Population Dynamics - McGill University School of …hv/classes/MS/lecture.systdyn.pdfPopulation...

33
Population Dynamics Deductive modelling: based on physical laws Inductive modelling: based on observation + intuition Single species: Birth (in migration) Rate, Death (out migration) Rate dP dt BR DR Rates proportional to population BR k BR P; DR k DR P dP dt k BR k DR P McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 1/33

Transcript of Population Dynamics - McGill University School of …hv/classes/MS/lecture.systdyn.pdfPopulation...

Population Dynamics� Deductive modelling: based on physical laws

� Inductive modelling: based on observation + intuition

� Single species:

Birth (in migration) Rate, Death (out migration) Rate

dPdt

� BR � DR

� Rates proportional to population

BR � kBR � P;DR � kDR � P

dPdt

� � kBR � kDR � P

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 1/33

kBR � 1� 4 � kDR � 1� 2 : Exponential Growth

population

trajectory

0 10 20 30 40 50

1000000

2000000

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 2/33

kBR � 1� 4 � kDR � 1� 2 : log(Exponential Growth)

population

trajectory

0 10 20 30 40 50

1E2

1E3

1E4

1E5

1E6

1E7

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 3/33

kBR � 1� 2 � kDR � 1� 4 : Exponential Decay

population

trajectory

0 10 20 30 40 50

20

40

60

80

100

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 4/33

Logistic Model� Are kBR and kDR really constant ?

� Energy consumption in a closed system limits growth

Epc � Etot

PP Epc � kBR � and kDR until equilibrium

� “crowding” effect:

ecosystem can support maximum population Pmax

dPdt

� k � � 1 � PPmax

� � P

� crowding is a quadratic effect

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 5/33

kBR � 1� 2 � kDR � 1� 4 � crowding � 0� 001

population

trajectory

time0 20 40 60

po

pu

lati

on

0

100

200

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 6/33

Disadvantages� NO physical evidence for model structure !

� But, many phenomena can be well fitted by logistic model.

� Pmax can only be estimated once steady-state has been reached. Not

suitable for control, optimisation, . . .

� Many-species system: Pmax, steady-state ?

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 7/33

Multi-species: Predator-Prey� Individual species behaviour + interactions

� Proportional to species, no interaction when one is extinct:

product interaction Ppred � Pprey

dPpred

dt� � a � Ppred� k � b � Ppred � Pprey

dPprey

dt

� c � Pprey � b � Ppred � Pprey

� Excess death rate a 0, excess birth rate c 0,

grazing factor b 0, efficiency factor 0 � k � 1

� Lotka-Volterra equations (1956): periodic steady-state

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 8/33

Predator Prey (population)

predator

prey

trajectories

0 10 20 30

200

400

600

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 9/33

Predator Prey (phase)

predprey

phaseplot

200 400 600

100

200

300

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 10/33

Competition and Cooperation� Several species competing for the same food source

dP1

dt

� a � P1 � b � P1 � P2

dP2

dt

� c � P2 � d � P1 � P2

� Cooperation of different species (symbiosis)

dP1

dt

� � a � P1� b � P1 � P2

dP2

dt

� � c � P2� d � P1 � P2

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 11/33

Grouping and general n-species Interaction� Grouping (opposite of crowding)

dPdt

� � a � P� b � P2

� n-species interaction

dPi

dt

� � ai�n

∑j� 1

bi j � Pj � � Pi ��� i � � 1 ��� � � � n �

� Only binary interactions,

no P1 � P2 � P3 interactions

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 12/33

Forrester System Dynamics� based on observation + physical insight

� semi-physical, semi-inductive methodology

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 13/33

Methodology

1. levels/stocks and rates/flows

Level Inflow Outflow

population birth rate death rate

inventory shipments sales

money income expenses

2. laundry list: levels, rates, and causal relationships

birth rate birth population

3. Influence Diagram (+ and -)

4. Structure DiagramdPdt

� BR � DR

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 14/33

Causal Relationships

latent variable

beerconsumption

graduatesstandard

ofliving(SOL)

time

graduates

SOL

beerconsumption

SOL

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 15/33

Archetypes� Bellinger http://www.outsights.com/systems/

� influence diagrams

� Common combinations of reinforcing and balancing structures

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 16/33

Archetypes: Reinforcing Loop

state1 state2

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 17/33

Archetypes: Balancing Loop

adjustment state

desired state

action

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 18/33

Forrester System Dynamics

Predator Prey

Grazing_efficiency

uptake_predatorloss_prey

predator_surplus_DR

prey_surplus_BR

2−species predator−prey system

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 19/33

Inductive Modelling: World Dynamics� BR: BirthRate

� P: Population

� POL: Pollution

� MSL: Mean Standard of Living

� . . .

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 20/33

Inductive Modelling: Structure Characterization

BR � f � P� POL � MSL ��� � � �

BR � BRN � f� 1 � � P� POL � MSL � � � � �

BR � BRN � P � f� 2 � � POL � MSL � � � � �

BR � BRN � P � f� 3 � � POL � � f� 4 � � MSL � � � �

� f� 3 � � POL � inversely proportional

� f� 4 � � MSL � proportional

� compartmentalize to find correllations

� . . . Structure Characterization !

