred re-sources of 463 Mt at 0.66% Cu, and 600 Mt at 0.59% Cu, re-spectively, using a 0.4% Cu cut-off. Thus, these four depositstaken together contain approximately 25 Blb of Cu.

The Mirador deposits were considered Late Jurassic in age(Drobe et al., 2008) based on their similar geology and assumed age equivalency with Panantza and San Carlos,which had been radiometrically dated (Coder, 2001). Prior todating, sedimentary rocks of the Aptian (base at 125 Ma)Hollin Formation (Tschopp, 1953), which unconformablyoverlie the south margin of the Mirador deposit, provided aminimum age constraint for Mirador. This unconformable re-lationship is also present at Panantza and the Sutzu porphyrydeposit, located 15 km south of Panantza. Host rocks forthese deposits are reported by Chiaradia et al. (2009) as beingbetween 160 to 153 Ma (40Ar/39Ar method), with mineraliza-tion between 158 to 153 Ma (Re-Os, molybdenite). Thegeochronological ages presented here confirm a MiddleJurassic age for plutonic rocks of the Zamora batholith (ca.164 Ma), and a Late Jurassic age for both the hosting subvol-canic intrusions and the mineralization (156 Ma). Mineraliza-tion is related to and slightly postdates the onset of subvol-canic igneous activity at Mirador.

This study presents the first geochronological dates for theMirador district and describes their significance to both thelocal and regional geology. The local geology of these depositsis based on detailed mapping and sampling of stream out-crops and tropical saprolite profiles along drill trails and ridgecrests, combined with logging of nearly 52 km of diamonddrill core. Despite the heavy jungle cover at surface, drillholes spaced at approximately 75-m centers at Mirador and100-m centers at Mirador Norte permit a robust interpreta-tion of lithology, alteration, and mineralization relationships.

By dating multiple intrusive phases and their related min-

Geology, Mineralization, and Geochronological Constraints of the Mirador Cu-Au Porphyry District, Southeast Ecuador

JOHN DROBE,1,† DARRYL LINDSAY,2,* HOLLY STEIN,3 AND JANET GABITES,4

1 Dorato Resources Inc., 2300 - 1177 West Hastings Street, Vancouver, British Columbia, Canada V6E 2K32 ExplorCobres S.A., Av. República de El Salvador #1082 y NN.UU., Ed. Mansión Blanca, Torre París, Mezanine

3 AIRIE Program, Department of Geosciences, Colorado State University, Fort Collins, Colorado 80523-1482, and Geological Survey of Norway, 7491 Trondheim, Norway

4 Pacific Center for Isotopic and Geochemical Research, Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada V6T 1Z4

AbstractThe Mirador porphyry Cu-Au district is located in the southernmost sector of the northern Andean

Cordillera, in Zamora-Chinchipe province, southeastern Ecuador. The district contains two significant por-phyry Cu-Au ± Ag ± Mo deposits, Mirador and Mirador Norte, and an interconnected series of narrow, min-eralized structures known collectively as Chancho. The principal mineralization in the porphyries is dissemi-nated to blebby chalcopyrite developed primarily in potassic alteration, with overlying chalcocite supergeneenrichment zones. Prior to radiometric dating presented in this study, these deposits were considered LateJurassic based on close similarity, and therefore assumed age equivalence, with the well-dated Panantza, SanCarlos, and Sutzu porphyry copper deposits located 40 km to the north. New U-Pb zircon ages confirm a Mid-dle Jurassic age for granodiorite of the Zamora batholith at this location (163.8 ± 1.9 Ma), and Late Jurassicages for subvolcanic intrusions (156.2 ± 1.0 and 153.1 ± 1.3 Ma). Re-Os molybdenite ages average 156 ± 1.0Ma and indicate coeval mineralization between Mirador and Mirador Norte. Mineralization and related sub-volcanic igneous activity are closely associated at Mirador and represent the same temporal event recorded atPanantza-San Carlos and Sutzu, as well as coeval porphyry, skarn, and epithermal Au mineralization extendingat least 80 km south, defining a north-south Cu-Au metallogenic belt spanning over 120 km.

† Corresponding author: e-mail, [email protected]*Present address: Batero Gold Corp., 3703-1011 Cordova St., Vancouver,

BC V6C 0B2, Canada.

©2013 Society of Economic Geologists, Inc.Economic Geology, v. 108, pp. 11–35

Submitted: April 21, 2011Accepted: April 5, 2012

Page 2: Porfidos Cu Mirador SE Ecuador

eralization at Mirador and proving the temporal association toporphyry and epithermal deposits located elsewhere in theCordillera del Condor, we underscore the exploration signifi-cance of the ca. 156 Ma Late Jurassic, subvolcanic, calc-alka-line igneous event that affects Middle Jurassic plutonic rocksof the extensive Zamora batholith, as well as older volcano-sedimentary pendants within the batholith, and volcano-sedi-mentary sequences unconformably overlying the batholith.The ages also help clarify and constrain Mesozoic tectonos-tratigraphic events in the Northern Andes.

Regional GeologyMirador and the other documented Late Jurassic porphyry

copper deposits within 40 km are associated with subvolcanicintrusions intruding equigranular plutonic rocks comprisingthe regionally extensive Zamora batholith, a loosely definedMiddle to Late Jurassic, calc-alkaline igneous complex thatextends over 200 km along a NNE trend, between latitudes 3°and 5° S, and at least 100 km wide (Baldock, 1982; Aspden etal., 1990; Litherland et al., 1994). The batholith is the domi-nant geologic entity in the sub-Andean region of southeastEcuador, especially in the Cordillera del Condor, the moun-tain range that forms the international border in the area, andalong the Rio Zamora to the west of that range. Thisbatholith, together with the lithologically correlative Abitaguaand Cuchilla batholiths to the north and similar rocks in theCordillera Oriental of Colombia (Fig. 1), are interpreted asremnants of a volcanic arc constructed along an Andean-typecontinental margin (Sillitoe, 1988, 1990) that was well-estab-lished by the Middle Jurassic. The batholith was intrudedalong a north-south regional structure, as evidenced by north-south intrusive contacts with roof pendants. The current

northeast orientation of the batholith is the result of dextralslip along northeast, post-Cretaceous, Andean orogeny faults.

It remains unclear how many intrusive and volcanic phasesthe Zamora batholith comprises, their age relationships, andage range. This is due to several factors, but primarily re-gional-scale mapping of discontinuous, weathered exposuresin a largely inaccessible area, and the inclusion within thebatholith of volcanic-textured rocks ranging from Triassic topost-Cretaceous age (Litherland et al., 1994). However, thebatholith can be broadly divided into two intrusive types: (1)equigranular plutonic rocks of medium-grained granodiorite,diorite, and tonalite, and very coarse, K-feldspar megacrystic,monzogranite (collectively referred to as “granodiorite” inthis paper), locally with aplite and leucogranite predominat-ing (as at Panantza); and (2) younger subvolcanic intrusionscomprising feldspar (albite>>coarse microcline)-hornblende± quartz porphyry of andesitic to dacitic composition thatclearly intrude the plutonic rocks. Subvolcanic rocks occur asdikes and stocks (<2-km diam) and give the youngest of thereported ages for the batholith. Importantly, they areuniquely associated with copper and gold mineralization,whereas plutonic intrusive margins are notably unmineral-ized. Textures vary with size of the intrusions. Larger intru-sions, comprising plugs or stocks several hundreds of meterswide, show seriate textures transitional between subvolcanicand plutonic; in weathered exposures these are easily con-fused as phases of the Zamora pluton, though the diagnosticeuhedral hornblende phenocyrsts aid in distinguishing them.

There is some confusion about the plutonic and subvol-canic elements of the Zamora batholith in the literature dueto naming conventions applied to subvolcanic rocks, whichare sometimes described using volcanic classifications (dacite,

12 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 12

200km0

Tertiary to Recent sediments

Tertiary to Recent Continental volcanics

Jurassic I-type intrusions

Cretaceous accreted island arc, ocean floor,and marine sedimentary rocks

Paleozoic to Cretaceous metamorphic rocks

Cretaceous to Tertiary I-type intrusions

Triassic to Cretaceous sedimentary +volcanic rocks

N

78°W

COLOMBIA

PERU

MiradorCu-AuDistrict

Si e

rr

a

QUITO

ZAMORA BATHOLITH

Mocoa Cu-porphyry

Cor

dille

ra R

eal

ABITAGUABATHOLITH

CUENCAPa

ci f

i c O

ce

an

Co

rdi l

l era

78°W

Co

st a

Machala

Or

i en

t e

Rio

Z

amora

4° Zamora

162-173 Ma

164 - Ma190(?)

CUCHILA(LA BONITA)BATHOLITH

Rio Napo

198-210 Ma

Machala

Guayaquil

de

lC

on

do

r

FIG. 1. Inset shows location of the Mirador Cu-Au district, located in southeast Ecuador toward the northern end of theZamora batholith, the southernmost of three Jurassic I-type intrusions within the sub-Andean region. Modified from Gen-dall et al. (2000).

Page 3: Porfidos Cu Mirador SE Ecuador

andesite, etc.; as in Litherland et al., 1994), and sometimes asplutonic (granodiorite, etc.; as in Gendall et al. 2000). Weargue that the volcanic nomenclature is more useful, as ithelps divide the subvolcanic units that were intruded aftersignificant uplift, erosion, and partial burial of the plutonicrocks and that are associated with mineralization. The subvol-canic units are perhaps more usefully included within theMisahuallí Member of the epicontinental Chapiza Formation(Tschopp, 1953), rather than the Zamora batholith. There issome precedence for this, as Litherland et al. (1994, p. 24) in-cluded porphyritic rocks of the “highest-level igneous faciesof the Rosa Florida pluton” within the Misahuallí Member.

The porphyritic, subvolcanic stocks and dikes form smallcomplexes every 15 to 20 km along the NNE axis of theZamora batholith, and almost all are associated with signifi-cant mineralization (Fig. 2). There appear to be at least threecontrolling north-south−oriented structures, with the mostactive aligned with the Panantza-San Carlos, Mirador, Frutadel Norte, and Chinapintza deposits; dikes continue south onboth sides of the border for at least another 20 km. A parallelstructure 20 km to the west is evident at the Nambija Auskarn and just west of Yantzatza. Another parallel structureoccurs 15 km east of the main trend and hosts the Warintzaporphyry Cu-Mo deposit (Fig. 3); this one is the least wellstudied due to its remoteness but shows up on regional sedi-ment geochemistry maps. All the porphyry Cu deposits in theregion are associated with these feldspar-hornblende-quartzporphyries, which show varying degrees of mineralization.Notably, NNW- and NW-trending dikes are mineralized,whereas NE-trending dikes are post- or late mineralizationand therefore younger.

Initially the dikes were differentiated based on their degreeof mineralization into three categories of early, intra-, and latemineralization dikes. Additional drilling indicates it is onlypossible to differentiate the dikes as pre- (or “early”) andpost- (or “late”) mineralization. Based on drill core observa-tions, an early dike can have varying degrees of mineralizationalong strike, and the degree of mineralization appears to bemore a function of degree of fracturing prior to the mineral-ization event, rather than the apparent timing of intrusion rel-ative to mineralization; metal grades change little or graduallyat contacts. Late or postmineral dikes have sharp changes ingrade across their contacts and are essentially barren of cop-per, though some show minor pyrite mineralization and chlo-rite-epidote alteration.

Along its eastern margin the Zamora batholith intrudes ma-rine sedimentary and minor andesitic volcanic rocks of theLower Jurassic Santiago Formation (Tschopp, 1953; Baldock,1982; Litherland et al., 1994; Gaibor et al., 2008; Fig. 2). Whiledefined within Ecuador as having a Lower Jurassic base, thecorrelative strata in northwestern Peru, the Pucará Group, ex-tend into the Upper Triassic. The calcareous units are in-tensely hornfelsed and calcsilicate altered to a fine-grained,dark rock that has been misidentified as andesite of the Mis-ahuallí Member by past workers (e.g., Litherland et al., 1994;Gendall et al., 2000). Steeply W dipping, N-S−trending pen-dants and large xenoliths of calc-silicate−altered, thin-beddedmarine shale and sandstone occur north of Mirador and southof Chancho Norte along the Rio Tundayme; vesicular, aphyricandesite cobbles are common in the Rio Quimi drainage.

Farther south, at Nambija, intermediate volcano-sedimen-tary rocks of the Piuntza unit of the Santiago Formation forma roof pendant within the Zamora granodiorite (Litherland etal., 1994; Paladines and Rosero, 1996; Chiaradia et al., 2009).The upper and lower contacts of the enigmatic Piuntza unitare unknown, as it occurs as inliers within the batholith.Based on lithology and tentative fossil evidence of a Triassicage (Litherland et al, 1994), it may correlate better with thePucará Group of Peru, specifically with the volcaniclastic Oy-otún Formation intermediate volcanic rocks. These overliecarbonates of Upper Triassic age and are thought to extendinto the upper Lower Jurassic (Jaillard et al., 199-0). Whilemost Triassic volcanic rocks in Peru are considered of in-traplate origin, in northwest Peru these volcanic rocks are re-ported to have a calc-alkaline arc component by the EarlyJurassic (Romeuf et al., 1995; Rosas et al., 1996).

The volcanic rocks continue north of Nambija and arewidespread west and northeast of Yantzatza. These were orig-inally mapped as probable Misahuallí unit (Litherland et al.,1994), but based on our limited mapping of this area they areprobably better included with the Piuntza unit as they are in-truded by granodiorite of the Zamora batholith. Calk-alkalinevolcanic rocks are common over the extent of the Zamorabatholith, both intruded by and unconformably overlying thebatholith, and are currently all (with the exception of those atNambija) grouped into the Misahuallí unit, a convention ini-tiated by Litherland et al. (1994). The original definition ofthe Misahuallí Member by Tschopp (1953) was as the uppervolcanic Member of the dominantly continental-type, coarse-clastic sedimentary, Upper Jurassic Chapiza Formation.Litherland et al., (1994) placed both sedimentary and vol-canic successions into the Santiago Formation and includedall continental-type, calc-alkaline volcanic rocks that are (1)spatially associated with the Zamora batholith, and (2) under-lie the Cretaceous Hollin Formation and overlie the SantiagoFormation, and therefore of Jurassic age, as the Misahuallíunit. The underlying sediments of the Chapiza Formationwere redefined as the Chapiza unit. As Coder (2001) pointedout, this scheme puts a marine rift succession (Santiago For-mation) together with collisional volcano-sedimentary se-quence (Misahuallí Member of Tschopp) and ignores themajor regional igneous event of the intrusion of the Zamorabatholith.

There is now sufficient mapping and dating in the region toreturn to the more restrictive, original definition of the Mis-ahuallí (and Chapiza Formation) by Tschopp (1953). Thisworks better to separate Late Jurassic subvolcanic and vol-canic rocks, which are closely associated with significantmetal deposits, from both plutonic rocks of the Zamorabatholith and intermediate volcanic rocks intruded by thebatholith, the latter of which are better grouped with the Pi-untza unit of the Santiago Formation. Therefore, the mainlyandesitic, calc-alkaline volcanic rocks on the west and northside of the batholith that were included as Misahuallí unit byLitherland et al. (1994) and Romeuf et al. (1995; 172 Ma by40Ar/39Ar) are in this study assigned to the Piuntza unit of theSantiago Formation, as they are intruded and altered byZamora granodiorite.

