Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on...

47
Polynomial Regression on Riemannian Manifolds Jacob Hinkle, Tom Fletcher, Sarang Joshi May 11, 2012 arxiv:1201.2395

Transcript of Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on...

Page 1: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Polynomial Regression onRiemannian Manifolds

Jacob Hinkle, Tom Fletcher, Sarang Joshi

May 11, 2012

arxiv:1201.2395

Page 2: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Nonparametric RegressionNumber of parameters tied to amount of data present

Example: kernel regression on images using diffeomorphisms(Davis2007)

Polynomial Regression on Riemannian Manifolds 2

Page 3: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Parametric RegressionSmall number of parameters can be estimated more efficiently

Fletcher 2011

Geodesic regression (Niethammer2011, Fletcher2011) hasrecently received attention.

Polynomial Regression on Riemannian Manifolds 3

Page 4: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Polynomial Regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Independent Variable

Dep

ende

nt V

aria

ble

Polynomials provide a more flexible framework for parametricregression on Riemannian manifolds

Polynomial Regression on Riemannian Manifolds 4

Page 5: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

Polynomial Regression on Riemannian Manifolds 5

Page 6: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

Polynomial Regression on Riemannian Manifolds 5

Page 7: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

Polynomial Regression on Riemannian Manifolds 5

Page 8: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

Polynomial Regression on Riemannian Manifolds 5

Page 9: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

Geodesic (k = 1) has both formsγ = argminϕ

∫ T0 |ϕ̇(t)|2dt

∇γ̇ γ̇ = 0 s.t. initial conditions γ(0), γ̇(0)

Well-studied (Fletcher, Younes, Trouve, …)

Polynomial Regression on Riemannian Manifolds 5

Page 10: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

Cubic spline satisfies (Noakes1989, Leite, Machado,…)γ = argminϕ

∫ T0 |∇ϕ̇ϕ̇(t)|2dt

Euler-Lagrange equation: (∇γ̇)3γ̇ = R(γ̇,∇γ̇ γ̇)γ̇

Shape splines (Trouve-Vialard)

Polynomial Regression on Riemannian Manifolds 5

Page 11: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

k-order polynomial satisfies(∇γ̇)k γ̇ = 0subject to initial conditions γ(0), (∇γ̇)iγ̇(0), i = 0, . . . , k − 1

Introduced via rolling maps by Jupp&Kent1987Studied by Leite (2008), in rolling map setting

Polynomial Regression on Riemannian Manifolds 5

Page 12: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

k-order polynomial satisfies(∇γ̇)k γ̇ = 0subject to initial conditions γ(0), (∇γ̇)iγ̇(0), i = 0, . . . , k − 1

Introduced via rolling maps by Jupp&Kent1987Studied by Leite (2008), in rolling map setting

Polynomial Regression on Riemannian Manifolds 5

Page 13: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian PolynomialsAt least three ways to define polynomial in Rd

Algebraic: γ(t) = c0 + 11!c1t+ 1

2!c2t2 + · · ·+ 1

k!cktk

Variational: γ = argminϕ∫ T0 |(ddt

) k+12 ϕ(t)|2dt s.t. BC/ICs

Differential:(ddt

)k+1γ(t) = 0 s.t. initial conditions

(ddt

)iγ(0) = ci

Covariant derivative: replace ddt of vectors with ∇γ̇

k-order polynomial satisfies(∇γ̇)k γ̇ = 0subject to initial conditions γ(0), (∇γ̇)iγ̇(0), i = 0, . . . , k − 1

Introduced via rolling maps by Jupp&Kent1987Studied by Leite (2008), in rolling map setting

Polynomial Regression on Riemannian Manifolds 5

Page 14: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Rolling maps

Leite 2008

Unroll curve α on manifold to curve αdev on Rd without twistingor slipping. Then

(∇α̇)kα̇ = 0 ⇐⇒(d

dt

)kα̇dev = 0

Unknown whether this satisfies a variational principle

Polynomial Regression on Riemannian Manifolds 6

Page 15: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Rolling maps

Leite 2008

Unroll curve α on manifold to curve αdev on Rd without twistingor slipping. Then

(∇α̇)kα̇ = 0 ⇐⇒(d

dt

)kα̇dev = 0

Unknown whether this satisfies a variational principlePolynomial Regression on Riemannian Manifolds 6

Page 16: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Riemannian Polynomials

Generate via forward evolution of linearizedsystem of first-order covariant ODEsForward Polynomial Evolution

repeatw ← v1for i = 1, . . . , k − 1 dovi ← ParallelTransportγ(∆tw, vi + ∆tvi+1)

end forvk ← ParallelTransportγ(∆tw, vk)γ ← Expγ(∆tw)t← t+ ∆t

until t = T

Parametrized by ICs:γ(0) positionv1(0) velocityv2(0) accelerationv3(0) jerk

Polynomial Regression on Riemannian Manifolds 7

Page 17: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Polynomial Regression

(∇γ̇)kγ̇ = 0 becomes linearized system

γ̇ = v1

∇γ̇vi = vi+1 i = 1, . . . , k − 1

∇γ̇vk = 0.

