Polynomial Chaos Expansions for Quantifying Uncertainty in...

24
Polynomial Chaos Expansions for Quantifying Uncertainty in Ocean Models Mohamed Iskandarani Ashwanth Srinivasan Carlisle Thacker, University of Miami Omar Knio, Duke University Alen Alexandrian Justin Winokur Ihab Sraj, The Johns Hopkins University Funding: Office of Naval Research January 11, 2012 Polynomial Expansions for Quantifying Uncertainties

Transcript of Polynomial Chaos Expansions for Quantifying Uncertainty in...

  • Polynomial Chaos Expansions for QuantifyingUncertainty in Ocean Models

    Mohamed Iskandarani Ashwanth Srinivasan Carlisle Thacker,University of Miami

    Omar Knio,Duke University

    Alen Alexandrian Justin Winokur Ihab Sraj,The Johns Hopkins University

    Funding: Office of Naval Research

    January 11, 2012

    Polynomial Expansions for Quantifying Uncertainties

  • Outline

    Objective: Explore the use of Polynomial Chaos (PC)methods to quantify uncertainties in oceanic forecastsApplications to date

    Nesting BC uncertainties in the Gulf of MexicoUncertainties in Deep Water Horizon oil spill modelKPP-Parametric Uncertainties and their impact on SSTresponse to hurricane forcing

    Hurricane Ivan 2004Typhoons Fanapi & Malakas 2010

    Polynomial Expansions for Quantifying Uncertainties

  • Ocean Modeling Uncertainties

    Surface ForcingMomentum flux (wind-stress)Heat fluxFresh water flux

    Initial Conditions: Observation sparse in space-timeLateral Boundary Conditions in Regional ModelsParameterization of small scale processes

    mixed layer physicsbottom boundary layerbulk formula for air-sea fluxes

    Quantify uncertainties in ocean forecast given inputuncertainties

    Polynomial Expansions for Quantifying Uncertainties

  • What is Polynomial Chaos

    Series Representation

    u(x , t , ξ) =P∑

    k=0

    uk (x , t)ψk (ξ) (1)

    u(x , t , ξ): a model output (aka observable)uk (x , t): series coefficientsψk (ξ): basis functionsξ: input characterized by its PDF ρ(ξ)e.g. IC uncertainty: u(x ,0, ξ) = u(x) + ξ δu

    Basic QuestionsHow to choose the basis functions ψk?How to determine the coefficients uk?Where to truncate the series, P ?

    Different PC flavors depending on choices

    Polynomial Expansions for Quantifying Uncertainties

  • Polynomial Chaos Basis

    Basis functions are orthonormal polynomials w.r.t. PDF ρ(ξ)

    〈ψj , ψk

    〉=

    ∫ψk (ξ)ψj(ξ)ρ(ξ)dξ = δi,j (2)

    ρ(ξ) ψk (ξ)

    Gaussian Hermite polynomialsGamma Laguerre polynomials

    Beta Jacobi polynomialsUniform Legendre polynomialsGeneral Wiener-Askey polynomials

    Note that ψ0 = 1

    Polynomial Expansions for Quantifying Uncertainties

  • How do we determine PC coefficients

    Series: u(x , t , ξ) =∑P

    k=0 uk (x , t)ψk (ξ)Non Intrusive Spectral Projection: minimime l2-norm

    uk (x , t) = 〈u, ψk 〉 =∫

    u(x , t , ξ)ψk (ξ)ρ(ξ)dξ

    Approximaxte integral with numerical Quadrature

    uk (x , t) ≈Q∑

    q=1

    u(x , t , ξq)ψk (ξq)ωq

    ξq/ωq quadrature points/weightsQuadrature requires an ensemble run at ξq

    Polynomial Expansions for Quantifying Uncertainties

  • Polynomial Chaos: Computing statistics

    mean:

    E [u] = 〈u, ψ0〉 =P∑

    k=0

    uk (x , t) 〈ψk , ψ0〉 = u0(x , t)

    Variance:

    E[(u − E [u])2

    ]=

    P∑k=1

    u2k (x , t)

    Covariance:

    E [ (u − E [u]) (v − E [v ]) ] =P∑

    k=1

    uk (x)vk (x , t)

    Orthogonality simplifies computations of statisticalquantities

    Polynomial Expansions for Quantifying Uncertainties

  • How many terms to retain

    Monitor variance

    E[(u − E [u])2

    ]=

    P∑k=1

    u2k (x , t)

    Power in high modes indicate if series has convergedsufficiently

    Polynomial Expansions for Quantifying Uncertainties

  • Benefits of Polynomial Chaos Expansions

    Combination of statistical and approximation frameworksCan quantify error and “convergence” to solutionNo a-priori restriction/assumption on output statisticsApproach robust to model non-linearity and modeldifferentiabilityCan be done non-intrusively via ensembles.Multiple independent stochastic variables can be handledby multi-dimensonal tensorization of 1D basis functionsand quadratures.Series can act as surrogate for the model, e.g. a PDF canbe generated without running model

    Polynomial Expansions for Quantifying Uncertainties

  • Challenges of PC expansions

    Works best for smooth observable (adapt ψk otherwise)Curse of dimensionality: number of unknowns increasesexponentially with number of stochastic dimensions, N,and truncation P = (N+P)!N!P! .