Late Jurassic volcanic and volcaniclastic rocks equivalentand coeval with the subvolcanic units are preserved in a re-

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 13

0361-0128/98/000/000-00 $6.00 13

Page 4: Porfidos Cu Mirador SE Ecuador

14 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 14

Rio Apondios

R. K

alaglas

Rio

Rio

Zam

ora

Rio

Z am

ora

Rio Yucateiz

Rio Quim

i

Rio Wawaym

e

Rio Yanguza

Rio Bomboiza

Rio Zamora

Rio Machinaza

Rio Chuchumbleza

• •

••

••

•••

••

••

••

•• •••••

••

••

••

••

••

•••

••

•••

9630000 mN

9620000 mN

9610000 mN

9640000 mN

9540000 mN

9600000 mN

9550000 mN

9560000 mN

9570000 mN

9580000 mN

9590000 mN

7900

00m

E

7400

0

7500

00m

E

7600

00m

E

7700

00m

E

7800

00m

E

MiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMirador

Hw

y

Rio

Mirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador Norte

GualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquiza

Zam

ora

San CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan Carlos

PanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantza

SutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsu

San Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan BoscoSan Juan Bosco

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

P E

R U

ChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaChinapintzaAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag VeinAu-Ag Veindistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrict

El HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl HitoEl Hito

Sta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. BarbaraSta. Barbara

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

E C U

A D

O R

PaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquishaPaquisha

Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del Fruta Del NorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorteNorte

EpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalEpithermalAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAuAu

NambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaNambijaAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarnAu-skarndistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrictdistrict

RioZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbiZumbi

LosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentrosEncuentros

Zam

ora

YantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatzaYantzatza

10

kilometres

50

156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5156.5 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5155.8 ± 0.5153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8153.7 ± 0.8

153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3153.1 ± 1.3

163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9163.8 ± 1.9

155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5155.7 ± 0.5

169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1169 ± 1

164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2164.7 ± 2.2

157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4157.7 ± 1.4

30.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.430.6 ± 1.4

187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17187.0 ± 17

193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0193.0 ± 9.0

156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0156.0 ± 5.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0153.0 ± 10.0

153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 4.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0153.0 ± 12.0

198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34198.0 ± 34

151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0151.0 ± 5.0

145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52145.65 ± 0.52

145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45145.58 ± 0.45

154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5154.9 ± 0.5

151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5151.9 ± 1.5

153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5153.5 ± 1.5

153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5153.3 ± 0.5 152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5152 ± 5

157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4157 ± 4

0.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.0249

11.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.311.20 ± 0.312.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.412.20 ± 0.4

0.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.02490.0249

86.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.086.0 ± 4.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.081.0 ± 3.0

230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14230.0 ± 14

134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0134.0 ± 21.0

126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0126.0 ± 4.0

191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10191.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10178.0 ± 10188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6188.0 ± 6

166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0166.0 ± 5.0

246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17246.0 ± 17

178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0178.0 ± 5.0

171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0171.0 ± 6.0

187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0187.0 ± 2.0

157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6157.0 ± 0.6

155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0155.4 ± 1.0

145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46145.92 ± 0.46

160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2160.1 ± 0.2

Dating Method

Ar-ArK-ArRb-SrRe-OsU-Pb

conglomerate, arenite-arkose sandstone, shale

Piuntza/Oyotún unit: calc-alkaline tuffs, flowsLimestone, calcareous shale, sandstone, tuff

Overburden (alluvium, talus, slides)

Hollin Fm. quartziteNapo Fm. shale and carbonate

Misahualli Member: basalt, andesite, tuff

Hornblende-feldspar-quartz porphyry dacite

Zamora granodiorite, quartz monzonite

Paved roadsDirt roads

• Prospects

Diorite, equigranular and porphyry

Late Triassic - Early JurassicSantiago Formation (Pucara Gp.)

Felsic dikes, sills, & plugs

Faults

Tertiary to Late Cretaceous

mainly metavolcanics

Intrusions

Cretaceous

Layered Rocks

Chapiza FormationMid to Late Jurassic

Phreatic breccia

Middle Jurassic

Late Jurassic

mainly shale

Metamorphic Units

StreamsBorder

skarn

FIG. 2. Geology of the Rio Zamora region. Radio-metric dates from Eguez et al. (1997), Coder (2001),Stewart and Leary (2007), and this study. Major min-eral deposits are shown. North of Mirador Cu ± Moporphyry systems dominate, whereas to the south Auepithermal and skarn systems prevail. The Mirador dis-trict lies at the transition and contains significant por-phyry Cu and epithermal Au mineralization. Jefp =early porphyry dikes, Jhbp = postmineral dikes, Jzgd =Zamora granodiorite. Geology of parts of Ecuador andPeru modified from compilation by Karl Roa of KinrossGold Corporation (with permissions).

Page 5: Porfidos Cu Mirador SE Ecuador

stricted pre-Cretaceous basin south of Mirador, at the Frutadel Norte epithermal Au deposit (Henderson, 2009; Fig. 2).We consider these the only true Misahuallí Member rocks inthe belt, following the original definition of Tschopp (1953).Equivalent volcanic rocks are common in the upper Rio Naporegion, the type area for the formation (Tschopp, 1953; seeFig. 1). Andesite and dacite at Fruta del Norte are overlain bymaroon volcaniclastic conglomerate with a strong continentalcomponent of quartz-rich sandstone. This is informally calledthe Suarez formation (Henderson, 2009) but correlates wellwith the Chapiza Formation and is better included withinthat unit.

Flat-lying, coarse-grained quartzite sandstones and in-terbedded shales of the Aptian-Albian Hollin Formation andcalcareous siltstone and limestone of the Albian Napo For-mation unconformably overlie the Triassic-Late Jurassic rocksand mark a marine transgression that lasted until the Tertiary(Aspen and Litherland, 1992). These units were deposited ina continental shelf to back-arc estuarine environment (Vil-lagomez et al., 1996) atop pre-Cretaceous units. This particu-lar, conspicuous unconformity is useful for distinguishinglater subvolcanic units from Late Jurassic units.

A bimodal series of rhyodacite dikes, sills, and plugs, anddiorite-diabase stocks and dikes, intrude Lower Cretaceoussedimentary rocks along the western edge of the Zamorabatholith north of Gualaquiza (Fig. 2). Their age, based on thefact they intrude Napo Formation rocks, is younger than LateCretaceous, making them the easternmost intrusions of thisage in Ecuador, and the only post-Jurassic intrusions knownin the sub-Andean region. Their linear, north-northeast dis-tribution along the edge of the pluton suggests that the west-ern edge is faulted, though the fault itself is covered by theHollin and Napo rocks. Despite the fact they form most of thetopographic highs on the west flank of the Cordillera Orien-tal, they have never been described. Poor exposure hascaused some workers to confuse felsic sills as volcanic flowsunder the Hollin sandstone (e.g., Coder, 2001), and dioritestocks, which have very strong magnetic signatures, as phasesof the Zamora (Gendall et al., 2000; Billiton unpub. internalreports). Recent roads have improved exposure revealingmany contacts of magmatic phases with the sedimentaryrocks. Contact regions of the intrusions are mostly metal bar-ren, though minor calcsilicate and lesser skarn alteration isseen locally, with common pyrite but very minor chalcopyritemineralization. Quartz arenite of the Hollin Formation is ex-tensively recrystallized close to the intrusive contacts. Relatedspherulitic rhyodacite porphyry at Chinapintza is observed tointrude vertically bedded Hollin strata, and Gaschnig (2009)obtained an Oligocene U-Pb age of 30.6 ± 1.4 Ma from theserocks. Stewart (2008) reported several enigmatic Late Creta-ceous Ar-Ar dates between 63 to 71 Ma from amphibole andwhole rock of basaltic dikes at Fruta del Norte.

Regional Mineralization

Definition of the Zamora Cu-Au belt

The north-south belt of porphyry deposits and prospects inthe Rio Zamora region of southeast Ecuador has been giventhe informal names “Corriente copper belt,” or “CCB”, by theformer holders of the project, Corriente Resources Incorpo-rated, and “Pangui belt” by Gendall et al. (2000), used mostrecently by researchers (e.g., Chiaradia et al., 2009). For geo-logic terminology, we propose the name “Zamora Cu-Au belt”as a replacement to the informal Corriente copper belt andPangui belt, and expand it to include the important Au skarndistrict of Nambija, epithermal Au at Fruta del Norte, and Ausulfide veins and breccias in the Chinapintza district, all ofwhich are related to Late Jurassic magmatism and are withinthe Rio Zamora drainage. The Rio Zamora is the dominantregional geographic feature with the most complete expo-sures of the Zamora batholith, which is spatially associatedwith all known significant deposits in the region (Fig. 2).Thus, establishing a more appropriate terminology is fitting.

The Zamora Cu-Au belt, therefore, encompasses porphyryCu-Mo-Au mineralization from the northernmost deposits atPanantza-San Carlos (and related prospects farther north for10 km), 40 km to the north of Mirador, south to the El Hito andSanta Barbara porphyry Cu-Mo and Cu-Au deposits, 80 kmsouth of Mirador, establishing a 120-km-long Late Jurassicmetallogenic belt within Ecuador alone (Fig. 2). The belt con-tinues south into Peru in the Cordillera del Condor for at leastanother 10 km southeast from El Hito and likely continues to

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 15

0361-0128/98/000/000-00 $6.00 15

Rio

Coa

ngos

Rio Apondios

R. K

alaglas

Rio Zamora

Rio

Zam

ora

Rio

Z am

ora

Rio Yucateiz

Rio Quim

i

Rio Wawaym

e

Rio Yanguza

Rio Bomboiza

Rio Zamora

Rio Machinaza

Rio Chuchumbleza

9660000 mN

9600000 mN

9620000 mN

9640000 mN80

0000

mE

7800

00m

E

Santiago

RioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRioRio

WarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintzaWarintza

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

Rio

Coa

ngos

E C U A D O R

Zamor

a

Rio

157 ± 4 Ma; K-Ar BI

•••••••••••••••••••••••••••••••••••••••••••••••••

156.5 ± 0.5 Ma

P E R U

155.8 ± 0.5 Ma

153.1 ± 1.3 MaU-Pb Jhbp

153.5 ± 1.5 Ma; Ar-Ar HBL in Jefp

160.6 ± 1.6 Ma; Ar-ArHBL in Jzgd

152± 5 Ma; K-Ar HBL

157.0 ± 0.6 Ma; Re-Os

151.9 ± 1.5 Ma; Ar-Ar MSV

155.7 ± 0.5 Ma

156.2 ± 1.0MaU-Pb Jefp

KutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucusKutucus

•••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••

San LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan LuisSan Luis•••••••••••••••••••••••••••••••••••••••••••••••••

San MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan MiguelSan Miguel•••••••••••••••••••••••••••••••••••••••••••••••••

10

MiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMiradorMirador

kilometres

5

SutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsuSutsu154.9 ± 0.5 MaRe-Os

•••••••••••••••••••••••••••••••••••••••••••••••••

San CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan CarlosSan Carlos

San MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan MarcosSan Marcos•••••••••••••••••••••••••••••••••••••••••••••••••

Chancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho SurChancho Sur

•••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••

Mirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador NorteMirador Norte

ChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChanchoChancho•••••••••••••••••••••••••••••••••••••••••••••••••

153.3 ± 0.5 MaRe-Os

San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan San Juan BoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBoscoBosco

PanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantzaPanantza•••••••••••••••••••••••••••••••••••••••••••••••••

Rio

0

Zam

ora

GualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaGualaquizaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosaDolorosa

•••••••••••••••••••••••••••••••••••••••••••••••••

163.8 ± 1.9 MaU-Pb Jzgd

Chancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho NorteChancho Norte

LEGENDDeposits withreported resources

Prospects

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Dating Method

Ar-ArK-ArRe-OsU-Pb

Roads, paved,Roads, dirt

FIG. 3. Location of the porphyry copper deposits and dates obtained. Thesignificant deposits are aligned along a 40-km-long corridor near the RioZamora, with the Warintza Cu-Mo deposit an exception. Mineralization con-tinues north of San Luis as weak, narrow porphyry mineralization. The north-ern deposits are Cu-Mo, whereas the Mirador deposits are Cu-Au. The Do-lorosa prospect is unique in that Cu mineralization is hosted within HollinFormation arenite with unclear ties to the Late Jurassic mineralization.

Page 6: Porfidos Cu Mirador SE Ecuador

the southern extent of the Zamora batholith at approximately4°42' S. The belt is roughly 30 km wide in the east-west direc-tion, including the Warintza Cu-Mo deposit at the easternmostlimit, and the Nambija Au skarn district at the western limit.

Porphyry Cu deposits

The Cu-Au and Cu-Mo porphyry deposits within the north-ern half of the 120-km-long Zamora Cu-Au belt share manysimilarities in geology and mineralization. Most importantly,all are typical calc-alkaline, granodiorite-hosted, Late Juras-sic-aged deposits in which chalcopyrite is the principal coppermineral at currently known depths, with chalcocite forminglocally important, but relatively thin, enrichment blankets be-tween a leached cap of saprolite and the primary sulfide min-eralization below. Rock exposure is poor and limited to creekdrainages that have cut down through the saprolite zone andexposed both the enriched and primary mineralization. Allthe deposits have drainages cutting through their centers andare easily recognizable as Cu porphyry systems. Channel sam-pling of these drainage outcrops has provided reliable esti-mates of the hypogene grades of the mineralization below.None of the deposits has significant iron-oxide lithocaps, andonly Panantza and parts of San Carlos show significant oxidecopper within the saprolite. The main difference between thedeposits is that at Mirador gold is of significant concentra-tions, whereas at Panantza and San Carlos molybdenum issignificant; both deposit districts bear a similar tenor of Ag(Table 1).

The Panantza and San Carlos porphyry Cu deposits, as wellas the nearby Kutucus Cu skarn, from the north end of theZamora Cu-Au belt were first described by Gendall et al.(2000). As detailed by Gendall et al. (2000), the large geo-chemical surface anomalies of these deposits were discoveredthrough detailed pan concentrate and silt sampling ofstreams, with follow-up soil and rock sampling, by Gencor

and Billiton S.A. from 1994 to 1998. Also during this time, ad-ditional areas of porphyry Cu mineralization were discoveredalong the overall N-S strike of the belt at San Luis, SanMiguel, San Marcos, and Sutzu (Fig. 3). The Warintza deposit(Ronning and Ristorcelli, 2006) is anomalous in that it is lo-cated 13 km east of the main belt (Fig. 3).

The porphyry deposits occur in pairs that are separated 4 to6 km in a northwest direction, usually along strike of the oldersubvolcanic dikes, with the larger deposit of the pair to thesoutheast. The northwest trend to every deposit can be at-tributed to transtensional openings on northwest-orientedjogs along a north-trending, regional (probably crustal-scale)sinistral strike-slip fault. However, the geologic significance ofthe pairings is not well understood. From north to south, thepairs are Panantza-San Carlos, San Marcos-Sutzu, and Mi-rador Norte-Mirador (Fig. 3.). North of Panantza, the miner-alization continues as the narrow, more structurally controlledzones of Trinidad, San Miguel, La Florida, and San Luis, be-fore disappearing beneath apparent Misahuallí volcanicrocks. West of Mirador, the Chancho system (Chancho Norte,Chancho, and Chancho Sur) is similarly narrow and struc-turally controlled, with the south end opening to a “horse tail-ing” of diffuse mineralization before disappearing beneathHollin Formation cover rocks.

Each deposit is defined very well by soil geochemistry, withAu + Mo highs centered on Zn lows; Cu anomalies are lessuseful for targeting due to the high mobility of Cu in the trop-ical soils. The spatial coincidence of the anomalies is very im-portant: the most intense mineralization is where all three soilanomalies coincide. Some prospects, such as Sutzu and SanMarcos, have broader, less defined, and offset anomalies andthe mineralization appears to be of lower grade, based onstream channel sampling.

Panantza and San Carlos deposits were initially scoutdrilled between 1998 and 1999, and Panantza was advanced

16 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 16

TABLE 1. Porphyry Copper Resources within the Zamora Cu-Au belt—Mirador and Panantza Districts

Project Category Metric tons (t) Cu (%) Cu (lbs) Au (oz) Ag (oz)

Measured and indicated resourcesMirador1 Measured and indicated 437,670,000 0.61 5,887,000,000 2,740,000 21,530,000Mirador Norte1 Indicated 171,410,000 0.51 1,921,000,000 489,000 -

Total measured and indicated 609,080,000 0.58 7,808,000,000 3,229,000 21,530,000

Project Category Tonnes Cu% Cu (lbs)

Inferred resourcesMirador Inferred 235,400,000 0.52 2,708,000,000 1,250,000 9,900,000Mirador Norte Inferred 45,820,000 0.51 513,000,000 101,000 -Panantza2 Inferred 463,000,000 0.66 6,737,000,000San Carlos2 Inferred 600,000,000 0.59 7,740,000,000Subtotal Panantza-San Carlos 1,063,000,000 0.62 14,477,000,000

Total inferred 1,344,220,000 0.60 17,698,000,000 1,351,000 9,900,000

Note: - = not estimated1 See the Technical Report “Update on the Copper, Gold and Silver Resources and Pit Optimizations: Mirador and Mirador Norte Deposits,” dated No-

vember 30, 2006, available on SEDAR2 Panantza: see the Technical Report titled “Panantza Copper Project—Update on Inferred Resource Estimate,” dated July 10, 2007 available on

SEDAR; San Carlos— see the Technical Report titled “Corriente Copper Belt Project—Order of Magnitude Study (Preliminary Assessment) dated June22, 2001, available on SEDAR; does not include copper oxide mineralized material that was included in the 2001 resource estimate and is recalculatedusing a block model at a 0.4% Cu cutoff

Page 7: Porfidos Cu Mirador SE Ecuador

considerably further in follow-up drill programs in 2000 and2006, with drilling now totaling almost 17,000 m in 53 holes.At the time of drilling the Panantza and San Carlos depositsin 1998 to 1999, the Mirador deposit remained a stream-sed-iment anomaly, as the border conflict in the mid-late 1990shad prevented follow-up exploration in the area. Mirador andthe neighboring Chancho zones were initially followed-up byrock sampling and drilled by Corriente Resources Incorpo-rated (“Corriente”) in April 2000, as Corriente and LowellMineral Exploration assumed management of the project.Mirador Norte is the most recent discovery made, in March2003, during additional mapping at the limits of the geo-chemical data. The Mirador and Mirador Norte deposits dif-fer significantly from those to the north in that gold is presentin economic quantities (over 0.2 g/t).