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 21/33

Structure Characterisation: LSQ fit

X(t) = - gt /2 + v_0 t2

X(t) = A sin (b t )

t

X

LSQ (sin) < LSQ (t ) 2

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 22/33

Feature Extraction

1. Measurement data and model candidates

2. Structure selection and validation

3. Parameter estimation

4. Model use

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 23/33

Feature Rationale

Minimum Sensitivity to Noise

Maximum Discriminating Power

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 24/33

Throwing Stones

Candidate Models

1. x � � 12 gt2� v0t

2. x � Asin � bt �

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 25/33

Feature 1 (quadratic model)

gi � 2xi

t2i

� 2xi

ti

� i � A � B

F1 � gA � gB

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 26/33

Feature 2 (sin model)

1b

tg � bt � � xi

xi

solve numerically for b

F2 � 200 � bA � bB �

bA� bB

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 27/33

Feature Space Classification

Feature t2

feature sin

F1 = gA/gBgi = 2xi/ti^2 - 2xi_der/ti

F2 = 200 |bA -bB|/(bA + bB)1/b(tg(bt)) = xi/xi_der

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 28/33

Forrester’s World Dynamics model� “Club of Rome” World Dynamics model

� Few “levels”, note the depletion of natural resources

� implemented in Vensim PLE (www.vensim.com)

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 29/33

Population

birth rate normalbirth rate normal 1

population initial

births crowdingmultiplier

births food multiplier

births deathsbirths material multiplier

births pollution multiplier

switch time 1<Time>

death rate normaldeath rate normal 1

deathscrowdingmultiplier

deaths food multiplier

deaths material multiplier

deaths pollution multiplier

switch time 3

crowding

land areapopulation

density normal

Population & Food

birthscrowdingmult tab

deathscrowdingmult tab

food ratio

food coefficientfood coefficient 1

food crowding multiplier

food percapita normal

food per capita potential

food pollutionmultiplier

switch time 7<Time>

foodpollutionmult tab

<pollution ratio>

<capital ratio agriculture>

food per capitapotential tab

<foodcrowdingmult tab>

<Time>

capital agriculture fraction indicated

births foodmult tab

deaths foodmult tab

capital agriculturefraction indicated tab

<material standard ofliving>

deathsmaterialmult tab

birthspollutionmult tab

births materialmult tab

<materialstandard of

living>

deaths pollutionmult tab

<pollution ratio>

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 30/33

Capital

capital initial

capital ratio

capital depreciation

capitalinvestment

rate normal 1

capital depreciationnormal

capital depreciationnormal 1

switch time 5

capital ratioagriculture

capitalagriculture

fraction normal

capitalinvestmentmultiplier

effective capital ratio

capitalinvestment

mult tab

capital investment

capitalinvestmentrate normal

<Population>

switch time 4<Time>

Capital & Quality of Life

CapitalAgriculture

Fraction

capital agriculturefraction adjustment

time

<capitalagriculture fraction

indicated>

capitalagriculture

fraction initial

capital investmentfrom quality ratio

<natural resource extraction multiplier>

quality material multiplier

qualitymaterialmult tab

material standard of living

effectivecapital ratio

normal

capitalinvestment

quality ratio tab

<quality foodmultiplier>

<natural resourceextraction

multiplier> quality of life

qualitycrowdingmultiplier quality food

multiplier

quality of lifenormal

quality pollutionmultiplier

<crowding>quality

crowdingmult tab

<food ratio>qualityfood

mult tab

<pollution ratio>quality

pollutionmult tab

<Time>

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 31/33

NaturalResources

pollutionabsorption

time tab

naturalresources

initial

pollution ratio

pollution standard

nat res matl multiplier natural resourceutilization normal

natural resourceutilization normal 1

<capital ratio>

switch time 2

pollutioncapital

mult tab

natural resourceutilization

Pollution & Natural Resources

Pollution

pollutioninitial

pollution capitalmultiplier

pollution percapita normal

pollution percapita normal 1

<Population>

switch time 6<Time>

pollutionabsorption time

pollutionabsorption

pollutiongeneration

<material standard of living> natural resource material mult tab

natural resourceextractionmultiplier

natural resourceextraction mult tab

natural resourcefraction remaining <Time>

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 32/33

World Model Results6 B Person

10 B Capital units40 B Pollution units

1e+012 Resource units2 Satisfaction units

0 Person0 Capital units0 Pollution units0 Resource units

0.4 Satisfaction units1900 1929 1957 1986 2014 2043 2071 2100

Time (Year)

Population : run1 PersonCapital : run1 Capital unitsPollution : run1 Pollution unitsNatural Resources : run1 Resource unitsquality of life : run1 Satisfaction units

McGill, December, 2001 [email protected] CS 308-522A Modelling and Simulation 33/33