Want to find initial conditions for this ODE that minimize

E(γ) =

N∑i=1

gi(γ(ti))

Polynomial Regression on Riemannian Manifolds 8

Page 18: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Lagrange multiplier (adjoint) vector fields λi along γ:

E∗(γ, {vi}, {λi}) =

N∑i=1

gi(γ(ti)) +

∫ T

0〈λ0, γ̇ − v1〉dt

+

k−1∑i=1

∫ T

0〈λi,∇γ̇vi − vi+1〉dt+

∫ T

0〈λk,∇γ̇vk〉dt

Euler-Lagrange for {λi} gives forward system.Vector field integration by parts:∫ T

0〈λi,∇γ̇vi〉dt = [〈λi, vi〉]T0 −

∫ T

0〈∇γ̇λi, vi〉dt

Polynomial Regression on Riemannian Manifolds 9

Page 19: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Lagrange multiplier (adjoint) vector fields λi along γ:

E∗(γ, {vi}, {λi}) =

N∑i=1

gi(γ(ti)) +

∫ T

0〈λ0, γ̇ − v1〉dt

+

k−1∑i=1

∫ T

0〈λi,∇γ̇vi − vi+1〉dt+

∫ T

0〈λk,∇γ̇vk〉dt

Euler-Lagrange for {λi} gives forward system.Vector field integration by parts:∫ T

0〈λi,∇γ̇vi〉dt = [〈λi, vi〉]T0 −

∫ T

0〈∇γ̇λi, vi〉dt

Polynomial Regression on Riemannian Manifolds 9

Page 20: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Rewrite using integration by parts

E∗(γ, {vi}, {λi}) =

N∑i=1

gi(γ(ti)) +

∫ T

0〈λ0, γ̇ − v1〉dt

+

k−1∑i=1

[〈λi, vi〉]T0 −k−1∑i=1

∫ T

0〈∇γ̇λi, vi〉dt

−k−1∑i=1

∫ T

0〈λi, vi+1〉dt

+ [〈λk, vk〉]T0 −∫ T

0〈∇γ̇λk, vk〉dt

So variation w.r.t. {vi} gives

δviE∗ = 0 = −∇γ̇λi − λi−1

δvi(T )E∗ = 0 = λi(T )

δvi(0)E∗ = −λi(0)

Polynomial Regression on Riemannian Manifolds 10

Page 21: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Rewrite using integration by parts

E∗(γ, {vi}, {λi}) =

N∑i=1

gi(γ(ti)) +

∫ T

0〈λ0, γ̇ − v1〉dt

+

k−1∑i=1

[〈λi, vi〉]T0 −k−1∑i=1

∫ T

0〈∇γ̇λi, vi〉dt

−k−1∑i=1

∫ T

0〈λi, vi+1〉dt

+ [〈λk, vk〉]T0 −∫ T

0〈∇γ̇λk, vk〉dt

So variation w.r.t. {vi} gives

δviE∗ = 0 = −∇γ̇λi − λi−1

δvi(T )E∗ = 0 = λi(T )

δvi(0)E∗ = −λi(0)

Polynomial Regression on Riemannian Manifolds 10

Page 22: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Variation with respect to the curve γ:Let {γs : s ∈ (−ε, ε)} a smooth family of curves, with:

γ0 = γ

W (t) :=d

dsγs(t)|s=0

Extend vi, λi away from curve via parallel transport:

∇W vi = 0

∇Wλi = 0

Then∫ T

0〈δγE∗(γ, {vi}, {λi}),W 〉dt =

d

dsE∗(γs, {vi}, {λi})|s=0

Polynomial Regression on Riemannian Manifolds 11

Page 23: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

For any smooth family of curves γs(t), we have[d

dsγs(t),

d

dtγs(t)

]= [W, γ̇s] = 0

so

∇W γ̇ = ∇γ̇W.

