Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology...

169
Polymers and biopolymers in micro- and nanotechnology Polymerscience Nanoscience Physics Chemistry Life Sciences Engineering Sciences

Transcript of Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology...

Page 1: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and biopolymers in

micro- and nanotechnology

PolymerscienceNanoscience

Physics Chemistry

Life Sciences Engineering Sciences

Page 2: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optisch LithographischeStrukturierungstechniken

Softlithographie

Surface DesignMikrodisperseStrukturelemente

Selbstorganisation

BiomimetischesStrukturdesign

Motivation

Page 3: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and biopolymers in micro- and nanotechnology

What are micro- and nanotechnology about ?

• Majour goals • Representative examples from microtechnology• Representative examples from nanotechnology

What are the materials used in micro- and nanotechnology?

• Silicon, metals, semiconductors and inorganics• Polymers, organic materials

Page 4: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and biopolymers in micro- and nanotechnology

What are the technologies used in micro- and nanosciences?

• Structuring technologies• Analytical techniques• Self assembly

What is the biological input to micro- and nanotechnology?

• Biomimetic strategies• Biophysical techniques

What are the visionary goals of nanotechnology ?

Page 5: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Goals of nanotechnology

Nanotechnology focuses on

• preparation • analysis • understanding of physical properties and • technological application

of nano- and mesosized objects

Page 6: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Nanoobjects

1-d 2-d 3-d

yy

xy

xz

< 100 nm

Layers Rods Particles

Page 7: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Ultrathin gold layers ( 100 nm)

Page 8: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Technological applications of nanoobjects

Colloidal colours in glases –Optical properties of nanoparticles

Page 9: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Alchemist Kunckel

1682

Johann Kunckel, der am sächsischen Hof diente und sich in der europäischen Glaskunst auskannte, wurde vom Großen Kurfürsten um 1678 nach Brandenburg gerufen. Der wollte nicht nur die Folgen des Dreißigjährigen Krieges mindern, sondern auch günstig zu hochwertigem Glas kommen. Die wichtigsten Rohstoffe wie Holz und Quarzsande waren in der Mark reichlich vorhanden. Unter dem Vorwand des ungestörten Experimentierens wurde Kunckel auf der heutigen Pfaueninsel isoliert. Nicht zuletzt durch seine Arbeit an der Verbesserung des Rubinglases erlangten seine Produkte den Status luxuriöser Exportartikel.

Page 10: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Alchemist Kunckel

1682

Da ihm aber bald auch dort das Gehalt nicht mehr gezahlt wurde, geriet er in wirtschaftliche Schwierigkeiten und er beschwerte sich in Dresden. Die Antwort der kurfürstlichen Minister lautete: “Kann Kunckel Gold machen, so bedarf er kein Geld, kann er solches aber nicht, warum solle man ihm Geld geben?”

Page 11: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnologyDie herrliche rote Farbe der kolloiden Goldlösung hat die Technik schon seit vielen Jahrhunderten im Goldrubinglas benutzt, das, wie Zsigmondy und Siedentopf mit Hilfe des Ultramikroskops bewiesen haben, feste Teilchen metallischen Goldes als färbende Substanz enthält (im Ultramikroskop erscheinen diese Goldteilchen als grünglänzende Scheibchen). Man stellt das echte Rubinglas her, indem man zur Glasmasse Chlorgold zufügt. Bei rascherem Abkühlen erhalt man ein farb-loses Glas; erhitzt man von neuem, bis das Glas erweicht, so läuft es plötzlich prachtvoll rubinrot an. Schlechtes Rubinglas dagegen wird beim Wiedererhitzen blau, violett und rosa; das Ultramikroskop zeigt hier viel hellere und viel weiter voneinander entfernte Teilchen, die im blauen Glase kupferrot, im violetten Glase gelb und dort, wo das Glas rosa ist, grün glänzen.Die Bedeutung der Kolloide für die TechnikK. Arndt in Kolloid Zeitschrift S. 1 (1909)