Skarn and epithermal Au

Geologic and radiometric dating evidence indicates skarnmineralization in the Zamora Cu-Au belt formed both distallyand later than the main porphyry Cu-Au mineralization. Noeconomically significant skarn deposits adjacent to porphyrydeposits are known to occur, mainly because the porphyry de-posits are hosted entirely within intrusive rocks. Skarns arehosted by Triassic-Lower Jurassic Santiago Formation marinesedimentary and volcanic rocks where they are intruded bythe Late Jurassic igneous rocks. Conversely, the significantepithermal Au deposits in the belt are temporally related tothe porphyry Cu deposits, though none are spatially associ-ated with them due to the level of erosion affected in theEarly Cretaceous.

The discontinuous skarns within the Nambija Au skarn dis-trict (Prodeminca, 2000; Chiaradia et al., 2009), located 60km southwest of Mirador (Fig. 2), have produced an esti-mated 62 t Au (Gemuts et al., 1992), all by informal mining.They are hosted by a north-south, elongate roof pendant ofthe Piuntza unit of the Santiago Formation within the Zamorabatholith (Litherland et al., 1994). As rich and widespread asthe skarn mineralization is, there is only minor, insignificantassociated porphyry Cu mineralization (David prospect at theGuaysimi skarn; Chiaradia et al., 2009). While subvolcanic in-trusions lithologically similar to those at Mirador are presentand closely related to the skarn mineralization, the gold min-eralization at Nambija has been precisely dated at 145 Ma(Chiaradia et al., 2009), or about 10 m.y. younger than theporphyry Cu deposits in the belt. The fact that Nambija is 20km west of the main NNE trend of deposits with theCordillera del Condor may be evidence of younger activityconfined to a parallel structure; no other dating of mineral-ization to the north or south exists.

The Kutucus Cu skarn prospect, 5 km north of San Carlos(Fig. 3), is on the contact of Santiago Formation calc-silicatealtered units and Zamora granite. The dacite porphyry dikesrelated to the mineralization have been K-Ar dated as coevalwith those at the San Carlos deposit (Gendall et al., 2000), butno associated porphyry Cu mineralization has been found todate, although the preliminary exploration was focused on theskarn potential.

The continuation of the metallogenic zone to the south ofMirador is dominated by the epithermal, intermediate sulfi-dation Au deposit of Fruta del Norte, having total measured

and indicated resources of 5.7 Moz Au, 7.3 Moz Ag, and in-ferred resources of 6.1 Moz Au, 7.9 Moz Ag (Henderson,2009). Other important systems include the subepithermal,Au-Ag sulfide vein deposits (Sillitoe, 2009) of the Chinapintzadistrict, having inferred resources of 0.8 Moz Au (Eason andOviedo, 2004), and the Jerusalem camp having measured andindicated resource of 0.58 Moz Au, 3.38 Moz Ag, and inferredresource of 0.71 Moz Au, 6.27 Moz Ag (Holly, 2006). Frutadel Norte has a Late Jurassic minimum age of mineralizationof ca. 155.4 Ma, based on an interpreted overlying volcanicunit, coeval with Mirador and the porphyry deposits to thenorth (Stewart, 2008). The age of sulfide-hosted gold miner-alization at Chinapintza is enigmatic, as there are both LateJurassic dates (K-Ar dates of 153−156 Ma, Litherland et al.,1994), with a recent U-Pb date from mineralized dacite por-phyry of 157.7 ± 1.4 Ma (McClelland, 2010), and anOligocene U-Pb date of 30.6 ± 1.4 Ma (Gaschnig, 2009) fromrhyodacite subvolcanic rock that is in part mineralized. Chi-napintza bears much resemblance to the Late Jurassic por-phyry Cu systems, as the auriferous sulfide veins trend mostlyNW and are hosted by the Zamora batholith, with mineral-ization genetically associated with younger subvolcanic units.

Local Geology and MineralizationThe Mirador porphyry Cu-Au district comprises the Mi-

rador and Mirador Norte deposits, both with block model-based resource estimates, and the Chancho prospect compris-ing Chancho, Chancho Sur, and Chancho Norte zones (Figs.3, 4). Mirador and Mirador Norte are connected along a NW-trending structure that was tested near the mid-point with an800-m drill hole, which intersected several narrow, weaklymineralized structures. The Chancho system trends NNWand appears to be more structurally controlled than Mirador.

Mirador

Resources: At the time of writing, the Mirador resource es-timation (Sivertz et al., 2006a) was 438 Mt of measured andindicated mineral resources grading 0.61% Cu, 0.19 g/t Au,and 1.5 g/t Ag, at a 0.40% Cu cutoff grade. Additional in-ferred mineral resources, also at a 0.40% Cu cutoff, are esti-mated as 235 Mt grading 0.52% Cu, 0.17 g/t Au, and 1.3 g/tAg. The Mo grades are low and were not included in the es-timate, but, at the same Cu cutoff, average about 0.006 ppm.This estimate, and the geologic interpretation presented inthis study, is based on 36,284 m of core drilling in 143 dia-mond drill holes.

Lithologies: Plutonic rock of the Zamora batholith is themain host rock of the Mirador system (Fig. 5a). The plutoncomprises mainly medium-grained, equigranular Zamora gra-nodiorite (unit “Jzgd”), with leucogranite phases commonalong the west and southwest margins. There are also scat-tered xenoliths of calc-silicate altered shale. A typical crosssection is presented in Figure 6a. Hornblende and biotite aremostly replaced by brown to black secondary biotite, which isthe most obvious indicator of potassic alteration in the deposit(Fig. 7a).

The oldest rocks that intrude equigranular granodiorite arefeldspar-hornblende porphyry dacite dikes, with crowded, eu-hedral albite typical of subvolcanic units (Fig. 7b; unit “Jefp”).They strike north and northwest and are subvertical. These

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 17

0361-0128/98/000/000-00 $6.00 17

Page 8: Porfidos Cu Mirador SE Ecuador

18 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 18

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamor

RioZamor

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

788,000mE

786,000mE

784,000mE

785,000mE

9,64

9,00

0 m

N

9,65

0,00

0 m

N

783,000mE

9,64

8,00

0 m

N

1

kilo

met

res

0.5

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

SA

N C

AR

LOS

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

RioZamora

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

AP

AN

AN

TZA

PA

NA

NTZ

A

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

153.

3 ±

0.5

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

157.

0 ±

0.6

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

153.

5 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

151.

9 ±

1.5

Late

hor

nble

nde-

feld

spar

-qua

rtz

por

phy

ry

Zam

ora

gran

odio

rite,

qua

rtz

mon

zoni

te

Ear

ly h

ornb

lend

e-fe

ldsp

ar p

orp

hyry

Zam

ora

leuc

ogra

nite

, ap

lite

Ove

rbur

den

(allu

vium

, tal

us, s

lides

)

Bre

ccia

(una

ltere

d, p

olym

ictic

)

Tert

iary

rho

dac

ite p

orp

hyry

Tert

iary

dio

rite,

dia

bas

e

San

tiago

Fm

. sed

imen

tary

roc

ks

SY

N-

TO

PO

ST

-MIN

ER

ALI

ZA

TIO

N

PR

E-

TO

SY

N-M

INE

RA

LIZ

AT

ION

Geo

log

yLe

gen

dP

OS

T-M

INE

RA

LIZ

AT

ION

Dat

ing

Met

hod

Ar-

Ar

Re-

Os

Str

eam

sD

rill h

oles

B786000E

9607

000

mN

784000mE

785000mE

783000mE

9605

000

mN

9606

000

mN

782000mE

SE

NW

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

0.4%

Cu

limits

1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11M

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

RM

IRA

DO

R

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

kilo

met

res

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

OC

HA

NC

HO

CH

AN

CH

ON

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TEN

OR

TE

0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00

NE

SW

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

eW

away

me

Waw

aym

e

QuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimiQuimi

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

MIR

AD

OR

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

NO

RTE

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio

Rio Rio Rio Rio Rio Rio RioRio Rio Rio Rio Rio Rio RioRio Rio Rio Rio Rio Rio RioRio Rio Rio Rio Rio RioRio Rio Rio Rio Rio Rio RioRio Rio Rio Rio Rio Rio RioRio Rio Rio Rio Rio Rio Rio Rio

155.

7 ±

0.5

163.

8 ±

1.9

156.

5 ±

0.5

155.

8 ±

0.5

153.

1 ±

1.3

156.

2 ±

1.0

155.

7 ±

0.5

163.

8 ±

1.9

156.

5 ±

0.5

155.

8 ±

0.5

153.

1 ±

1.3

156.

2 ±

1.0

Late

hor

nble

nde-

feld

spar

-qua

rtz

por

phy

ry

Zam

ora

gran

odio

rite,

qua

rtz

mon

zoni

te

Ear

ly h

ornb

lend

e-fe

ldsp

ar p

orp

hyry

Ove

rbur

den

(allu

vium

, tal

us, s

lides

)

Hol

lin F

m. q

uart

zite

Bre

ccia

(una

ltere

d, p

olym

ictic

)

San

tiago

Fm

. sed

imen

tary

roc

ks

SY

N-

TO

PO

ST

-MIN

ER

ALI

ZA

TIO

N

Bre

ccia

(ear

ly)

PR

E-

TO

SY

N-M

INE

RA

LIZ

AT

ION

Geo

log

yLe

gen

dP

OS

T-M

INE

RA

LIZ

AT

ION

Dat

ing

Met

hod

Re-

Os

U-P

b

Str

eam

sD

rill h

oles

A

FIG

.4.

Loc

atio

n of

dri

ll ho

les

and

age-

date

sam

ples

from

(A) M

irad

or d

istr

ict,

and

(B) P

anan

tza-

San

Car

los

area

; not

e th

at s

cale

s ar

e sl

ight

ly d

iffer

ent b

etw

een

map

s.T

he >

0.4%

Cu

cont

ours

for

each

dep

osit

are

from

the

Cu

bloc

k m

odel

res

ourc

e es

timat

es.

Page 9: Porfidos Cu Mirador SE Ecuador

dacites are classed as “early porphyry” dikes because theyprecede the first pulse of Cu-Au mineralization and associ-ated potassic alteration. This unit is distinguished from theZamora granite in highly altered zones in drill core andleached surface exposures mainly by the vestiges of the largehornblende phenocrysts.

A 400-m-wide, vertical diatreme of breccia (Fig. 7c; unit“brmn”) comprising angular fragments of the early porphyry

dikes, Zamora granite, and quartz vein fragments from anearly quartz stockwork is loosely centered on the early dikes.It is off-center of, but entirely within, the mineralized system.The early porphyry dikes can be traced into the breccia astrains of fragments and intact blocks; where fragments greatlyexceed the matrix the dikes are mapped through as intact.The breccia is mostly fragment supported, and the matrixconsists of rock flour and fine rock and quartz vein (A-type)

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 19

0361-0128/98/000/000-00 $6.00 19

9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN9604250 mN

9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN9604500 mN

9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN9603750 mN

9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN9604000 mN

7857

50m

E78

5750

mE

7857

5 0m

E7 8

5 750

mE

7857

50m

E78

5750

mE

7857

5 0m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E78

5750

mE

7857

50m

E

9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN9603500 mN

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5 250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E78

5250

mE

7852

50m

E

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E78

5500

mE

7855

00m

E

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E78

4750

mE

7847

50m

E

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5 000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E78

5000

mE

7850

00m

E

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E78

4500

mE

7845

00m

E

SE

NW

400200

metres

0

156.2 ± 1.0

156.5 ± 0.5

153.1 ± 1.3155.8 ± 0.5

156.2 ± 1.0

156.5 ± 0.5

153.1 ± 1.3155.8 ± 0.5

9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN9607000 mN

9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN9607250 mN

9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m9606250 m

9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN9606500 mN

9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN9606750 mN

7837

50m

E78

3750

mE

7837

50m

E78

3750

mE

7837

50m

E78

3750

mE

7837

50m

E7 8

3750

mE

7837

50m

E78

3750

mE

7837

5 0m

E7 8

3750

mE

7837

50m

E78

3750

mE

7837

50m

E78

3750

mE

783 7

50m

E78

3750

mE

7837

50m

E78

3750

mE

7837

5 0m

E7 8

3750

mE

7837

50m

E78

3750

mE

7 837

50m

E78

3750

mE

7837

50m

E78

3750

mE

7837

50m

E78

3750

mE

7837

50m

E78

3750

mE

7837

50m

E78

3750

mE

7 837

50m

E78

3750

mE

7837

50m

E78

375 0

mE

7 837

50m

E78

3750

mE

7837

50m

E78

3750

mE

7837

50m

E78

3 750

mE

7837

50m

E78

3750

mE

7837

50m

E78

3750

mE

783 7

5 0m

E

7840

00m

E78

4000

mE

7840

00m

E78

4000

mE

7840

00m

E78

4000

mE

7840

00m

E7 8

4000

mE

7840

00m

E78

4000

mE

7840

0 0m

E7 8

4000

mE

7840

00m

E78

4000

mE

7840

00m

E78

4000

mE

784 0

0 0m

E7 8

4000

mE

7840

00m

E78

4000

mE

7840

0 0m

E7 8

4000

mE

7840

00m

E78

4000

mE

7 840

00m

E78

4000

mE

7840

00m

E78

4000

mE

7840

00m

E78

4000

mE

7840

00m

E78

4000

mE

7840

00m

E78

4000

mE

7 840

00m

E78

4000

mE

7840

00m

E78

400 0

mE

7 840

00m

E78

4000

mE

7840

00m

E78

4000

mE

7840

00m

E78

4 000

mE

7840

00m

E78

4000

mE

7840

00m

E78

400 0

mE

784 0

0 0m

E

7 842

50m

E78

4250

mE

7842

50m

E78

4 25 0

mE

7 842

50m

E78

4250

mE

7842

50m

E7 8

4250

mE

7842

50m

E78

4250

mE

7842

50m

E78

4250

mE

7842

50m

E78

4250

mE

7 842

50m

E78

4250

mE

784 2

5 0m

E7 8

4 25 0

mE

7 842

50m

E78

4250

mE

7842

5 0m

E7 8

4250

mE

7842

50m

E78

4250

mE

7 842

50m

E78

4250

mE

7842

50m

E78

4250

mE

7842

50m

E78

4250

mE

7842

50m

E78

4250

mE

7842

50m

E78

4250

mE

7 842

50m

E78

4250

mE

7842

50m

E78

425 0

mE

7 842

50m

E78

4250

mE

7842

50m

E78

4250

mE

7842

50m

E78

4 25 0

mE

7 842

50m

E78

4250

mE

7842

50m

E78

425 0

mE

7842

5 0m

E

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E7 8

3250

mE

7832

50m

E78

3250

mE

783 2

5 0m

E7 8

3250

mE

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E7 8

3250

mE

7832

50m

E78

3250

mE

7 832

50m

E78

3250

mE

7832

50m

E7 8

3250

mE

7832

50m

E78

3250

mE

7832

5 0m

E7 8

3250

mE

7832

50m

E78

3250

mE

7 832

50m

E78

3250

mE

7 832

50m

E78

3 25 0

mE

7 832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

7832

50m

E78

3250

mE

783 2

5 0m

E

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

7835

00m

E7 8

3500

mE

7835

00m

E78

3500

mE

7835

0 0m

E7 8

3500

mE

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

783 5

00m

E78

3500

mE

7835

00m

E78

3500

mE

7835

00m

E7 8

3500

mE

7835

00m

E78

3500

mE

7 835

00m

E78

3500

mE

7835

00m

E7 8

3500

mE

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

7 835

00m

E78

3500

mE

7835

00m

E78

3 50 0

mE

7 835

00m

E78

3500

mE

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

7835

00m

E78

3500

mE

783 5

0 0m

E

7 830

00m

E78

3000

mE

7830

00m

E78

300 0

mE

7 830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E7 8

3000

mE

7830

00m

E78

3000

mE

7830

0 0m

E7 8

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7830

00m

E78

3000

mE

7 830

00m

E

400

metres

200

SW

0

NE

155.7 ± 0.5155.7 ± 0.5

A. MIRADOR

B. MIRADORNORTE

Primary ZoneAvg. Intercepts

>0.4% Cu

>50 ppm Mo

Dating Method

Re-OsU-Pb

Streams

Drill holes

FIG. 5. Detailed geology for Mirador and Mirador Norte, showing outline of primary Cu zone where drill core samplecomposites average >0.5% Cu; see Figure 4 for legend. The >50 ppm Mo contour is also shown. A. Mirador, Mo forms anearly complete halo around the Cu center. B. Mirador Norte, Cu and Mo show more overlap and intense zones of brecciaand postmineralization units are lacking.