    N \ P 1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9 102 3 6 10 15 21 28 36 45 553 4 10 20 35 56 84 120 165 2204 5 15 35 70 126 210 330 495 7155 6 21 56 126 252 462 792 1287 20026 7 28 84 210 462 924 1716 3003 50057 8 36 120 330 792 1716 3432 6435 11440

    Ensemble size to compute all term1 Tensorized Gauss quadrature: (P + 1)N (GoM simulation)2 Nested Sparse Smolyak quadrature (Hurricane simulations)3 adaptive quadrature (on-going research)

    Polynomial Expansions for Quantifying Uncertainties

  • The Ocean Model

    HYbrid Coordinate Ocean Model (HYCOM)Solves the hydrostatic Navier-Stokes equations

    Horizontal momentum equation solved for ~uhContinuity equation solved for w and Sea Surface HeightAdvection-Diffusion equations for T and SHydrosatic pressure and density are diagnosed

    Horizontal grids: Structured Finite VolumeVertical grid: ALE-type hybrid vertical coordinate

    isopycnal in ocean interior to eliminate numerical diapycnalmixingisobaric near surface to resolve shearterrain-following near shelves to resolve BBL dynamics

    Operationally used by NOAA and NRL for near real timeocean prediction

    Polynomial Expansions for Quantifying Uncertainties

  • Uncertainty in Nesting Boundary Conditions

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    GOM − Model Domain and Bathymetry (m)

    Latitude

    Long

    itude

    1000 2000 3000 4000 5000 6000 7000

    1/25◦ GoM nested in 1/12◦ North Atlantic HYCOMExchange at south and east boundaries (red lines)3-hourly surface fluxes from 1/2◦ COAMPSSouth Open BC: spatially varying random field

    Polynomial Expansions for Quantifying Uncertainties

  • Stochastic southern boundary data

    α = α(~x , t) +√λ1α1ξ1 +

    √λ2α2ξ2 (3)

    α: Stochastic boundary inputα: reference boundary input(λk , αk ): are eigenvalues/eigenvectors of covariance matrixInitial Conditions obtained from 5-year climatological run(ξ1, ξ2) are independent normally distributed stochasticvariablesPC expansion with orthonormal basis Ψn:u(x , t , ξ1, ξ2) =

    ∑Pn=0 ûnΨn(ξ1, ξ2)

    NISP approach to find ûn = 〈u,Ψn〉Ψn tensorized 2D Hermite polynomials, P = 28 in 2DEnsemble of 49 realizations for Hermite quadrature

    Polynomial Expansions for Quantifying Uncertainties

  • Eigenvalues

    0 5 10 15 20 250

    200

    400

    600

    800

    1000

    1200

    1400

    non−

    dim

    ensi

    onal

    eig

    enva

    lues

    modes

    0 5 10 15 20 250

    200

    400

    600

    800

    1000

    1200

    1400

    Sin

    gula

    r va

    lue

    Mode

    Figure: Eigenvalues of correlation matrix of the boundary climatology,the first 4 account for ≈ 1/2 variance.

    Polynomial Expansions for Quantifying Uncertainties

  • 0 100 200 300 400

    −4

    −2

    0

    2

    4

    Temporal Patterns

    day

    ampl

    itude

    mode 1

    mode 2

    87W 86W 85W 84W

    0

    200

    400

    600

    800

    Mean Meridional Velocity

    pres

    sure

    (db

    ar)

    longitude

    87W 86W 85W 84W

    0

    200

    400

    600

    800

    Meridional Velocity Mode 1

    pres

    sure

    (db

    ar)

    longitude87W 86W 85W 84W

    0

    200

    400

    600

    800

    Meridional Velocity Mode 2

    pres

    sure

    (db

    ar)

    longitude

    cm/sec−0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    Figure: Space-Time structures of Nesting BC EOFs

  • !1

    ! 2−4

    −2

    0

    2

    4

    −4 −2 0 2 4

    !

    ! ! !

    ! !

    ! ! !

    ! ! !

    ! !

    ! !

    ! !

    ! ! !

    ! ! !

    ! !

    ! !

    ! !

    ! !

    ! !

    ! ! !

    ! ! ! !

    ! !

    ! !

    ! ! ! !