We also need the Leibniz rule

d

ds〈X,Y 〉|s=0 = 〈∇WX,Y 〉+ 〈X,∇WY 〉,

And the Riemann curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

∇W∇γ̇Z = ∇γ̇∇WZ +R(W, γ̇)Z

Polynomial Regression on Riemannian Manifolds 12

Page 24: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

For first term, T1 =∫ T0 〈λ0, γ̇s〉dt

d

dsT1(γs)|s=0 =

d

ds

∫ T

0〈λ0, γ̇s〉dt|s=0

=

∫ T

0〈∇Wλ0, γ̇s〉+ 〈λ0,∇W γ̇s〉dt|s=0

=

∫ T

0〈0, γ̇s〉+ 〈λ0,∇γ̇W 〉dt|s=0

= [〈λ0,W 〉]T0 −∫ T

0〈∇γ̇λ0,W 〉dt

Variation of this term with respect to γ is

δγ(t)T1 = −∇γ̇λ0δγ(T )T1 = 0 = λ0(T )

δγ(0)T1 = −λ0(0)

Polynomial Regression on Riemannian Manifolds 13

Page 25: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Now do the same with another term Ti

d

dsTi(γs)|s=0 =

d

ds

∫ T

0〈λi,∇γ̇vi〉dt

=

∫ T

0〈∇Wλi,∇γ̇vi〉+ 〈λi,∇W∇γ̇vi〉dt

= 0 +

∫ T

0〈λi,∇γ̇∇W vi +R(W, γ̇)vi〉dt

= 0 +

∫ T

0〈R(λi, vi)γ̇,W 〉dt

where we used Bianchi identities to rearrange the curvatureterm. So

δγ(t)Ti = R(λi, vi)γ̇

Polynomial Regression on Riemannian Manifolds 14

Page 26: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Combine all terms to get adjoint equations

∇γ̇λ0 =

N∑i=1

δ(t− ti)(grad gi(γ(t))) +

k∑i=1

R(λi, vi)v1

∇γ̇λi = −λi−1

Initialization for λi at t = T is

λi(T ) = 0,

Parameter gradients are

δγ(0)E = −λ0(0)

δvi(0)E = −λi(0)

Typically, gi(γ) = d(γ, yi)2, so that

(grad gi(γ)) = −Logγ yi

Polynomial Regression on Riemannian Manifolds 15

Page 27: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Combine all terms to get adjoint equations

∇γ̇λ0 =

N∑i=1

δ(t− ti)(grad gi(γ(t))) +

k∑i=1

R(λi, vi)v1

∇γ̇λi = −λi−1

Initialization for λi at t = T is

λi(T ) = 0,

Parameter gradients are

δγ(0)E = −λ0(0)

δvi(0)E = −λi(0)

Typically, gi(γ) = d(γ, yi)2, so that

(grad gi(γ)) = −Logγ yi

Polynomial Regression on Riemannian Manifolds 15

Page 28: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Combine all terms to get adjoint equations

∇γ̇λ0 =

N∑i=1

δ(t− ti)(grad gi(γ(t))) +

k∑i=1

R(λi, vi)v1

∇γ̇λi = −λi−1

Initialization for λi at t = T is

λi(T ) = 0,

Parameter gradients are

δγ(0)E = −λ0(0)

δvi(0)E = −λi(0)

Typically, gi(γ) = d(γ, yi)2, so that

(grad gi(γ)) = −Logγ yi

Polynomial Regression on Riemannian Manifolds 15

Page 29: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Polynomial Regression

Algorithmrepeat

Integrate γ, {vi} forward to t = TInitialize λi(T ) = 0, i = 0, . . . , kIntegrate {λi} via adjoint equations back to t = 0Gradient descent step:γ(0)n+1 = Expγ(0)n(ελ0(0))

vi(0)n+1 = ParTransγ(0)n(ελ0(0), vi(0)n + ελi(0))until convergence

Polynomial Regression on Riemannian Manifolds 16

Page 30: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Special Case: Geodesic (k = 1)

Adjoint system is

∇γ̇λ0 =

N∑i=1

δ(t− ti)(grad gi(γ(t))) +R(λ1, v1)v1

∇γ̇λ1 = −λ0

Between data points this is

(∇γ̇)2λ1 = −R(λ1, γ̇)γ̇

This is the Jacobi equation, λ1 is a Jacobi field.