Page 10: Porfidos Cu Mirador SE Ecuador

20 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 20

M34

M39

M40

M45

M15

M36

M75 M103

M74

M12

M48

M77

M85

M80M

65M

49

M88

M93

M127

M12

8

1200mRL

1100mRL

2001000mRL

1300mRL

POTPROP

100

metres

0

POTPROP

NW SE

MN56 MN

36

MN

01

MN58MN59 MN64

MN38MN40

MN

02

600mRL

700mRL

500mRL

200

800mRL

900mRL

PROP

POT

metres

1000

POT

SER-PY

SW NE

leached

enriched

A. MIRADOR

B. MIRADOR NORTE

leached

enriched

FIG. 6. Cross sections for (A) Mirador and (B) Mirador Norte (see Fig. 4 for legend). Heavy bars along the drill stemsmark intercepts >0.4% Cu. Green contours from block model show >0.4% Cu and red contours show >0.6% Cu. Inner limitof propylitic alteration zone (PROP), sericite-pyrite (SER-PY), and outer limit of potassic alteration (POT) are also shown.Sections are 100 m thick.

Page 11: Porfidos Cu Mirador SE Ecuador

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 21

0361-0128/98/000/000-00 $6.00 21

A 1 cm B

biotite replacing HBL

1 cm

C

AN

CP-PY

Jzgd

1 cm D

CP

1 cm

PY

E

CP

1 cm

PY

PY

CP

CP

Au

Au

Au

Au

CPCP

PYMG

PY

20 pmF

1 cm

lith

chlor.HBL

QZHBL

AB

ORQZ

G JhbpS

Jzgd

HFIG. 7. Lithologic units at Mirador. A. Potassic-altered equigranular granodiorite of the Zamora batholith. B. Potassic-al-

tered early feldspar-hornblende porphyry, showing complete replacement of hornblende (HBL) by secondary brown biotite.C. Early mineralized breccia, with fragments of Zamora granodiorite (Jzgd) in a matrix of rock flower cemented by anhydrite(AN) and chalcopyrite + pyrite (CP-PY). D. Evenly disseminated chalcopyrite (yellow) and pyrite (silver) in Mirador gran-odiorite with diffuse, early vein stockwork. E. Disseminated and fine-fracture chalcopyrite (yellow) and pyrite (silver) in Mi-rador Norte early porphyry dacite. F. Photomicrographs of polished sections of sulfide concentrate from Mirador metallur-gic testwork, showing Au grains in various associations with pyrite (PY), chalcopyrite (CP), and minor magnetite (MG). G.Postmineral rhyodacite dikes: left is rhyodacite porphyry with phenocrysts of albite (AB), hornblende (HBL), quartz (QZ),and orthoclase (OR), right is tuffaceous equivalent, with argillic matrix, increase in quartz, lesser and chloritized hornblende,and sparse lithic fragments; this is from the dike dated in this report. H. Outcrop of postmineral breccia saprolite, showingfragments of angular shale (S), subangular granodiorite (Jzgd), and late dike (Jhbp).

Page 12: Porfidos Cu Mirador SE Ecuador

fragments. The matrix also contains coarse fillings of chal-copyrite-pyrite and anhydrite, which, together with thequartz vein fragments, help distinguish the unit in weatheredsurface exposures. Fragments are angular to subangular andshow an even potassic alteration with no alteration rims; theyrange in average size from centimeters to more than a meterthat are clearly observable in outcrop.

Northeast-striking, NW- and SE-dipping hornblende-feldspar-quartz porphyry dacite dikes (Fig. 7g; unit “Jhbp”)cut the breccia and other mineralized units of the deposit;they are clearly postmineralization and therefore selected fordating the close of volcanic activity. The largest dike swarm isalong the southeast margin of the mineralization, and fromsouthwest to northeast has textures transitional from por-phyritic to tuffaceous. Where the dike resembles a crystaltuff, it is quartz rich with minor lithic fragments, and is dis-tinguished from the dacite flow portion of the dike by the in-tense argillic alteration of the matrix giving it lighter, buff col-ors. These rocks are sparsely fractured relative to themineralized rocks, lack any quartz veining, and are fresh tochlorite altered. Outcrops are blocky and resistant andweather to a characteristic bright red clay due to the oxidationof abundant magnetite. Large rhombs of orthoclase are com-mon in the main dikes. Smaller dikes in the northwest portionof the deposit are dark gray with albite phenocrysts dominat-ing the texture. A large central dike has abundant coarsehornblende phenocrysts, in addition to subhedral albite, or-thoclase, and quartz phenocrysts.

Late phreatic breccia (Fig. 7h; unit “brpm”) occurs at themargins of most late dacite dikes and as irregular diatremesaround the north and northwest margins of the mineralizedzone. The breccias are characterized by a polymictic, angularto subrounded fragment assemblage of mineralized and un-mineralized rock, the relative quantity of each fragment typebeing dependent on whether the breccia intruded mainlymineralized rocks or postmineral intrusions. Common frag-ments of black shale and fresh Zamora granite, which are notknown to occur within several kilometers of the deposit, indi-cate the fragments have traveled significant distances; thelarge diatreme north of the deposit and outside of mineral-ization is composed almost exclusively of shale fragments.Black shale, similar to the Yuquianza Member of the SantiagoFormation (Gaibor et al., 2008), is not known from surfaceoutcrops anywhere on the property, suggesting a sharpchange in geology possibly across a regional high-angle re-verse fault beneath the deposit at depths below the currentdrilling. The matrix is mostly finely ground rock where thebreccia occupies a postmineral dike contact but contains sig-nificant milled sulfide minerals in bodies that intrude miner-alized Zamora granite. Copper grades within the late brecciarange from very low to slightly less than the deposit average,depending on the amount of mineralized rock incorporated.Outcrops of this breccia are massive and very sparsely frac-tured. In drill core, the breccia is the least fractured lithologyin the deposit.

All the intrusive rocks are unconformably overlain byquartzite sandstone and interbedded shale of the Hollin For-mation, an Aptian-Albian-aged transgressive, continentalshelf sequence with an eastern provenance. This indicates themineralization and associated subvolcanic units were exposed

at surface by the middle Early Cretaceous (about 127 Ma).Mineralization and alteration: Most of the Mirador miner-

alization is exposed as tan to brown saprolite, with residual sil-ica and abundant iron oxides, in the numerous drill trail androad exposures. The deep weathering has left well-definedgeochemical footprint of the deposit, with Au and Mo actingas largely immobile elements with their anomalies coincidentwith mineralization at depth. Cu is highly mobile in saproliteand forms a patchy, displaced anomaly, tending to deposit onpropylitic-altered and postmineralization units due to theircarbonate content. There is a well-defined Zn depletionanomaly coincident with the Au and Mo anomalies. Zones ofsupergene Cu enrichment have formed beneath the saproliteand have relatively flat upper boundaries and more unevenlower boundaries with the hypogene mineralization. Primaryand supergene mineralization are only exposed where thedrainages have cut down through the overlying saprolite, andso the leached zone is thickest under ridge crests and nonex-istent in the valleys with perennial streams (see Fig. 6a).Channel sampling of potassic-altered rock exposures alongthe two main drainages returned slightly above-average hypo-gene grades due to weak supergene enrichment.

The transition from leached zone to supergene or directlyto primary can be sharp, on a centimeter scale, or “mixed”(mottled) over several meters near fracture zones where un-even clay alteration persists to greater depths. Secondarychalcocite coating the primary sulfides forms the supergene,enriched mineralization. This zone is intensely argillic al-tered, with the alteration (and chalcocite mineralization) di-minishing gradually with depth. Argillic alteration extends togreater depths within the breccia, likely as a result of deeperpenetration of meteoric waters along the easily dissolvedbreccia matrix. While the supergene zone forms less than10% of the total resource, its high Cu grade, low hardness,and shallow depth make it important to the economics of thedeposit.

Primary Cu-Au mineralization at Mirador is mostly as dis-seminations and fine fracture fillings of chalcopyrite andpyrite in potassic-altered Zamora granodiorite and early por-phyry dacite, and as coarse blebs of these same sulfides to-gether with purple anhydrite filling interstices in the matrix ofthe early breccia diatreme (Fig. 7c-e). There is no statisticaldifference in Cu or Au grades inside and outside the breccia,despite the difference in mineralization style. Total sulfideconcentrations are almost constant across the deposit at about4%, with chalcopyrite greater than pyrite within the centralpotassic zone. Bornite is only present in weak, sporadicamounts deep in the southeast quadrant. Potassic alteration,in the form of secondary biotitization of mafic minerals andanhydrite fillings in the breccia matrix, is dominant, with onlylocal quartz-sericite overprinting, usually along late pyriticstructures. Abundant magnetite occurs along the northwestedge of the deposit but is disassociated with Cu-Au mineral-ization. A deep (>300 m), narrow (ca. 100 m) zone of massive,milky quartz flooding occurs near the southwest edge of theearly breccia diatreme and has lower copper grades, presum-ably due to its impermeability. The deepest drill holes at Mi-rador intersected homogeneous hypogene Cu grades (0.6%Cu) to 1,000 m below surface, indicating a vertical geometryof the mineralization.

22 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 22

Page 13: Porfidos Cu Mirador SE Ecuador

Gold occurs as fine inclusions divided equally betweenchalcopyrite and pyrite, with minor native gold (Fig. 7f).Molybdenite is concentrated in an outer halo of quartz-molybdenite veins outboard of, but partly overlapping with,the main copper mineralization (Fig. 5a).

Paragenesis: The paragenesis of Mirador is illustrated inFigure 8. The mineralization and alteration initiated as aneast-west−oriented stockwork of barren, milky, A-type quartzveins following emplacement of the early porphyry dacitedikes in a fault and/or fracture zone (Fig. 8a, b). Initial Cu +Au + Ag + Mo mineralization and corresponding potassic al-teration closely followed the early quartz stockwork, as pre-dominantly disseminated and fine fracture controlled chal-copyrite-pyrite within granite and early porphyry dacite hostrocks. Mineralization intensity was variable within the earlyporphyry dikes, which seem to have been differentially frac-tured and open to hydrothermal fluids. Some dikes of thisunit did not fracture well and were not as permeable to cop-per fluids as the older granodiorite.

The early phreatic breccia diatreme appears to haveformed after the initial disseminated mineralization, based onthe disseminated chalcopyrite within the fragments (Fig. 8c).Copper-gold mineralization continued postemplacement ofthe breccia and deposited coarse chalcopyrite, pyrite, anhy-drite, and rare bornite in open spaces between breccia frag-ments, mixed with fine comminuted rock matrix, and addeddisseminated and fine fracture-fill chalcopyrite in areas pe-ripheral to the breccia (Fig. 8d). Mo was concentrated in ahalo outboard of the Cu-Au mineralization.

Toward the waning of mineralization, NE-striking, NW-dipping hornblende-feldspar-quartz porphyry dikes intrudedall mineralized units within the deposit, followed closely byphreatic “pebble” dikes along reactivated dike margins as wellas isolated diatremes (Fig. 8e). The consistent association ofthe dacite dikes with postmineral breccia dikes suggests thetwo units are at least in part coeval. The larger, late breccia di-atremes on the northwest margin differ in that they are dom-inated by shale fragments, and while they may be the sameage as dacitic breccias, they seem to be rooted in rocks not ex-posed at surface.

Sparse, thin (<10 cm), subvertical veins of massive pyrite,chalcopyrite ± galena ± sphalerite that are relatively gold rich(i.e. grades >10 g/t Au) cut the late hornblende-feldspar dikes(Fig 8e). They are insignificant in volume relative to the por-phyry mineralization but are evidence of a minor, very latemineralization event. Notably, they are identical in sulfide as-semblage as the Au-bearing sulfide veins mined in the Chi-napintza district.

Mineralized units within the upper approximately 300 m ofthe deposit at Mirador are highly fractured, with most drillcore broken in pieces less than 10 cm long. The fracturing isthe result of the volume expansion associated with hydrationof hypogene anhydrite to gypsum by meteoric water (Fig. 8f).The gypsum veinlets subsequently dissolve leaving loose frac-tures. The drill core is relatively competent below the levelwhere anhydrite and gypsum are affected by weathering andleaching. Argillic alteration penetrates to depth within thenewly created fracture system, and decreasing from verystrong within the supergene zone, to weak at the gypsum-an-hydrite front about 300 m below.

Mirador Norte

Mirador Norte is located 4 km of Mirador, along strike ofthe soil geochemical anomaly (Fig. 4a). It is relatively low-lying and very poorly exposed, albeit gossanous saprolite ofthe phyllic alteration halo is exposed in road cuts just east ofthe Mirador camp. It was discovered during follow-up of asingle anomalous molybdenum silt sample. Mineralizationover 1% Cu is exposed in a single small drainage that was pre-viously overlooked. The current resource estimate for Mi-rador Norte at a 0.4% Cu cut-off is 171 Mt at 0.51% Cu and0.09 g/t Au indicated, with additional inferred resources of 46Mt of 0.51% Cu and 0.07 g/t Au (Sivertz et al., 2006b).

The geology of the Mirador Norte deposit is simpler thanthat of Mirador, lacking a breccia diatreme and any postmineralunits. The host rocks are the same equigranular granodioriteintruded by NW-striking, hornblende-feldspar porphyry dacitedikes. The mineralization, dominant alteration, and metal ra-tios are similar in composition to Mirador but are more struc-turally controlled, without the coincident circular zoning ofmetals and alteration. Copper grades are similar in both gran-odiorite and porphyry dikes, although at the south margin ofthe deposit the copper grades in porphyry show some variationrelative to the granite: copper grades both increase and de-crease across dike contacts, along strike, or up- and downdip.It appears that the dike contacts controlled fluid flow more atthe margins than at the center of the deposit, where fractur-ing was perhaps more pervasive and less prone to control bylithology. Similar changes in mineralization intensity alongstrike within dikes are observed at the Panantza deposit.

Mirador Norte mineralization consists mainly of dissemi-nated and stockwork hypogene chalcopyrite. As at Mirador,there is a superficial leached zone up to 40 m thick overlyingthe secondary enrichment blanket that averages 14 m thick.The enrichment zone is immature, with chalcocite coatingson chalcopyrite and pyrite. The enriched zone grades into pri-mary, disseminated chalcopyrite mineralization. Higher gradeareas are associated with structurally controlled, fine-grained,dark-gray silica flooding that can contain more than 5% chal-copyrite. Alteration is mostly potassic in the form of black tobrown secondary biotite and is almost completely overprintedby propylitic (chlorite + epidote) alteration, which, unlike thefringing chloritic alteration at Mirador, is spatially coincidentwith it. Local coarse anhydrite is preserved at deeper levelsbelow the gypsum front. The potassic alteration assemblagetransitions to intense quartz-sericite-pyrite alteration alongthe west side of the deposit, while along the northeast sidepropylitic alteration extends to the north past the potassic al-teration. Early and barren quartz veining is only significant inthe northwest third of the deposit.

Chancho

The Chancho prospect consists of three narrow zones alongstrike of each other over a distance of 6 km (Fig 3). Thenorthern two of these zones, Chancho and Chancho Norte,were drilled by Corriente in 2000, with 20 holes totaling 2,006m. In both zones the mineralization is narrow and structurallycomplex, forming a series of small lenses of mineralizationwith grades similar to Mirador, and no formal resources havebeen calculated.

