Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B...

28
Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E = N = B – D + I – E I E D B

Transcript of Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B...

Page 1: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Population Dynamics

Fundamental Equation:

N(t+1) = N(t) + B – D + I – E

N(t+1) - N(t) = B – D + I – E

= N = B – D + I – E

I

ED

B

Page 2: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Estimating Patterns of Survival

• Three main methods of estimation:– Cohort life table

• .

Page 3: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Estimating Patterns of Survival

• Three main methods of estimation:– Static life table

• .

Page 4: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Estimating Patterns of Survival• Three main methods of estimation:

– Age distribution• Calculate difference in proportion of individuals in

each age class.• .

Page 5: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Cohort vs Static Life Tables

Page 6: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

High Survival Among the Young• Murie collected Dall

Sheep skulls, Ovis dalli– Major Assumption:

Proportion of skulls in each age class represented typical proportion of individuals dying at that age

• Reasonable given sample size of 608

Page 7: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

High Survival Among the Young

– Constructed survivorship curve

• Discovered

bi-modal mortality– <1 yr

– 9-13 yrs

Page 8: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Survivorship Curves• Type I:

– Dall Sheep

• Type II:

– American Robins

• Type III:

• .– Sea Turtles

Page 9: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Survivorship Curves Plot

Log10lx vs. X

Page 10: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Dall sheep (Ovis dalli)

Life Table

Page 11: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Static life table for Dall Sheep

x nx dx lx S1000

0 752 129 1.000 1000

1 623 114 0.828 828

2 509 113 0.677 677

3 396 81 0.527 527

4 315 78 0.419 419

5 237 59 0.315 315

6 178 65 0.237 237

7 113 55 0.150 150

8 58 25 0.077 77

9 33 9 0.044 44

10 24 8 0.032 32

11 16 7 0.021 21

12 9 2 0.012 12

13 7 1 0.009 9

14 6 4 0.008 8

15 2 2 0.003 3

total 752

x = age class

nx = number alive

dx = number dead

lx = proportion

surviving

S1000 = # per 1000

alive

Ovis dalli dalli

Page 12: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Static life table for Dall Sheep

x nx dx lx S1000

0 752 129 1.000 1000

1 623 114 0.828 828

2 509 113 0.677 677

3 396 81 0.527 527

4 315 78 0.419 419

5 237 59 0.315 315

6 178 65 0.237 237

7 113 55 0.150 150

8 58 25 0.077 77

9 33 9 0.044 44

10 24 8 0.032 32

11 16 7 0.021 21

12 9 2 0.012 12

13 7 1 0.009 9

14 6 4 0.008 8

15 2 2 0.003 3

total 752

Age class x = 0 = newborns = 100% survive

Age class x = 1 only 623 in this

age class = 752-129

prop surviving (l1) = 623/752 = 0.828

Age class x = 2 only 509 survive

= 623-114 prop surviving (l2) =

509/752 = 0.677

Page 13: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Age Distribution

• Age distribution of a population reflects its history of survival, reproduction, and growth potential

• Miller published data on age distribution of white oak (Quercus alba)– Determined relationship between age and trunk

diameter– Age distribution biased towards young trees.

• Sufficient reproduction for replacement– Stable population

Page 14: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Age Distribution

Page 15: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Age Distribution

• Rio Grande Cottonwood populations (Populus deltoides wislizenii) are declining– Old trees not being replaced– Reproduction depends on seasonal floods

• Prepare seed bed

• Keep nursery areas moist

– Because floods are absent, there are now fewer germination areas

Page 16: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.
Page 17: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Dynamic Population in a Variable Climate

• Grant and Grant studied Galapagos Finches.– Drought in 1977 resulted in no recruitment

• Gap in age distribution

• Additional droughts in 1984 and 1985

• Reproductive output driven by exceptional year in 1983– Responsiveness of population age structure to environmental

variation

Page 18: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.
Page 19: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Age Structure

Page 20: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Creation of Stable Age Distribution

3

2

1

Age

1st Gen. 2nd Gen. 3rd Gen.

Not Stable Not Stable Stable

1

65

34

20%

30%

50%

10

35

55

10

35

55

Page 21: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Rates of Population Change

• Birth Rate:

• Fecundity Schedule:

Page 22: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Frequency of Reproduction in Populations

Time

Nu

mb

er

of o

ffspr

ing

Discrete,

non-overlapping

Discrete,

overlapping

Continuous

generation

Page 23: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Estimating Rates for an Annual Plant

• P. drummondii– Ro = Net reproductive rate; Average number of seeds

produced by an individual in a population during its lifetime

– Ro=Σlxmx

• X= Age interval in days

• lx = % pop. surviving to each age (x)

• mx= Average number seeds produced by each individual in each age category

Page 24: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Estimating Rates for an Annual Plant

• Because P. drummondii has non-overlapping generations, can estimate growth rate– Geometric Rate of Increase (λ):

• λ =N t+1 / Nt

• N t+1 = Size of population at future time

• Nt = Size of population at some earlier time

Page 25: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.
Page 26: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Estimating Rates when Generations Overlap

• Common Mud Turtle

(K. subrubrum)– About half turtles nest each yr– Average generation time:

T = Σ xlxmx / Ro

– X= Age in years

– Per Capita Rate of Increase:

r = ln Ro / T

– ln = Base natural logarithms

Page 27: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Fecundity (Fertility) Schedule

Page 28: Population Dynamics Fundamental Equation: N (t+1) = N (t) + B – D + I – E N (t+1) - N (t) = B – D + I – E =  N = B – D + I – E I E D B.

Life Table Calculations

0+2.95+3.06+1.52+0.26 = 7.70

X(lx)(m

x)

(lx)(m

x)

Generation Time

(1*2.95)(2 *3.06)3*1.52)(4 *0.26)7.70

14.677.70

1.905

7.70Sum = 14.67