    Figure 4: Circles enclose regions of 90%, 99%, . . ., 99.9999% probability. Dots marklocations of the quadrature points, with red dots corresponding to relatively likely, blueless likely, green unlikely, and magenta highly unlikely boundary conditions.

    Hermite quadrature points in each direction.Figure 4 shows the locations of the 49 quadrature points relative to

    contours of the bi-variate normal density function. There is a 90% prob-ability that an open southern boundary conditions corresponds to points(ξ1, ξ2) within the smallest circle. The next larger circle encloses an addi-tional 9% of the possible boundary conditions, and each larger circle adds asmaller fraction, leaving only 0.0001% outside the largest circle. Note thatmany of the quadrature points correspond to boundary conditions that arehighly unlikely. Thus, the ensemble of HYCOM runs providing values atthe quadrature points includes what might be regarded as quite extremeevents. Monte Carlo methods would require an ensemble of 1,000,000 ran-domly drawn boundary conditions to have a reasonable chance of samplingbeyond the largest circle where the much smaller quadrature ensemble hasfour points. Note however that each of these remote cases has a quadratureweight of only 3.0074 × 10−7.18

    Each of the 49 quadrature points provides a different specification of the

    18For practical purposes these weights might be taken to be zero and the simulationscorresponding to the four most unlikely members of the ensemble could be avoided. Thetwo-dimensional array of quadrature points does not appear to be optimal and otherapproaches to two- and higher-dimensional quadrature might be more cost-effective.

    17

    Figure: Circles enclose regions of 90%, 99%, ..., 99.9999%probability. Dots mark locations of the quadrature points, with reddots corresponding to relatively likely, blue less likely, green unlikely,and magenta highly unlikely boundary conditions.

  • Figure: 17 cm SSH contour for the 49 realizations

  • 96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day015

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day150

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day300

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day450

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day600

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day750

    Latitude

    Long

    itude

    −0.2 0 0.2 0.4 0.6

    Figure: PC estimated mean SSH at day 15, 150, 300, 450, 600 and750

  • 96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −015

    Latitude

    Long

    itude

    0.01 0.02 0.03 0.04 0.05

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −150

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2 0.25

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −300

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2 0.25 0.3 0.35

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −450

    Latitude

    Long

    itude

    0 0.05 0.1 0.15 0.2 0.25 0.3

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −600

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2 0.25 0.3

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −750

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2 0.25 0.3 0.35

    Figure: PC-estimated SSH standard deviations at day 15, 150, 300,450, 600 and 750

  • 96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0 0.1 0.2 0.3 0.4

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0 0.1 0.2 0.3 0.4

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0 0.1 0.2 0.3 0.4

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0 0.1 0.2 0.3 0.4

    Figure: PC-convergence at day 90 with decreasing PC-order (2,3,4,5)

  • Series Convergence

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN day 750 degree 5

    latit

    ude

    0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW

    day 750 degree 6

    longitude

    0 0.2 0.4 0.6

    Figure: Fraction of variance of surface elevation at day 750 due to theretained polynomial terms of highest degree: (left) contribution of the6 5th-degree terms relative to the total contributed by the 21 terms ofdegree less than 6; (right) contribution of the 7 6th-degree termsrelative to the total contributed by the 28 terms of degree less than 7.

    Polynomial Expansions for Quantifying Uncertainties

  • *

    18oN

    21oN

    24oN

    27oN

    30oN day 15

    *

    day 150

    *

    day 300

    *

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN day 450

    *

    96oW 92oW 88oW 84oW 80oW

    day 600

    *

    96oW 92oW 88oW 84oW 80oW

    day 750

    (m2)−0.02 0 0.02 0.04

    Figure: Covariance of SSH in GOM with SSH @ 86E,24.1N (whitestar) derived from the Polynomial Chaos Expansions.

    Polynomial Expansions for Quantifying Uncertainties

  • surface elevation (m)

    kern

    el d

    ensi

    ty fu

    nctio

    n (c

    m−1

    ) and

    frac

    tion

    of c

    ount

    s pe

    r 1

    cm b

    in

    0

    10

    20

    30

    40

    day 15

    0.0 0.2 0.4 0.6

    day 150

    day 300

    0

    10

    20

    30

    40

    day 450

    0

    10

    20

    30

    40

    0.0 0.2 0.4 0.6

    day 600 day 750

  • Conclusions

    SummaryPC-approach looks promising in quantifying uncertaintiesPC expansion can be mined as posteriori for valuablestatistical information at little extra cost

    ChallengesCurse of dimensionalityTime-dependent stochastic uncertaintyHow do we validate our approach?How well do we know our input uncertainties?Can be sharpened with Bayesian inference andobservation

    Polynomial Expansions for Quantifying Uncertainties

    Ocean Modeling UncertaintiesWhat is Polynomial ChaosUQ-Boundary Conditions