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 23

0361-0128/98/000/000-00 $6.00 23

Page 14: Porfidos Cu Mirador SE Ecuador

24 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 24

A. Intrusion of early feldspar-hornblende porphyry into Zamora granodiorite along structural zone at ~158 Ma.

B. QZ- stockwork following east-west fractures, followedclosely by start of potassic alteration with disseminatedCP+PY+MO+Au+AN at ~156Ma.

D. Finish of main mineralization with coarse in breccia interstices, changing laterally to disseminatedand fracture controlled CP outside of the breccia.

CP+PY+AN

E. Intrusion of late porphyry dacite, breccia dikes and diatremes. Late CP+PY±SL±GL+Au veinlets may be significantly younger than porphyry mineralization.

latest Au-richCP+PY

GL±SL veins

F. Last event is meteoric waters entering surface fractures, converting AN to GP, causing fracture front to propagate down. GP is dissolved leaving open fractures.

AN -> GP

C. Phreatic brecciation, with vapour inflating andbrecciating mineralized rock, then collapsing back leaving vugs between fragments and more fractures.

Zamora granite

Early porphyry fracture/vein CP

fracture/vein MO+QZ

potassic alterationwith disseminated CPblebby CP

CP = chalcopyritePY = pyriteSL = sphaleriteGL = galena

AN = anhydriteGP = gypsum

156.2 ± 1.0 Ma

163.8 ± 1.9 Ma 155.8 ± 0.5 Ma

153.1 ± 1.3 Ma

GP dissolves

MO = molybdenite

Late porphyry

dates from this study:

Late breccias

156.5 ± 0.5 Ma

U-Pb

Re-OsFIG. 8. Mirador paragenesis in a series

of schematic cross sections.

Page 15: Porfidos Cu Mirador SE Ecuador

The southern zone, Chancho Sur, is well exposed over sev-eral hundred meters in road cuts along the El Condor militaryaccess road and in several small drainages that cross thisroute. The host rock is mostly Zamora granite, though the al-teration extends into a large pendant of Santiago Formationcalc-silicate altered shale. Potassic alteration in the granite isonly weakly developed as patches within an intense, pyritic,quartz-sericite alteration envelope. Weak disseminated chal-copyrite is dominated by abundant disseminated pyrite inoutcrop in the creeks cutting the zone.

Primary mineralization at Chancho crops out in a 150-m-wide exposure in the Rio Tundayme canyon, as well as smalltributaries to the south. It comprises disseminated chalcopy-rite and pyrite in sheared, brecciated, and potassic-alteredZamora granite and the “Chancho porphyry,” which is anearly hornblende-feldspar subvolcanic dike similar to units atMirador. Local argillic fault zones appear to postdate the min-eralization and indicate that the structure was reactivated inpart. The mineralization on both sides of the structure gradessharply over a few meters into an envelope of intense pyriticquartz-sericite alteration and then weak propylitic alterationin pink Zamora granite. Although surface channel samplingreturned 145 m of 0.92% Cu, the best hole (CH01), drilleddirectly under the surface sampling, returned only 51 m of0.96% Cu, which thinned to 1.05% Cu over 34 m in anotherhole drilled 100 m to the south under the same zone; both in-tercepts had <100 ppb Au.

The soil geochemical anomaly of the Chancho zone wastraced northward along its N-S strike for 2.5 km into ChanchoNorte, where the mineralized structure crops out in smalldrainages. Here it is even narrower, with grades above 1% Cuintercepted over only 18 m in drill hole CHN01. The chal-copyrite mineralization occurs as narrow lenses withinsheared, potassic-altered Zamora granite and is cut sharply inplaces by late, northeast-trending, quartz-rich, hornblende-feldspar dikes, similar to dikes at Mirador. The weakly propy-litic Zamora granite from drill hole CHN01 was chosen for U-Pb dating for this study.

Uranium-Lead (U-Pb) Geochronology

Sample selection

Zircons from intrusive units that bracket the mineralizationin the Mirador and Mirador Norte deposits were dated by U-Pb, using laser ablation-inductively coupled plasma-mass spec-trometry (LA-ICP-MS) at the University of British ColumbiaPacific Center for Isotopic and Geochemical Research labo-ratory. The units chosen are the main host for mineralizationin the Zamora granodiorite (unit “Jzgd”), mineralized horn-blende-feldspar porphyry (unit “Jefp”), and postmineraliza-tion, hornblende-feldspar-quartz porphyry (unit “Jhbp”). Thelatter is associated with coeval to slightly younger, polymictic,phreatic breccias. Samples details are shown in Table 2.

Methodology

LA-ICP-MS dating of zircons is a routine procedure at Pa-cific Center for Isotopic and Geochemical Research labora-tory. Zircons are separated from their host rocks using con-ventional mineral separation methods. For igneous rocks,approximately 25 of the coarsest, clearest, most inclusion-free

crystals are selected for analysis. The selected zircons aremounted in an epoxy puck along with several crystals of in-ternationally accepted standard zircon (Plesovice, PL) andPacific Center for Isotopic and Geochemical Research labo-ratory internal standard (KL), and brought to a very high pol-ish. High-quality portions of each crystal are selected for eachanalysis. The surface of the mount is washed for 10 min withdilute nitric acid and rinsed in ultraclean water. Cathodolu-minescent imaging was not available; however a visual in-spection under microscope allowed recognition of inclusions,fluid inclusions, and cracks.

Analyses are performed with a New Wave 213-nm Nd-YAGlaser coupled to a Thermo Finnigan Elements2 high-resolu-tion ICP-MS. Ablation takes place within a New Wave “Su-percell” ablation chamber which is designed to achieve veryhigh efficiency entrainment of aerosols into the helium car-rier gas. Typically a 30-μm spot is used with 35% laser power,and line scans rather than spot analyses are run to avoidwithin-run elemental fractionation. Each analysis consists of a10-s background measurement (laser off) followed by 35 s ofdata acquisition. Analyses of the standard zircons are inter-spersed between the samples throughout the run sequence.For igneous rocks lines are run on 16 to 20 of the crystals.

Data are reduced using the GLITTER software marketedby the GEMOC group at Macquarie University (Van Achter-bergh et al., 2001). The software automatically subtractsbackground measurements, propagates all errors, and calcu-lates isotopic ratios and ages. Close scrutiny of the plots of theanalyses in GLITTER pointed to cores in some of the crystalsand possible areas of lead loss in others. The analyses of PLwith a conservative assigned error of 1% are used to calculatethe in-run drift and fractionation correction that is applied tothe samples. KL is used as an independent monitor. Reportedages are based on the weighted mean of the calculated206Pb/238U ages for relatively young zircons (Phanerozoic). Errors on the ages are reported at 95% confidence level. ISO-PLOT software written by K.R. Ludwig at Berkeley Geo -chronology Center is used for plotting and final interpretationof the analytical results.

Results

The reported ages were derived from means calculatedusing ISOPLOT of the 206Pb/238U ages for the 16 to 20 zirconanalyses for each sample, using averages weighted by analyti-cal errors. Results are presented in Table 3; analyses in italics

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 25

0361-0128/98/000/000-00 $6.00 25

TABLE 2. Sample Descriptions for U-Pb Dating

Sample no. Location Description Unit

CHN01 Chancho Norte drill Zamora granodiorite; Jzgdhole CHN01 at 77-m pink, weak propylitic depth alteration

M16 Mirador drill hole Early hornblende- JefpM16 at 110-m depth feldspar porphyry;

strong Cu mineralization and potassic alteration

M108 Mirador drill hole Postmineral, mauve JhbpM108 at 50-m depth quartz-feldspar-horn-

blende porphyry; youngest of the postmineralization dikes at Mirador

Page 16: Porfidos Cu Mirador SE Ecuador

were rejected as outliers as described below. Concordia dia-grams and weighted mean plots are provided in Figure 9. Theerrors in both diagrams are plotted as 2σ. Preferred ages cho-sen from each of the three samples are in Table 4.

CHN01 (Zamora granodiorite): Zircons in this rock are ex-tremely small, between 100 and 200 μm in length. They are

clear and colorless, but some contain tiny fluid inclusions.The range of ages obtained from the 16 reported analyses is156.6 ± 2.3 to 173.7 ± 2.8 Ma; however two outlying analysescan be excluded from the calculations. Analysis L10 is on azircon that has a dark zone that is visible under the centerportion of the laser track. The isotopic ratios and count rates

26 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 26

TABLE 3. U/Pb Analytical Results

Analysis 207Pb/235U 207Pb/235U 206Pb/238U 206Pb/238U 207Pb/206Pb 207Pb/206Pb Preferred ageno.1 (Ma) (±1σ error) (Ma) (±1σ error) (Ma) (±1σ error) (Ma) (±1σ error)

CHNO1L1 166.5 3.69 161.8 1.54 225.1 53.99 161.8 1.5CHNO1L2 168.9 4.16 158.7 1.59 262.8 59.68 158.7 1.6CHNO1L3 163.8 9.06 165.8 2.78 219 133 165.8 2.8CHNO1L4 169.8 4.3 164.8 1.72 204.6 62.04 164.8 1.7CHNO1L9 153.9 19.99 168.3 5.42 19.1 305.34 168.3 5.4CHNO1L10 172.3 9.2 173.7 2.78 169.2 128.51 173.7 2.8CHNO1L11 164.8 10.63 169.9 2.81 150.2 155.05 169.9 2.8CHNO1L12 150.2 7.04 163.9 2.3 0.1 111.84 163.9 2.3CHNO1L13 162.7 7.27 156.6 2.34 309.5 105.33 156.6 2.3CHNO1L14 177 6.47 167.6 2.28 358 85.18 167.6 2.3CHNO1L15 155.9 7.57 160.3 2.62 171.3 116.36 160.3 2.6CHNO1L16 163.7 5.46 167.3 1.99 92.6 82.03 167.3 2.0CHNO1L17 162.9 7.74 162.8 2.46 146.7 114.82 162.8 2.5CHNO1L18 159.4 10.87 166.1 3.03 25.9 166.59 166.1 3.0CHNO1L19 166.2 24.23 165.5 6.74 24.1 338.27 165.5 6.7CHNO1L20 155.8 12.41 166.1 4.12 11.9 192.85 166.1 4.1M16L1 156.6 4.51 156.1 2.12 113.9 70.88 156.1 2.1M16L2 165 4.89 155.9 2.15 291.1 70.9 155.9 2.2M16L3 171.3 5.28 156.9 2.25 369.2 72.89 156.9 2.3M16L4 155.5 6.63 157.8 2.46 123 104.42 157.8 2.5M16L5 155.4 3.4 156.3 1.92 136.8 53.28 156.3 1.9M16L6 150.8 3.38 153.8 1.88 67.8 55.79 153.8 1.9M16L7 158.1 5.74 157.4 2.36 186 88.25 157.4 2.48M16L8 155.1 13.28 156.9 4.82 108.4 204.02 156.9 4.8M16L9 155.5 4.55 156.6 2.22 145.6 71.48 156.6 2.2M16L10 145.8 3.34 155.3 1.91 38 55.76 155.3 1.9M16L11 137.1 7.6 158.4 2.71 0.1 36.12 158.4 2.7M16L12 150.8 4.36 160 2.09 39.7 71.99 160.0 2.1M16L13 157.5 3.68 156.1 1.94 141.8 57.08 156.1 1.9M16L14 154.3 5.03 155.5 2.21 183.5 79.15 155.5 2.2M16L15 162.8 5.03 156.1 2.16 265.3 74.07 156.1 2.2M16L16 156.8 4.58 153.2 2.07 196.9 70.74 153.2 2.1M16L17 168.3 11.45 154.8 3.35 348.4 158.26 154.8 3.4M16L18 160.3 7.9 158.5 3.11 185.5 118.77 158.5 3.1M16L19 167.6 7.96 154.8 2.61 318.3 112.37 154.8 2.6M16L20 157.2 9.85 155.7 3.32 203.6 149.29 155.7 3.3M108L1 160.8 5 148.8 2.07 279.7 73.54 148.8 2.1M108L2 172.9 8.1 156.8 3.03 327.1 109.99 156.8 3.0M108L3 158.6 4.3 149.5 1.99 265 64.1 149.5 2.0M108L4 163.2 8.71 154.3 2.7 199.7 127.99 154.3 2.7M108L5 158.8 4.33 152.7 2.03 219.8 65 152.7 2.0M108L6 154.3 3.23 149.3 1.79 235.1 48.98 149.3 1.8M108L7 155.1 3.41 154.2 1.87 147.4 52.49 154.2 1.9M108L8 156.6 3.8 150.1 1.93 257.3 57.07 150.1 1.9M108L9 159.4 11.37 153 3.93 247.6 167.42 153.0 3.9M108L10 159.7 5.39 151.7 2.38 231.7 80.6 151.7 2.4M108L11 154.3 3.72 155.3 1.94 124.3 58.08 155.3 1.9M108L12 155.3 5.1 156.1 2.36 147.5 79.46 156.1 2.4M108L13 166.6 8.98 156.5 3.38 314.6 126.19 156.5 3.4M108L14 159.9 7.61 155.8 2.58 179.7 114.68 155.8 2.6M108L15 150.4 6.1 156.7 2.5 60.7 100.19 156.7 2.5M108L16 147.8 5.54 155.7 2.29 22.5 92.75 155.7 2.3M108L17 154.3 3.79 154.5 1.94 103.3 59.68 154.5 1.9M108L18 149.7 5.34 153.6 2.35 86.2 88.24 153.6 2.4M108L19 155 5.52 155 2.28 154 86.26 155.0 2.3M108L20 159.4 4.77 151.7 2.1 271.6 71.11 151.7 2.1

1 Samples were analyzed by laser ablation and ICP-MS (Thermo-Finnigan ELEMENT) at the University of British Columbia; italicized analyses were ex-cluded from the age calculations

Page 17: Porfidos Cu Mirador SE Ecuador

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 27

0361-0128/98/000/000-00 $6.00 27

180

160

0.022

0.024

0.026

0.028

0.030

0.08 0.12 0.16 0.20 0.24

data-pointerror ellipses are 2

CHN01Jzgd

148

152

156

160

164

168

172

176

180

Ag

eM

a

data-pointerror symbols are 2

Mean = 163.8 ± 1.9 [1.4%] 95% conf.Wtd by data-pterrs only, 2 of 16 rej.

MSWD = 2.1, probability = 0.012(error bars are 2 )

170

160

150

0.022

0.023

0.024

0.025

0.026

0.027

0.12 0.14 0.16 0.18 0.20 0.22

data-pointerror ellipses are 2

M16Jefp

144

148

152

156

160

164

168

Ag

eM

a

data-pointerror symbols are 2

Mean = 156.2 ± 1.0 [0.66%] 95% conf.Wtd by data-pterrs only, 0 of 19 rej.

MSWD = 0.51, probability = 0.95(error bars are 2 )

142

146

150

154

158

162

166

Ag

eM

a

data-pointerror symbols are 2

Mean = 153.1 ± 1.3 [0.82%] 95% conf.Wtd by data-pterrs only, 0 of 20 rej.

MSWD = 1.4, probability = 0.10(error bars are 2 )

160

150

0.022

0.023

0.024

0.025

0.026

0.13 0.15 0.17 0.19 0.21

data-pointerror ellipses are 2

M108Jhbp

error ellipses

error ellipses

error ellipses

Pb/ U207 235

Pb

/U

206

238

Pb

/U

206

238

Pb

/U

206

238

Pb/ U207 235

Pb/ U207 235

FIG. 9. Concordia diagrams of zircon analyses from Zamora granodiorite (Jzgd), early porphyry dike (Jefp), and postmin-eralization porphyry dike (Jhbp), with mean weighted 206Pb/238U ages and 2σ errors. The latter are sorted by youngest to old-est before plotting.

Page 18: Porfidos Cu Mirador SE Ecuador

change over this zone, and the 206Pb/238U age integrated overthe entire analysis is older than the other analyses, withyounger (~160 Ma) zones at either end. The second outlier,L13, is from an extremely small crystal that appears to have adamaged zone or core. The 206Pb/238U age of 156.6 ± 2.3 Mais younger than the mean age; however, the 207Pb/206Pb agesuggests older zircon within the crystal. Excluding these twoanalyses does not change the calculated weighted mean ageand error of 163.8 ± 1.9 Ma, but does change the MSWDfrom 3.5 to 2.1. The MSWD value allows statistical evaluationof the broad range of dates obtained in LA-ICP-MS zircondating. Although the scatter in the results for this sample is al-most outside the limit of reliability, we consider the reportedage to be the best estimate of the age of the intrusion.