Page 12: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Justus Liebig: 1843 Preparation of silver mirrors

Michael Farady: 1856 Preparation of ultrathin layers

Observation of red „gold solutions“ as by product

Page 13: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Preparation of nanoobjects

Faraday sols – 1864Nanoparticle preparation

Page 14: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Preparation of nanoobjects

Faraday sols – 1864Nanoparticle preparation

HAu(III)Cl4 Au0reduction

Citrate Ascobic acid ~5 nm

20 nm

Page 15: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Analysis of nanoobjects

Zsigmondy Ultramicroscope – 1900Single particle observation

Scattered light

Nanoparticles

Page 16: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Faraday’s „solutions“ are no real solutions(Tyndal Faraday effect)

Page 17: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Physical properties of nanoobjects

Zsigmondy 1905

Page 18: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Physical properties of nanoobjects

Einstein - Smoluchowski – 1905Diffusion of nanoparticles

Page 19: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

History of nanotechnology

Physical properties of nanoobjects

Einstein - Smoluchowki – 1905Diffusion of nanoparticles

Diffusion

Page 20: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Making money with nanotechnology

Au Sol particles (6 nm) : 25 ml , 0.01 % HAuCl4 : 92 €Au 1 Oz : ......

Au 1 Oz : 400 €

Page 21: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and nanotechnology

Macromolecules are Nanoobjects

Nanoobjects are not necessarily Macromolecules

Macromolecules

Metallic Clusters

Carbon Nanostructures(Fullerenes, Carbon Nanotubes)

Small Organic Molecules

Page 22: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Preparation of Nanostructures

Top

Down Bottom up

Up

Lithography Self assembly

Page 23: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Science Fiction ?Lets build a small world

Complex structures of a small world

/ 10 7 / 10 8

Page 24: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and nanotechnologyConformation and size of single macromolcules

Freely jointed chain (Frei drehbare Kette):

(Valenzwinkelkette)

(Valenzwinkelkette mit gehinderter Rotation)

Page 25: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Mesophases of amphiphilic molecules

A. Mueller, D. O‘Brien, Chem. Rev. 2002, 102, 727

Page 26: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Colloidal particles and their assemblyColloidosomes

A. D. Dinsmore, et al. Science 298, 1006 (2002)

Page 27: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡

NANO LETTERS 2004 Vol. 4, No. 1 69-73

Page 28: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and nanotechnology

Polymer coil

Nanoparticle Carbonnanotube

Polymer rod

5 nm – 20 nm 1 nm – 100 nm

Softmatter

Size and shape of objects

Hard material

can change are fixed

Single colloidal objects

Page 29: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Biopolymer Nanoobjects

Page 30: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

24.01.11 30

Integration of single molecular motors into man-made microstructures

Montemagno et. al., Science 290 (2000) 155

Page 31: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and nanotechnologyConformation and size of single macromolcules

End-to-end distance (Fadenendenabstand)

Radius of gyration (Trägheitsabstand)

Persistence length (Persistenzlänge)

Page 32: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers and nanotechnology

Self assembly

can change are fixed

Assemblies of nanoobjects

Ion channels

Functionallity

Page 33: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers in micro- and nanotechnologyWhat are the technologies used in micro- and nanosciences?

• Structuring technologies• Analytical techniques

What is the biological input to micro- and nanotechnology?

• Biomimetic strategies• Biophysical techniques

What are the visionary goals of nanotechnology ?

What can be the positive and negative input on society ?