Polynomial Regression on Riemannian Manifolds 17

Page 31: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Kendall Shape Space

Space of N landmarks in d dimensions,RNd, modulo translation, scale, rotationPrevents skewed statistics due tosimilarity transformed datad = 2, complex projective space CPN−2

Polynomial Regression on Riemannian Manifolds 18

Page 32: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Kendall Shape Space Geometry(d = 2)

Center point-set and scale so that∑N

i=1 |xi|2 = 1 (resultingobject is called a preshape)Preshapes lie on sphere S2N−1, represented as vectors in(R2)N = CN

Riemannian submersion from preshape to shape space:vertical direction holds rotations of R2

Exponential and log map available in closed form (for d = 2)

Polynomial Regression on Riemannian Manifolds 19

Page 33: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Covariant derivative in shape space in terms of preshape(O’Neill1966):

∇∗X∗Y∗ = H∇XY

Vertical direction is JN , where N is outward unit normal at thepreshape, J is almost complex structure on CN .

So parallel transport in small steps in upstairs space then dohorizontal projection.

Polynomial Regression on Riemannian Manifolds 20

Page 34: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Curvature on preshape sphere S2N−1, R(X,Y )Z is:

R(X,Y )Z = 〈X,Z〉Y − 〈Y,Z〉X

For curvature, need first fundamental form A. For horizontal vf’sX,Y ,

AXY =1

2V[X,Y ]

Curvature downstairs is

〈R∗(X∗, Y∗)Z∗, H〉 = 〈R(X,Y )Z,H〉+ 2〈AXY,AZH〉 − 〈AY Z,AXH〉 − 〈AZX,AYH〉

Polynomial Regression on Riemannian Manifolds 21

Page 35: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

First fundamental form is (O’Neill)

AXY = 〈X,JY 〉JN

Adjoint of AZ :

〈AXY,AZH〉 = 〈−J〈X, JY 〉Z,H〉

Curvature then is

R∗(X∗, Y∗)Z∗ = R(X,Y )Z − 2J〈X, JY 〉Z + J〈Y, JZ〉X + J〈Z, JX〉Y

Polynomial Regression on Riemannian Manifolds 22

Page 36: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Bookstein Rat Calivarium Growth

8 landmark points18 subjects8 ages

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.1

0

0.1

0.2

0.3

A

B

C

D

−0.32 −0.3 −0.28 −0.26 −0.24 −0.22 −0.2

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

A

−0.15 −0.1 −0.05

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

B

0.22 0.24 0.26 0.28 0.3 0.32−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

C

0.44 0.46 0.48 0.5 0.52 0.54 0.56−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

Dk R2

1 0.792 0.853 0.87

Polynomial Regression on Riemannian Manifolds 23

Page 37: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Corpus Collosum Aging (www.oasis-brains.org)

Fletcher 2011

N = 32 patientsAge range 18–9064 landmarks usingShapeWorks sci.utah.edu

k R2

1 0.122 0.133 0.21

Geo

desi

c

−0.15 −0.1 −0.05 0 0.05 0.1 0.15−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Qua

drat

ic−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Cub

ic

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Polynomial Regression on Riemannian Manifolds 24

Page 38: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Corpus Collosum Aging

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

γ̇(0)∇γ̇ γ̇(0)

(∇γ̇)2γ̇(0)

Initial conditions are collinear, implying time reparametrization

Polynomial Regression on Riemannian Manifolds 25

Page 39: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Landmark Space

Space L of N points in Rd. Geodesic equations:

d

dtxi =

N∑j=1

γ(|xi − xj |2)αj

d

dtαi = −2

N∑j=1

(xi − xj)γ′(|xi − xj |)2αTi αj

Usually use Gaussian kernel

γ(r) = e−r/(2σ2)

x ∈ L and α ∈ T ∗xL is a covector (momentum)

Polynomial Regression on Riemannian Manifolds 26

Page 40: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Landmark Space

Space L of N points in Rd. Geodesic equations:

d

dtxi =

N∑j=1

γ(|xi − xj |2)αj

d

dtαi = −2

N∑j=1

(xi − xj)γ′(|xi − xj |)2αTi αj

Usually use Gaussian kernel

γ(r) = e−r/(2σ2)

x ∈ L and α ∈ T ∗xL is a covector (momentum)

Polynomial Regression on Riemannian Manifolds 26

Page 41: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Have simple formula for cometric gij (the kernel)Parallel transport in terms of covectors, cometric:

d

dtβ` =

1

2gi`g

in,j g

jm (αmβn − αnβm)− 1

2gmn,` αmβn

Curvature more complicated (Mario’s Formula):

2Rursv = −gur,sv − grv,us + grs,uv + guv,rs + 2Γrvρ Γusσ gρσ − 2Γrsρ Γuvσ g

ρσ

+ grλ,ugλµgµv,s − grλ,ugλµgµs,v + guλ,rgλµg

µs,v − guλ,rgλµgµv,s

+ grλ,sgλµgµv,u + guλ,vgλµg

µs,r − grλ,vgλµgµs,u − guλ,sgλµgµv,r.