M16 (early dacite): Zircons in this rock are between 150and 300 μm in length. They are colorless to pale pink, mostlyclear, but some contain tiny fluid inclusions, and more thanhalf are not complete crystals or not euhedral. The range ofages obtained from the 20 analyses is 153.2 ± 2.1 to 160.0 ±2.1 Ma. Despite the 7-m.y. spread of ages, the calculatedweighted mean of the 206Pb/238U ages is 156.2 ± 1.0 Ma(MSWD = 0.52), which is consistent with the Re-Os ages forthe mineralization. Several of the analyses could have beenexcluded based on visual inspection of the zircons, but therewas no analytical justification to do so.

M108 (late dacite): Zircons in this rock are between 150and 500 μm in length. They are light brown to pink, lightercrystals are clear, darker crystals are not transparent. Fluid in-clusions are visible, and most are not euhedral nor completecrystals. The range of ages obtained from the 20 analyses is148.8 ± 2.1 to 156.8 ± 3 Ma. The calculated weighted meanof the 206Pb/238U ages is 153.1 ± 1.3 Ma (MSWD = 1.4). Sev-eral of the analyses could have been excluded based on visualinspection of the zircons, but there was no analytical justifica-tion to do so.

The results are consistent with observations of crosscuttingrelationships of the three units, with the Zamora granodioriteyielding an age of 163.8 ± 1.9 Ma (MSWD = 2.1), the earlyporphyry dacite 156.2 ± 1.0 Ma (MSWD = 0.52), and the lateporphyry dacite 153.1 ± 1.3 Ma (MSWD = 1.4).

Rhenium-Osmium (Re-Os) Geochronology

Sample selection

Two molybdenite samples from Mirador drill cores and an-other from Mirador Norte drill core, all representative ofmain stage Cu-Au-Mo mineralization, were selected for Re-Os dating. The Mirador samples are from argillic, mineral-ized, early breccia (sample M105) and granodiorite (sampleM131) with vuggy quartz-molybdenite-pyrite-chalcopyriteveining. The Mirador Norte sample is from strongly argillic

granodiorite with silicification and ill-defined stockworkquartz-chalcopyrite-pyrite veining.

Re-Os is now a well-established and reliable method fordating molybdenite (Stein et al., 1997, 2001). The method hassignificant application to ore geology, as milligram quantitiespermit the direct dating of ore deposits, provided the occur-rence of molybdenite is paragenetically constrained. Thetechnique has been previously applied to other deposits in theZamora Cu-Au belt, including the Panantza, San Carlos,Sutzu, and Nambija districts (Coder, 2001; Chiaradia et al.,2009; Vallance et al., 2009). The analytical work for thenamed deposits (published in Chiaradia et al., 2009), for theMirador and Mirador Norte (this work), and for Fruta delNorte (see “Discussion”) was carried out under the AIRIEprogram at Colorado State University.

Methodology

The AIRIE program provides geochronology using an oc-currence-driven methodology (Stein et al., 2003; Stein, 2006).This means paragenetically constrained occurrences of molyb-denite are targeted for mineral separation. Details of method-ology are similar to those reported in Zimmerman et al. (2008).Briefly, Re-Os data for Mirador and Mirador Norte were ac-quired by isotope dilution. Molybdenite separates were madeusing a small hand-held drill. Powdered molybdenite wasweighed and transferred to a Carius tube for dissolution and si-multaneous sample-spike equilibration in aqua regia. A mixedRe-double Os spike is applied to correct for common Os (al-most always negligible in molybdenite) and to correct for massfractionation (Markey et al., 2003). Re and Os are chemicallyisolated and Os is purified through a series of distillations, usingHBr and Re purified using anion-exchange column chemistry.Re data were acquired using the total evaporation method. Iso-topic ratios were measured on a Triton instrument at AIRIEusing negative thermal ion mass spectrometry (NTIMS).

Results

The Re-Os data for three molybdenite samples from Mi-rador and Mirador Norte are presented in Table 5. Samplesize was 2 to 9 mg with excellent agreement among the threeRe-Os ages. Although some labs advocate threshold values forsample size (e.g., Selby and Creaser, 2004), the Re-Os data inthis study are clear proof that sample size is not relevant toobtaining robust Re-Os ages; it is the occurrence that matters(Stein, 2006). Reported Re concentrations are minimum val-ues as the fine-grained, molybdenite-rich powders drilledfrom the core samples were diluted up to 90% by silicate.Therefore, actual Re concentrations in these molybdenitesare likely in the 1,000 ppm range and the quantity of molyb-denite for the Re-Os analyses was at the 1-mg level.

Reported Re-Os data are fractionation and blankcorrected.Blanks at the time of these analyses were Re = 2.55 ± 0.04, Os= 0.443 ± 0.005, and 187Os/188Os = 0.931 ± 0.016 pg. Blankcorrections are insignificant to the calculated age for thesehigh Re molybdenites. The measured common Os in thesemolybdenites ranges from 0.3 to 1.2 ppb. The reported radi-ogenic 187Os is corrected for common Os with 187Os/188Os =0.2. The common Os in these samples is insignificant relativeto radiogenic Os, and thus, the correction is extremely minorand insignificant to the age calculation.

28 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 28

TABLE 4. Summary of U-Pb Geochronology at Mirador

Sample No. Unit Preferred age (Ma)

CHN01 Zamora batholith (Jzgd) 163.8 ± 1.9 M16 Mineralized porphyry (Jefp) 156.2 ± 1.0M108 Postmineral porphyry (Jhbp) 153.1 ± 1.3

Page 19: Porfidos Cu Mirador SE Ecuador

Discussion

U-Pb zircon dating

A summary of isotope dates from the Zamora Cu-Au beltporphyry Cu deposits in the following discussion are pre-sented in Figure 10. Equigranular granodiorite from theChancho Norte prospect, representative of typical equigran-ular plutonic rock of the Zamora batholith, gives a U-Pb zir-con age of 163.8 ± 1.9 Ma. This is the first reported U-Pb agefor plutonic rock of the Zamora batholiths, and statisticallycoeval with the 160.6 ± 1.6 Ma 40Ar/39Ar hornblende age ob-tained by Coder (2001) from equigranular granodiorite, and

published by Chiaradia et al. (2009) on Zamora granodioritefrom San Carlos. It is in closer agreement with the unpub-lished SHRIMP U-Pb date of 164.7 ± 2.2 Ma from coarseZamora granodiorite on the Peruvian side of the Chinapintzavein district, 55 km south of Mirador (McClelland, 2010). Asdiscussed by Chiaradia et al. (2009), the San Carlos horn-blende showed some Ar loss in the low-temperature steps,which was attributed to degassing of minor chlorite. Theslightly lower age relative to the U-Pb dates at Mirador andChinapintza suggests that the hornblende at San Carlos wasslightly thermally reset during intrusion by the later por-phyritic dikes. Note that Zamora granodiorite K-Ar ages from

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 29

0361-0128/98/000/000-00 $6.00 29

TABLE 5. Re-Os Data for Molybdenite from Cu-Au Deposits, Mirador and Mirador Norte

Sample no. Drill hole, depth (m) Deposit AIRIE Run no. Re (ppm) 187Os, (ppb) Age (Ma)

M105 M105, 121.16 Mirador MDT-953 165.2 (1) 269.75 (9) 155.8 ± 0.5M131 M131, 140.1 Mirador MDT-962 144.43 (9) 236.94 (8) 156.5 ± 0.5MN65 MN65, 105.2 Mirador Norte MDT-954 414.8 (2) 677.3 (2) 155.7 ± 0.5

Notes: Samples analyzed by Carius tube dissolution using double Os spike and ID-NTIMS (Triton); all uncertainties reported at 2σ and absolute for lastdecimal place indicated in table; Re blank = 2.55 ± 0.04 pg, Os blank = 0.443 ± 0.005 pg, and 187Os/188Os blank composition = 0.931 ± 0.01; numbers in paren-theses are the ± errors for the last digit of the element concentrations

152.0

157.0

154.0

160.6

153.5

151.9

157.8

157.0

153.3

154.9

163.8

156.2

153.1155.8

156.5

155.7

146

148

150

152

154

156

158

160

162

164

166

168

170

Kut

ukus

Kut

ukus

San

Car

los

San

Car

los

San

Car

los

San

Car

los

San

Car

los

San

Car

los

Pan

antz

a

Sut

zu

Cha

ncho

Nor

te

Mira

dor

Mira

dor

Mira

dor

Mira

dor

Mira

dor

Nor

te

Ag

e (M

a)

ZCGB Porphyry Geochron

Sutzu

early dike

Zamoragranodiorite

late dike

Re-Os Mo: Coder (2001)Ar-Ar: Coder (2001)K-Ar: Gendall et al. (2000)

Qtz-Ser Alt (muscovite)San Carlos

late dike (hbl)

San Carlos

Zamora(hbl)

PanantzaZamora

Zamora

U-Pb Zircon this study

Northern Deposits Mirador District

Re-Os Molybdenite this study

early dike(whole rock)

Fig 10. Age relationships for porphyry Cu deposits in the Zamora Cu-Au belt. Re-Os ages of mineralization from all thedeposits falls between 153 and 158 Ma, with Mirador overlapping that of San Carlos and Sutzu. Porphyry dikes are coevalwith mineralization, with early dikes intruded at the onset of mineralization. The 160.6 Ma 40Ar-39Ar hornblende date andtwo younger K-Ar dates from Zamora granodiorite at San Carlos and nearby Kutucus skarn are likely disturbed by late mag-matism. Evidence for this can be seen in the relatively young K-Ar age for an early dike at San Carlos.

Page 20: Porfidos Cu Mirador SE Ecuador

the Kutucus skarn prospect, just east of San Carlos, yield evenyounger ages, between 152 to 157 Ma (Gendall, 2000), andlikely also reflect disturbed Ar systematics.

Early, mineralized hornblende porphyry at Mirador yieldedan age of 156.2 ± 1.0 Ma, in temporal and geologic agreementwith the 156 Ma Re-Os ages for Mirador and Mirador Nortemineralization presented in this study (Fig. 10; Table 5). Thatis, veins cutting an intrusion must be younger than the intru-sion. This date is contemporaneous with a 157.7 ± 1.4 MaSHRIMP U-Pb age determination of similar mineralizeddacite porphyry from the Peruvian side of the ChinapintzaAu-Ag vein district (McClelland, 2010). The early dikes atMirador are younger than early dacitic intrusions dated at160.1 ± 0.2 Ma at the Fruta del Norte epithermal Au deposit,20 km to the south (U-Pb zircon, Stewart, 2008; Fig. 2). Theyare contemporaneous with mineralization at San Carlos, 40km to the north (Coder, 2001; Chiaradia et al., 2009), Thecentral dacite dike at San Carlos (Fig. 4), which is similar toearly porphyry at Mirador in that it is thoroughly mineralized,albeit with reduced copper grades relative to the granodioriteit intrudes, yielded an Ar-Ar hornblende age (153.5 Ma) be-tween the Re-Os age of mineralization (ca. 157 Ma) andquartz-sericite alteration (151.9 Ma). Mineralized, early por-phyry dikes at Panantza and Sutzu have not been dated, butRe-Os dating of mineralization hosted by the dikes indicatesthey must be older than 153.3 ± 0.5 and 154.9 ± 0.5 Ma, re-spectively (Fig 3).

Late, postmineral dacite dikes and related phreatic brec-cias at Mirador mark the end of volcanic activity there andare dated at 153.1 ± 1.3 Ma. Thus, the ages of the earliestand latest subvolcanic intrusions span 5.4 to 0.8 Ma. Moredikes would have to be dated before we can say whetherthere was continuous or episodic volcanism over this period.The late dikes can be considered coeval with late dacite por-phyry at San Carlos (ca. 153.5 Ma), and porphyry Cu-Momineralization at Panantza (ca. 153.3 Ma). They are youngerthan ca. 155.4 Ma andesite overlying mineralization at Frutadel Norte (based on two Ar-Ar hornblende dates; Stewart,2008).

These dates indicate that the equigranular Zamora graniteis 4.2 to 11 Ma older than the earliest dacite dikes and por-phyry mineralization. This is more than the 0.6 to 5.8 Marange in Ar-Ar ages between Zamora granodiorite and miner-alization at San Carlos but is close to the 3.4 to 10.6 Ma U-Pbage gap for the Chinapintza granodiorite and dacite porphyry.The ca. 8 Ma gap is consistent with the observation that theshallowly emplaced subvolcanic units are superimposed ondeeply emplaced plutonic rock, implying significant uplift be-tween igneous events. While the larger, genetic relationshipbetween batholith and younger, shallow intrusive activity isnot well understood, we note that younger subvolcanic intru-sions exploit long-lived structural zones occupied by older,larger batholiths that have barren margins. Subvolcanic com-plexes that mark the final magmatic stages of these batholithsare associated with porphyry Cu ± Au ± Mo, skarn Au ± Cu,and epithermal Au-Ag mineralization worldwide (Sillitoe,1997; Tosdal and Richards, 2001; Richards, 2003). Whetherthere is a real association of waning igneous activity and min-eralization, or just a preservation of the final systems as upliftof the batholith wanes, remains to be proven.

Re-Os datingRe-Os ages for three molybdenite samples from Mirador

and Mirador Norte overlap within their 2σ uncertainties(Table 5). The reported errors on the ages include the errorin the 187Re decay constant. A weighted average of the threemolybdenite ages shows that the mineralization occurred at156.0 ± 1.0 Ma (MSWD = 2.5). This mineralization age isconsistent with, and appropriately bracketed by, the U-Pbages for the mineralized early porphyry dike (156.2 ± 1.0 Ma),and the postmineralization dikes (153.1 ± 1.3 Ma).

The agreement of all three Re-Os ages indicates that bothCu-Au deposits developed contemporaneously, despite Mi-rador having a more complicated geologic history of postmin-eral volcanic activity. These new ages agree well with Re-Osmolybdenite ages for porphyry-style Cu mineralization at thenorth end of the Zamora Cu-Au belt, at San Carlos, Panantza,and Sutzu (Fig. 10), as reported by Coder (2001) and Chiara-dia et al. (2009). Mineralization at Mirador occurred betweenthe Panantza (153.3 ± 0.5 Ma) and San Carlos (157.8 ± 0.6Ma) events. The Re-Os ages of mineralization closely bracketthe age range of subvolcanic units in these three deposits.

Stewart (2008) reported Re-Os data provided by the AIRIEprogram. Three Late Jurassic Re-Os isochron ages from mar-casite from the main zone at Fruta del Norte were obtained:161 ± 3 Ma with duplicate of 156 ± 4 Ma for marcasite in theconglomerate matrix, and 159 ± 2 Ma for vein marcasite. Veinmarcasite has LLHR (low-level Re, highly radiogenic Os)qualities and therefore, the selection of the initial 187Os/188Oshas little effect on the calculated age (Stein et al., 2000).While the marcasite ages are less precise, they do suggest thatvein mineralization at Fruta del Norte is coincident with ear-liest intrusions there, at ca. 160 Ma.

Stewart (2008; AIRIE program) also reported a MiddleJurassic age (169 ± 1 Ma) from a “possibly singular occurrence”of molybdenite mineralization of uncertain affinity, located600 m south of the Fruta del Norte epithermal mineraliza-tion, and hosted by “Misahuallí” andesite. The sample is asso-ciated with low-grade copper mineralization and propylitic al-teration, but the Re content (0.33 ppm) is several orders ofmagnitude lower than Re concentrations typically associatedwith porphyry Cu mineralization (Stein et al., 2001; Zimmer-man et al., 2008). As this age of mineralization predates theages of the Zamora pluton presented in this study, we con-sider the Middle Jurassic age to reflect minor mineralizationassociated with a pendant of probable Piuntza unit volcanicrocks within the pluton beneath Fruta del Norte. Althoughthe age has no association with the main metallogenic event,it does reasonably extend the age of the batholith to 169 Ma.

Re-Os ages at Mirador and Mirador Norte indicate they arecontemporaneous and not sequential pulses of magmatism,within the precision of the dating method. We conclude theirrelationship is primarily structural. This porphyry pair is sim-ilar to the deposit pair San Carlos-Panantza to the north in theZamora Cu-Au belt, where 3- to 4-km separation occurs alonga northwest-southeast trend. The San Carlos-Panantza pair,however, has nearly 4 m.y. difference in its mineralization ages.

Regional implicationsThe Zamora batholith has been extensively dated by previ-

ous workers using mostly K-Ar and Rb-Sr methods, which

30 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 30

Page 21: Porfidos Cu Mirador SE Ecuador

gave a wide range of ages from 246 to 145 Ma (Hall and Calle,1982; Litherland et al., 1994) and encompassed the ages re-ported in this paper. We note that the bulk of the historic K-Ar and all the Rb-Sr ages reported from the Zamora batholithby Litherland et al. (1994) are older than U-Pb ages of plu-tonic rock at Mirador and Chinapintza presented in thisstudy, as well as the K-Ar and Ar-Ar ages of plutonic rock atSan Carlos, Kutucus, and Nambija (Chiaradia et al., 2009).The maximum Early Triassic age of 246 ± 17 Ma is an Rb-Srdate from a suite of pink K-feldspar hornblende granite andmicrodiorite from the Rio Pitúca area, at the south end of theNambija Au skarn (Fig. 2; Litherland et al., 1994). Other Rb-Sr dates from the area include 187 ± 2 Ma from hornblende-biotite granodiorite near La Paz (15 km NW of Yantzatza, Fig.2), and 198 ± 34 Ma from hornblende-biotite granodioritenear Paquisha, east of Nambija. Litherland et al. (1994) pro-vided a histogram plot of 29 K-Ar dates from the batholithshowing a bimodal distribution of ages, with peaks at 150 to160 and 170 to 180 Ma; they concluded “the bulk” of thebatholith was intruded between 190 to 170 Ma. All rocks de-scribed as “porphyritic” fall under the 150 to 160 Ma peakand suggest the bimodal distribution of ages supports the di-vision of the batholith into Middle Jurassic plutonic and LateJurassic, late-stage subvolcanic intrusions.

The Late Triassic K-Ar hornblende date of 230 ± 14 Ma re-ported by Litherland et al. (1994) from andesite south of LaPaz, near Yantzatza, and the K-feldspar porphyry hornblende-biotite granite at Rio Pitúca, with an Rb-Sr date of 246 ± 17Ma date, are likely remnants of poorly preserved, mid-Trias-sic volcanism unrelated to, and greatly predating, the Jurassicvolcanic arc which generated the bulk of the Zamorabatholith. These pre-Norian dates correlate with the Hercyn-ian orogeny and these rocks are perhaps better considered asnot part of early igneous history of the batholith, but rather aswall rocks or pendants within the batholith. With this in mind,the older (i.e., >170 Ma) series of K-Ar and Rb-Sr ages mostlikely reflect some inheritance from these older elements inthe batholith. Additional evidence of Triassic material incor-porated into the batholith comes from a single SHRIMP-RGmicroprobe analysis of a core of an oscillatory zoned zirconfrom mineralized dacite at Chinapintza (only 25 km east ofthe Rio Pitúca sample), which yielded a 241.3 ± 3.7 Ma age(McClelland, 2009). More mapping, dating, and geochemicalclassification of the older batholith components is necessary,therefore, before the batholith can be considered to have ini-tiated in the Early Jurassic. There is more evidence in thesedimentary record that the belt was a marine basin at thattime.

Plutonic rocks of latest Triassic-Early Jurassic ages areknown from the La Bonita batholith in southwestern Colom-bia, which did host a volcanic arc at the time (Sillitoe et al.,1984). This magmatism appears to have propagated south-ward during the Early Jurassic (Jaillard et al., 1990) from cen-tral Colombia through Ecuador into northern Peru, and bythe Late Jurassic there are widespread subvolcanic rocks andassociated porphyry Cu mineralization. This latter magma-tism appears to have been slightly younger in the south butdates show much overlap. Porphyry Cu mineralization at theDolores and Mocoa deposits in the La Bonita batholith inColombia is dated at 166 to 172 Ma (sericite and whole-rock

K-Ar dates, Sillitoe et al., 1982). To the south, the Abitaguabatholith contains no known porphyry mineralization, butLitherland et al. (1994) reported a 162 ± 1 Ma age derivedfrom a 16-point Rb-Sr isochron from three composite sam-ples of hornblende-biotite granodiorite and felsic vein mater-ial (mineralization?). Although these samples are not de-scribed in detail, they could be at least in part fromsubvolcanic rocks, as Baldock (1982) described subvolcanicand “altered” volcanic units within the batholith. The 162 Maof the Abitagua fits between that and the younger Re-Osdates of mineralization at Panantza-San Carlos (ca. 158−153Ma) and Mirador (ca. 156 Ma, this study).

Figure 11 places these new dates within a Mesozoic strati-graphic section for southeast Ecuador. Latest Triassic toLower Jurassic Santiago Formation volcanic and marine sed-imentary rocks are not well preserved in the belt, their upperand lower contacts being destroyed by the Middle Jurassicmagmatic arc, but they had reached sufficient thickness toallow for plutonism by ca. 164 Ma. The Zamora Cu-Au beltthen went through a cycle of uplift, erosion, and burial be-tween 164 Ma and Late Jurassic magmatism at ca. 156 to 160Ma, which helps bracket the age of the Chapiza Formation.Thereafter the area underwent another cycle of uplift anderosion, which lasted until about the Aptian, or ca. 125 Ma,when deposition of the Hollin Formation was initiated. TheCretaceous transgression continued until the Andeanorogeny. The greatest limitations in refining the history arethe lack of dates and geochemistry from the Triassic-EarlyJurassic sedimentary and volcanic rocks, respectively, and thelack of fossils to date the base of the Hollin Formation.

Figure 12 further illustrates four stages of development ofthe Zamora Cu-Au belt, beginning with intrusion of theZamora batholith into Santiago Formation and Piuntza unitmarine volcano-sedimentary rocks, possibly along a deep-seated high-angle fault (Gendall et al., 2000), ending by about164 Ma. Thereafter followed ca. 8 m.y. of uplift and erosion,bringing equigranular plutonic rock to the surface, ending inthe onlap of shallow Late Jurassic mixed continental-derivedarenite and arc-derived arkose and conglomerate of theChapiza Formation (Sarayaquillo Formation in Peru) thatmarked the onset of a regional Late Jurassic-Early Creta-ceous transgression flooding the entire western South Amer-ican margin (Jaillard et al., 1990). Then followed a protractedepisode of igneous activity from 156 to 153 Ma that resultedin subvolcanic porphyry stocks and dikes, porphyry Cu-Au-Mo mineralization, epithermal Au deposits, and local Au-Cuskarns where the dikes intruded Santiago Formation wallrocks (as at Kutucus).

The dacite dikes appear to record a change in tectonicstress regime, coincident with the regional Cu-Au mineraliza-tion event. Mineralized early dacite dikes uniformly havenorthwest strikes, parallel to the geochemical trends connect-ing the closely spaced porphyry Cu deposits (Panantza-SanCarlos and Mirador-Mirador Norte). The late or postmineral-ization dikes uniformly strike northeast. If the NW strike rep-resents dilation on structures related to N-S sinistral stressesalong N-S strike-slip faults, the NE strikes could represent areversal to dextral stress along N-NE-striking faults, consis-tent with changes in the Late Jurassic (Kimmeridgian-Tithon-ian) regional tectonics as interpreted by Jaillard et al. (1990).

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 31

0361-0128/98/000/000-00 $6.00 31

Page 22: Porfidos Cu Mirador SE Ecuador

The porphyry mineralization appears to be related to this re-versal of movement; similar timing of porphyry mineraliza-tion to stress reversal has been noted elsewhere in the Andesand tied to changes between transpressional and transten-sional regimes (Lindsay et al., 1995; Richards et al., 2001).

Following the 156 to 153 Ma activity, coeval volcanic rocksand related epithermal gold deposits above the subvolcanicporphyries are eroded away as continued uplift occurs priorto, and possibly as a result of, a late pulse of magmatism at145 Ma, recorded at Nambija in a parallel structure 20 kmwest of the Mirador-Fruta del Norte-San Carlos-Panantzatrend. This uplift and erosion helps to explain the lack of

epithermal deposits associated with the numerous porphyryCu deposits. The only known Late Jurassic epithermal golddeposit that survived the uplift is Fruta del Norte, which wasdeposited in a low-standing, north-south graben south ofFruta del Norte (Stewart and Leary, 2007) along with calc- alkaline volcanic rocks of the Misahuallí Member of theChapiza Formation. The Nambija Au skarns formed deeperthan epithermal gold deposits and were preserved (Vallanceet al., 2009).

The porphyry Cu, skarn Au, and Fruta del Norte epithermalAu deposit was buried and preserved by Early Cretaceousback-arc sedimentation during deposition of the Hollin and

32 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 32

Early

Albian

Aptian

Barremian

Hauterivian

Valanginian

Berriasian

Jura

ssic

Trias

sic

Tithonian

Late

Midd

leEa

rlyLa

te

KimmeridgianOxfordianCallovian

Bathonian

Bajocian

AalenianToarcian

Rhaetian

Pliensbachian

Norian

SinemurianHettangian

Carnian

112

125

130

136

140

145.5 Ma151156

161165

168

172176

204

235

183

190

197

228

201.6 Ma

Hollin

Fm.

Chap

iza F

m.Sa

ntiag

o Fm.

ZamoraBatholith

Nambija Gold Skarn

Mo mineralizationwithin batholith, FDN

unconformity

continental setting

145 Ma

156 Ma

rest in parton Zamora

Creta

ceou

s

99.6 Ma

~190 Ma earliest emplacement age

164 Maearly dikes

153 Malate dikes Mirador Porphyry Cu

marine shales,limestone

limestone

fining upwardconglomerate,quartzite,shale

marine setting

erosion

volcanics

132 Ma (K-Ar)

156 Ma

conglomerate

ZC

GB

uplif

t and

ero

sion

Con

tinen

tal

She

lfA

rcD

omin

ated youngest age

for Misahuallí

transgression, returnto marine setting

Napo Fm.

calc-alkaline (?), intermediatevolcanic rocks

Piuntzaunit

FDN Epithermal Gold160 Ma

169 Ma

Hiatus?unclear contact

relationship

Hiatus

base not defined

Misahuallí

redbeds

FIG. 11. Stratigraphic section for Mesozoic rocks of southeast Ecuador, placing the dates presented in this study in con-text; time scale ages from Walker and Geissman (2009). U-Pb ages of intrusions are orange diamonds; Re-Os ages for min-eralization are green (porphyry Cu) and yellow (gold skarn and epithermal) circles. Questionable older Rb-Sr and K-Ar datesfor the Zamora batholith give it a wide range of ages, from 246 to 164 Ma. The earliest plausible age is 190 Ma, based onSinemurian fossil evidence from the Santiago Formation, which the batholith intrudes. The regional U-Pb and Re-Os datesindicate the main plutonic phase was probably between 164 to 169 Ma. The late Early Jurassic to late Middle Jurassic ap-pears to mark a sedimentary hiatus between marine rocks of the Santiago Formationand the mixed continental and arc-de-rived strata of the Chapiza Formation, but Litherland et al. (1994) interpreted the two successions as conformable, and thisrelationship needs more study. Volcanism dominated the area until about 132 Ma, when the area was uplifted and erodedprior to the Cretaceous transgression. This start of this event is also poorly constrained in the area.

Page 23: Porfidos Cu Mirador SE Ecuador

then Napo Formations during the continuing transgressionaffecting the western South American margin (Jaillard et al.,1990). The exact timing of the onset of flooding of the ZamoraCu-Au belt by continental sedimentation of the Hollin Forma-tion is unclear due to a local lack of fossils and the fact that theonset of Early Cretaceous sedimentation is highly diachronousacross the region covering eastern Ecuador (Villagomez et al.,1996), and south into Peru. North of the belt, volcanic rocks ofthe Misahuallí Member of the Chapiza Formation have a K-Ar age as young as 132 Ma (Hall and Calle, 1982; Litherlandet al., 1994) and this may be the last magmatism before trans-gression there. In western Peru, transgressive sandstones areas old as Early Valanginian (137 Ma; Villagomez et al., 1996).In southeastern Ecuador, closest to the Zamora Cu-Au belt,fossils indicate that the base of the Hollin is Late Aptian age(112 Ma; Villagomez et al., 1996). The flat strata of the HollinFormation that overlie the porphyry deposits from Panantza toMirador indicate that the level of Early Cretaceous erosionwas relatively consistent across at least 60 km of the batholith,and there has been only very slight (<5°) tilting of the systems.Hollin basal conglomerate, with volcanic and Zamora granite

clasts, is preserved only locally, possibly within fault valleys co-incident with pre-Cretaceous grabens, as at Fruta del Norte.

Late Cretaceous to Tertiary (Andean orogeny) magmatismoccurred mostly along the buried western margin of theZamora batholith, but also as small bodies within thebatholith. Both mafic diorite plugs and felsic sills and dikesintruded the Hollin and overlying Napo Formations. At Chi-napintza, the rhyodacite dikes and plugs are U-Pb dated at ca.30 Ma (Gaschnig, 2009); at Fruta del Norte a mafic dike wasAr-Ar dated at ca. 63 to 71 Ma (Stewart, 2008). Recent upliftand sub-Andean block faulting, with only very local tilting(but up to near-vertical rotation of beds), inverted the topog-raphy so that the Cretaceous basins are now plateaus, and thedeposits are exposed on valley sides below the cappingquartzite formations (Fig. 12d).

ConclusionsRe-Os dating of porphyry Cu-Au mineralization and U-Pb

dating of calc-alkaline, subvolcanic porphyry units at Miradorand Mirador Norte confirms that these deposits are con-temporaneous with similar Late Jurassic porphyry Cu-Mo

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 33

0361-0128/98/000/000-00 $6.00 33

ZamoraBatholith

subvolcanicdikes & stocks

West East

regionalporphyry

Cu-Au-Mo

156 Ma

153-158 Ma

~160 Ma

153 Ma

Mis ahualliVolc anic arc

redbeds

ZamoraBatholith

calc-silicatealtered

marine rocks

169 Ma

164 Ma

calc-silicatealtered

volcanic rocks

Piuntza

ca. 153 Ma

earlyskarns ?

SantiagoFm.

calc-silicatealtered

volcanic rocks

Piuntza

ca. 164 MaWest East

Chapiza redbeds

FDN epithermalAu

Napo Fm.

West Eastca. 100 Ma

ZamoraBatholith

porphyryCu-Au

localgrabens

conformableHollin Fm.

KutucusCu-Auskarn

~155 Ma

KutucusCu-Auskarn

KutucusCu-Auskarn

NambijaAu

skarn

Napo Fm.

porphyryCu-Au

Hollin Fm.155 MaNambija

Auskarn

Hollin Fm.West EastPresent

Miradorcontinental shelf

distal provenance

FDN

FDN

145 Ma

A B

C D

30 MaChinapintza

subvolcanicdikes & stocks

localgrabens

subvolcanicdikes & stocks

FIG. 12. Schematic historic depiction of events from Early Jurassic to Present; symbols for age dating methods as in Fig-ure 1. A. Intrusion of the Zamora batholith into Santiago Formation marine sedimentary rocks and Piuntza unit volcanicrocks finishes ca. 164 Ma; this initializes isostatic uplift. B. Pulse of continental arc magmatism beginning ca. 156 Ma, em-placing the early subvolcanic intrusions and generating the porphyry copper deposits of the Zamora Cu-Au belt from 153 to158 Ma, as well as epithermal gold at Fruta del Norte (FDN), and skarn at the margins at Kutucus. Following continued up-lift, a last pulse at 145 Ma results in Au skarn at Nambija. C. Continued uplift and erosion until about the Aptian, at whichpoint the region is eroded down, or tectonically subsided, to sea level; associated extension creates local grabens that fill withconglomerate and preserve minor amounts of the Jurassic volcanic pile; the porphyry deposits at their present level of ero-sion are all exposed at this time and then covered by Early Cretaceous sediments derived from the Guyanan shield to theeast. D. Main Andean orogeny uplifts large blocks of the sub-Andean region with little tilting, except within minor sub-blocks. There is felsic volcanism at 30 Ma along structures. The porphyry deposits are once again exposed to surface, thoughthe Fruta del Norte gold deposit remains mostly buried beneath basal Hollin units.

Page 24: Porfidos Cu Mirador SE Ecuador

deposits and epithermal Au deposits in the Zamora Cu-Aubelt, as well as other porphyry Cu districts extending thelength of the Northern Andes from southern Ecuador intocentral Colombia. Intrusion of the earliest (mineralized) por-phyries at ca. 156 Ma into Zamora granodiorite host rock ofca. 164 Ma age indicates a ca. 8 m.y. period of uplift and ero-sion prior to the shallow magmatism. Sillitoe et al. (1982) re-ported a similar age gap between the Late Jurassic-Early Cre-taceous porphyry Cu deposits and hosting plutonic rocks inColombia. This activity was contemporaneous with onset ofporphyry copper mineralization within the resolution of thedating methods and was focused along NW-trending struc-tures. Igneous activity continued for another ca. 4 m.y. post-mineralization along dominantly northeast structures. Re-Osages at Mirador and Mirador Norte indicate contemporane-ous mineralization, within the precision of the dating method,at ca. 156 Ma. At San Carlos-Panantza, located 40 km to thenorth, the mineralization was in sequential pulses ca. 4 m.y.apart between 157 and 153 Ma, respectively.