Polynomial Regression on Riemannian Manifolds 27

Page 42: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Landmark parallel transport in momenta (Younes2008):

d

dtβi = K−1

( N∑j=1

(xi − xj)T ((Kβ)i − (Kβ)j)γ′(|xi − xj |2)αj

−N∑j=1

(xi − xj)T ((Kα)i − (Kα)j)γ′(|xi − xj |2)βj

)

−N∑j=1

(xi − xj)γ′(|xi − xj |2)(αTj βi + αTi βj)

This is enough to integrate polynomials

Polynomial Regression on Riemannian Manifolds 28

Page 43: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

For curvature, need Christoffel symbols and their derivatives:

(Γ(u, v))i = −N∑

j=1

(xi − xj)T (vi − vj)γ′(|xi − xj |2)(K−1u)j

−N∑

j=1

(xi − xj)T (ui − uj)γ′(|xi − xj |2)(K−1v)j

+N∑

j=1

γ(|xi − xj |2)

N∑k=1

(xj − xk)γ′(|xj − xk|2)((K−1u)Tk (K−1v)j + (K−1u)Tj (K−1v)k)

Take derivative with respect to x, and combine using

R`ijk = Γ`ki,j − Γ`ji,k + Γ`jmΓmki − Γ`kmΓmji

Polynomial Regression on Riemannian Manifolds 29

Page 44: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

((DΓ(u, v))w)i =N∑j=1

(wi − wj)T (ui − uj)γ′(|xi − xj |2)(K−1v)j

+ 2N∑j=1

(xi − xj)T (ui − uj)(xi − xj)T (wi − wj)γ′′(|xi − xj |2)(K−1v)j

+N∑j=1

(xi − xj)T (ui − uj)γ′(|xi − xj |2)((d

dεK−1)v)j

+N∑j=1

(wi − wj)T (vi − vj)γ′(|xi − xj |2)(K−1u)j

+ 2N∑j=1

(xi − xj)T (vi − vj)(xi − xj)T (wi − wj)γ′′(|xi − xj |2)(K−1u)j

+N∑j=1

(xi − xj)T (vi − vj)γ′(|xi − xj |2)((d

dεK−1)u)j

− 2N∑j=1

(xi − xj)T (wi − wj)γ′(|xi − xj |2)N∑k=1

(xj − xk)γ′(|xj − xk|2)((K−1u)Tk (K−1v)j + (K−1u)Tj (K−1v)k)

−N∑j=1

γ(|xi − xj |2)N∑k=1

(wj − wk)γ′(|xj − xk|2)((K−1u)Tk (K−1v)j + (K−1u)Tj (K−1v)k)

− 2N∑j=1

γ(|xi − xj |2)N∑k=1

(xj − xk)(xj − xk)T (wj − wk)γ′′(|xj − xk|2)((K−1u)Tk (K−1v)j + (K−1u)Tj (K−1v)k)

−N∑j=1

γ(|xi − xj |2)N∑k=1

(xj − xk)γ′(|xj − xk|2)

× ((d

dεK−1u)Tk (K−1v)j + (K−1u)Tk (

d

dεK−1v)j + (

d

dεK−1u)Tj (K−1v)k + (K−1u)Tj (

d

dεK−1v)k)(

(d

dεK−1)v

)i

= −(K−1d

dεKK−1v)i

= −2(K−1N∑j=1

(xk − xj)T (wk − wj)γ′(|xk − xj |2)(K−1v)j

Polynomial Regression on Riemannian Manifolds 30

Page 45: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Landmark Regression ResultsSame Bookstein rat data. Procrustes alignment, no scaling.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

0.3

0.2 0.25 0.3 0.35 0.4 0.450.24

0.26

0.28

0.3

0.32

0.34

0.36

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 00.22

0.24

0.26

0.28

0.3

0.32

0.34

R2 = 0.92 geodesic, 0.94 quadraticPolynomial Regression on Riemannian Manifolds 31

Page 46: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Polynomial Regression on Riemannian Manifolds 32

Page 47: Polynomial Regression on Riemannian Manifoldsjacob/pubs/frg2012.pdf · Polynomial Regression on Riemannian Manifolds 5. Rolling maps Leite 2008 Unroll curve on manifold to curve devon

Thank You!