On a regional scale, over much of the length of theZamora batholith, overlapping ages for various subvolcanicintrusions from Panantza southward to Chinapintza indicatea period of probable protracted shallow magmatism from156 to 153 Ma. After a brief hiatus, a last localized magmatic-mineralization event took place at Nambija at ca. 145 Ma,prior to uplift, erosion, and burial beneath Early Cretaceousplatform sediments. The range of U-Pb ages closely agreeswith the Re-Os ages for mineralization, indicating that horn-blende-feldspar subvolcanic dikes are clearly associated withan important regional metalliferous volcanic event thatspanned >100 km along the Cordillera del Condor. Mag-matic centers are spaced roughly 15 to 20 km apart. Based onevidence from San Carlos, Mirador, and Chinapintza,equigranular plutonic rock of the Zamora batholith is signif-icantly older (ca. 8 m.y.) than porphyritic, subvolcanic rocksassociated with copper mineralization at both Mirador andSan Carlos. This age gap is consistent with the juxtapositionof equigranular and subvolcanic igneous textures, which in-dicate that considerable uplift and erosion of the batholithtook place prior to the intrusion of the subvolcanic units. Un-like other porphyry Cu belts worldwide, where mineraliza-tion appears tied to final magmatic activity ending a long-lived, subduction-related igneous complex, in the ZamoraCu-Au belt the peak of metalliferous magmatic activity at ca.156 Ma occurred some 10 m.y. prior to the final episode ofmagmatism at ca. 145 Ma.

Some possible causes for the end of subduction and vol-canic activity at the close of the Jurassic along this segment ofthe Northern Andes include allochthonous terrane accretion(Litherland et al., 1994) and changing subduction configura-tions resulting from changes in plate motion (Jaillard et al.,1990; Chiaradia et al., 2009). In the Zamora Cu-Au belt, in-trusive and metalliferous activity along NW-trending struc-tures was followed by unmineralized intrusions localizedalong NE-trending structures at ca. 153 Ma. This implies achange in plate motion and within-arc stress fields from sinis-tral to dextral. Conversely, there is no evidence for Late Juras-sic collisional terrane accretion, since the Mesozoic units aremostly unstrained. Pratt et al. (2005) gave additional evidencesupporting an autochonous geologic model for the Jurassic

and/or Cretaceous portion of the Cordillera Real and the sub-Andean zone that encompasses the Zamora Cu-Au belt.

Much work remains to refine the early history of theZamora batholith by separating out the pre-Jurassic volcanicunits from the plutonic rocks. This would help clarify local ge-otectonic conditions at the Triassic-Jurassic boundary.Through more detailed mapping and U-Pb dating, these unitsalso need to be distinguished from Misahuallí Member vol-canic and subvolcanic units, which are the most economicallypromising rocks in the belt.

AcknowledgmentsWe thank the many Mirador field personnel of EcuaCorri-

ente S.A., especially project geologists Juan Leon, EduardoVaca, and Luis Quevedo. We thank Ken Shannon of Corri-ente Resources Inc. for approving funding for this study andfor many helpful discussions. We also thank Massimo Chiara-dia for a thorough review and many helpful comments.

REFERENCESAspden, J.A., and Litherland, M., 1992, The geology and Mesozoic collisional

history of the Cordillera Real, Ecuador: Tectonophysics, v. 205, p. 187−204.Aspden, J.A., Rundle, C.C., Viteri, F., Bermúdez, R., and Harrison, S.S.,

1990, Edades Radiométricas del Batolito de Zamora-Rio Mayo: BoletínGeológico Ecuatoriano, v. 1, no. 1, 1090, p. 85−88.

Baldock, J.W., 1982, Geology of Ecuador: Explanatory Bulletin of the Na-tional Geological Map of the Republic of Ecuador, 1:1,000,000 Scale,Quito, Dirección de Geologia y Minas, 70 p.

Chiaradia, M., Vallance, J., Fontboté, L., Stein, H., Schaltegger, U., Coder, J.,Richards, J., Villeneuve, M., and Gendall, I., 2009, U-Pb, Re-Os, and40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cudeposits, Ecuador: Implications for the Jurassic metallogenic belt of theNorthern Andes: Mineralium Deposita v. 44, p. 371−387.

Coder, J.M., 2001, Geologic setting, geochronologic relationships, and litho-geochemistry of the Pangui porphyry copper district, southeast Ecuador:Unpublished M.Sc. thesis, Edmonton, Canada, University of Alberta, 114 p.

Drobe, J., Hoffert, J., Fong, R., Haile, J., and Collins, J., 2008, Mirador cop-per-gold project, 30,000 TPD feasibility study: National Instrument 43-101Technical Report, filed on SEDAR, April 2008, 143 p.

Eason, M.E.,. and Oviedo, L., 2004, Condor project, south eastern Ecuador,National Instrument 43-101 Technical Report, prepared for GoldmarcaLimited, August 2004.

Eguez, A., Alvarado, A.,Sanchez, A., and Vaca, E., 1997, Geocronologia enlos Andes Ecuatorianos: Principales Eventos de Metamorfismo, Magma-tismo y Volcanismo: Boletin Geologica Ecuatoriana, v. 4, no. 1, p. 55−83.

Hall, M.L., and Calle, J., 1982, Geochronological control for the main tectonic-magmatic events of Ecuador: Earth Science Reviews, v. 18, p. 215−239.

Gaibor, J., Hochulia, P.A.., Winklera, W., and Toro, J., 2008, Hydrocarbonsource potential of the Santiago Formation, Oriente Basin, SE of Ecuador:Journal of South American Earth Sciences, v. 25, p. 145−156.

Gaschnig, R., 2009, Report on U-Pb zircon geochronology methods and re-sults for Ecuador tuff: Vancouver, British Columbia, Dorato ResourcesInc., Internal Report, August 2009, 8 p.

Gemuts, I., Lopez, G., and Jimenez, F., 1992, Gold deposits of southernEcuador: Society of Economic Geologists Newsletter 11, p. 13–16.

Gendall, I.R., Quevedo, L.A., Sillitoe, R.H., Spencer, R.M., Puente, C.O.,León, J.P., and Povedo, R., 2000, Discovery of a Jurassic porphyry copperbelt, Pangui area, southern Ecuador: Society of Economic GeologistsNewsletter 43, p. 8−15.

Henderson, R.D., 2009, Fruta del Norte Project, Ecuador: National Instru-ment 43-101 Technical Report, prepared for Kinross Gold Corporation,December 2009.

Hennessey, T., Puritch, E., Gowans, R., and Leary, S., 2007, A mineral re-source estimate for the Fruta Del Norte deposit, Cordillera Del CondorProject, Zamora-Chinchipe Province, Ecuador: National Instrument 43-101 Technical Report, filed on SEDAR, November 15, 2007.

Holly, W.J., 2006, Independent preliminary assessment Jerusalem Project,Zamora Chinchipe, Ecuador: Form 43-101 F1 Technical Report, preparedFor Dynasty Metals and Mining Inc., February 2006.

34 DROBE ET AL.

0361-0128/98/000/000-00 $6.00 34

Page 25: Porfidos Cu Mirador SE Ecuador

Jaillard, E., Soler, P., Carlier, G., and Mourier, T., 1990, Geodynamic evolu-tion of the northern and central Andes during early to middle Mesozoictimes: A Tethyan model: Journal of the Geological Society, London, v. 141,p. 1009−1022.

Lindsay, D., Zentilli, M., De La Rivera, J.R., 1995, Evolution of an activeductile to brittle shear system controlling mineralization at the Chuquica-mata porphyry copper deposit, northern Chile: International Geology Re-view, v. 37, p. 945−958.

Litherland, M., Aspden, J.A., and Jemielita, R.A., 1994, The metamorphicbelts of Ecuador: Overseas Memoir of the British Geological Survey, no.11, 147 p.

Ludwig, K.R., 1997, Isoplot program and documentation, version 2.95: Re-vised edition of U.S. Geological Survey Open-File Report 91-445.

Markey, R.J., Hannah, J.L., Morgan, J.W., and Stein, H.J., 2003, A doublespike for osmium analysis of highly radiogenic samples: Chemical Geology,v. 200, p. 395−406.

Markowski, A., Vallance, J., Chiaradia, M., and Fontboté, L., 2006, Mineralzoning and gold occurrence in the Fortuna skarn mine, Nambija district,Ecuador: Mineralium Deposita, v. 41, p. 301−321.

McClelland, W., 2010, Report on U/Pb zircon geochronology: Vancouver,British Columbia, Dorato Resources Inc., Unpublished Report, December,2010, 6 p.

Paladines, A., and Rosero, G., 1996, Zonificación Mineralogénica del Ecua-dor , Quito, Ecuador, Laser Editores, 146 p.

Pratt, W.T., Duque, P., and Ponce, M., 2005, An autochthonous geologicalmodel for the eastern Andes of Ecuador: Tectonophysics, v. 399, p.251−278.

Prodeminca., 2000, Depósitos Porfídicos y Epi-mesotermales Relacionadoscon Intrusiones de la Cordillera del Condor: Evaluación de distritos mine-ros del Ecuador, v. 5, UCP Prodeminca Proyecto MEM BIRF 36-55 EC,223 p.

Richards, J.P., 2003, Tectono-magmatic precursors for porphyry Cu-(Mo-Au)deposit formation: ECONOMIC GEOLOGY, v. 98, p. 1515–1533.

Richards, J.P., Boyce, A.J., and Pringle, M.S., 2001, Geologic evolution of theEscondida area, northern Chile: A model for spatial and temporal localiza-tion of porphyry Cu mineralization: ECONOMIC GEOLOGY, v. 96, p.271−305.

Romeuf, N., Aguirre, L., Soler, P., Feraud, G., Jaillard, E., and Ruffet, G.,1995, Middle Jurassic volcanism in the Northern and Central Andes: Re-vista Geológica de Chile, v. 22, no. 2, p. 245−259.

Ronning, P.A., and Ristorcelli, S., 2006, Technical Report, Warintza Project,Ecuador: National Instrument 43-101 Technical Report, filed for LowellMineral Exploration LLC, June 6, 2006.

Rosas, S., Fontboté, L., and Morche, W., 1996, Within-plate volcanism inUpper Triassic to Lower Jurassic Pucará Group Carbonate (Central Peru):International Symposium on Andean Geodynamics, 3rd, St. Malo, France,1996, Proceedings, p. 641−644.

Selby, D., and Creaser, R.A., 2004, Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial re-striction for reliable Re-Os age determinations, and implications for the de-coupling of Re and Os within molybdenite: Geochimica et CosmochimicaActa, v. 68, p. 3897−3908.

Sillitoe, R.H., 1988, Epochs of intrusion-related copper mineralization in theAndes: Journal of South American Earth Sciences, v. 1, p. 89–108.

——1990, Copper deposits and Andean evolution: Circum-Pacific Councilfor Energy and Mineral Resources, Earth Science Series, v. 11, p. 285−311.

——1997, Characteristics and controls of the largest porphyry copper-goldand epithermal gold deposits in the circum-Pacific region: Australian Jour-nal of Earth Sciences, v. 44, p. 373–388.

——2009, Comments on the Taricori gold prospect, Cordillera Del CondorProject, northwestern Peru: Vancouver, British Columbia, Dorato Re-sources Inc., Report, May 2009, 10 p.

Sillitoe, R.H., Jaramillo, L., Damon, P.E., Shafiqullah, M., and Escovar, R.,1982, Setting, characteristics, and age of the Andean porphyry copper beltin Colombia: ECONOMIC GEOLOGY, v. 77, p. 1837−1850.

Sillitoe, R.H., Jaramilli, L., and Castro, H., 1984, Geologic exploration of amolybdenum-rich porphyry copper deposit at Mocoa, Colombia: ECO-NOMIC GEOLOGY, v. 79, p. 106−123.

Sivertz, G., Ristorcelli, S., Hardy, S., and Hoffert, J., 2006a, Update on cop-per, gold and silver resources and pit optimizations, Mirador project,Ecuador: Corriente Resources, Internal Report, May 18, 2006.

Sivertz, G., Ristorcelli, S., and Hardy, S., 2006b, Technical report update onthe copper, gold, and silver resources and pit optimizations: Mirador andMirador Norte deposits, Mirador Project, Ecuador: National Instrument43-101Technical Report, November 30, 2006 (available from CRCC-Tong-guan Investment Co. Ltd.).

Stein, H.J., 2006, Low-rhenium molybdenite by metamorphism in northernSweden: Recognition, genesis, and global implications: Lithos, v. 87, p.300−327.

Stein, H.J., Markey, R.J., Morgan, J.W., Du, A., and Sun, Y., 1997, Highlyprecise and accurate Re-Os ages for molybdenite from the East Qinlingmolybdenum belt, Shaanxi Province, China: ECONOMIC GEOLOGY, v. 92, p.827−835.

Stein, H.J., Morgan, J.W., and Scherstén, A., 2000, Re-Os dating of low-levelhighly radiogenic (LLHR) sulfides: the Harnäs gold deposit, southwestSweden, records continental scale tectonic events: ECONOMIC GEOLOGY, v.95, p. 1657−1671.

Stein, H.J., Markey, R.J., Morgan, J.W., Hannah, J.L., and Scherstén, A.,2001, The remarkable Re-Os chronometer in molybdenite: How and whyit works: Terra Nova, v. 13, p. 479−486.

Stein, H., Scherstén, A., Hannah, J., and Markey, R., 2003, Sub-grain scaledecoupling of Re and 187Os and assessment of laser ablation ICP-MS spotdating in molybdenite: Geochimica et Cosmochimica Acta, v. 67, p.3673−3686.

Stewart, P.W., 2008, Report on U-Pb, Ar-Ar and Re-Os geochronology at theFruta del Norte epithermal deposit, Cordillera del Condor project,Ecuador: Aurelian Resources Inc., Internal Report, 16 p. (available fromKinross Gold Corp.).

Stewart, P., and Leary, S., 2007, The Fruta del Note epithermal Au-Ag de-posit, SE Ecuador, in Andrew C.J. et al., eds., Digging deeper: Proceedingsof the 9th Biennial SGA Meeting, Dublin, 20–23, August 2007, p. 719–722

Tosdal, R.M., and Richards, J.P., 2001, Magmatic and structural controls onthe development of porphyry Cu ± Mo ± Au deposits: Reviews in Eco-nomic Geology, v. 14, p. 157–181.

Tschopp, H.J., 1953, Oil exploration in the Oriente of Ecuador: Bulletin ofthe American Association of Petroleum Geologists, v. 37, p. 2303−2347.

Vallance, J., Fontboté, L., Chiaradia, M., Markowski A., Schidt, S., and Ven-nemann, T., 2009, Magmatic-dominated fluid evolution in the JurassicNambija gold skarn deposits (southeastern Ecuador): Mineralium De-posita, v. 44, p. 389−413.

Van Achterbergh, E., Ryan, C., Jackson, S., and Griffin, W., 2001, Data re-duction software for LA-ICP-MS: Mineralogical Association of CanadaShort Course Series 29, p. 239−243.

Villagomez, R., Jaillard, E., Bulot, R., Rivadeneira, M., and Vera, R., 1996,The Aptian-Late Albian marine transgression in the Oriente Basin ofEcuador: International Symposium on Andean Geodynamics, 3rd, St. Malo,France, 1996, Proceedings, p. 521–524.

Walker, J.D., and Geissman, J.W., comps., 2009, Geologic time scale: Geo-logic Society of America.

Zamora, A., and Litherland, M., 1993, Mapa tectono-metalogenico de la Re-publico del Ecuador, 1:1,000,000: Quito, Government of Ecuador.

Zimmerman, A., Stein, H.J., Hannah, J.L., Kozelj, D., Bogdanov, K., andBerza, T., 2008, Tectonic configuration of the Apusini-Banat-Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high preci-sion Re-Os molybdenite ages: Mineralium Deposita, v. 43, p. 1−21.

MIRADOR Cu-Au PORPHYRY DISTRICT, SE ECUADOR 35

0361-0128/98/000/000-00 $6.00 35