Page 34: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanostructures through self-assembly

Hui Zhang and Mary J. Wirth* Anal. Chem.2005, 77,1237-1242

Page 35: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanostructures through self-assembly

Page 36: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanostructures through lithographic approaches

L. Jay Guo,*,† Xing Cheng,† and Chia-Fu Chou*,‡

NANO LETTERS 2004 Vol. 4, No. 1 69-73

Page 37: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanostructures through self-assembly

Guillaume Tresset† and Shoji Takeuchi*,‡Anal. Chem.2005, 77,2795-2801

Page 38: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Cell encapsulation in microdroplets

Mingyan He, J. Scott Edgar, Gavin D. M. Jeffries, Robert M. Lorenz, J. Patrick Shelby, andDaniel T. Chiu*Anal. Chem.2005, 77,1539-1544

Page 39: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Molecular- / Cell- Biology

Chemistry

Engineering sciences

Physics

Page 40: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for structuring technologies

Short wavelength radiation from synchrotons

Page 41: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for structuring technologies

Optical tweezers Dip pen lithography

Page 42: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Physics

Understanding physical effects on the meso- and nanoscale

Measuring single molecule mechanical properties

Page 43: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Physics

Single molecule physics

Moving single molecules

Page 44: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Physics

Fundamentals for new analytical techniques

SXM (AFM) SXM (SNOM)

Page 45: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Materials for new structuring technologies

Extreme UV resists for 157 nm irradiation

Chemistry

Page 46: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Materials for new structuring technologies

Control of mesostructure by polymer design

Chemistry

Page 47: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Chemical tuning of surfaces

Control of Wettability

Chemistry

Spatial control of Reactivity

Page 48: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Design of complex structures (for new high tech applications)

Chemistry

Page 49: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Design of complex structures (for new high tech applications)

Chemistry

Photonic crystals and foams

Page 50: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Colloidal particles and their assemblyColloidosomes

Schematic illustration of the self-assembly process for colloidosomes.

(A) Aqueous solution is added to oil containing colloidal particles. Aqueous droplets are formed by gentle continuous shearing for several seconds.

(B) Particles adsorb onto the surface of the droplet to reduce the total surface energy. These particles are subsequently locked together by addition of polycations, by van der Waals forces, or by sintering the particles.

(C) The structure is transferred to water by centrifugation. The same approach is used to encapsulate oil droplets with a shell of particles from an exterior water phase. Particles adsorbed because of the large oil-water surface energy, which is substantially larger than the difference between the particle-oil and particle-water surface energies; this differs substantially from previous reports, where colloidal particles were adsorbed electrostatically onto oil droplets, which required prior treatment of the droplet’s surface

A. D. Dinsmore, et al. Science 298, 1006 (2002)

Page 51: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Colloidal particles and their assemblyColloidosomes

A. D. Dinsmore, et al. Science 298, 1006 (2002)

Page 52: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Nature as lecturer – Biomimetic approach

Chemistry

Page 53: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanostructures through self-assembly

Diatomes – self assembled complex structures

Page 54: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Nature as lecturer – The cell as microsystem with nanofunctional units

Molecular- / Cell- Biology

Page 55: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Nature as lecturer – Molecular motors in biology (translation & rotation)

Molecular- / Cell- Biology

Page 56: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Man-machine interfacingIntegrating biological function into microsystems

Engineering sciences

Neuron attached to a microchip(MPI Martinsried- Munich)

Page 57: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Creating new microproduction technology

Engineering sciences

Page 58: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro- and nanotechnology as multidisciplinary fields

Creating new microdevice technology

Engineering sciences

Microfluidics

Monolitic fabrication:

Integration of differentfunctional units Without assembly process

Page 59: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

2‘ nd lecture 09.11.2009

Lithographical MethodsPhysical Principles

TechnologiesMaterials

Page 60: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers in micro- and nanotechnology

3d structures2d structuresLateral structures

DNA Chip Microfluidic channel

Page 61: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

3d structures2d structuresLateral structures

D

D: lateral resolution D: lateral resolutionH: height

Aspect ratio α

α = H/D

D

D

Page 62: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Top down technologies for micro-/nanostructure preparation

1 µm10 µm100 µm 100 nm 10 nm 1 nm

Sub-micrometer

Optical Lithography

Ebeam Lithography

Softlithography

AFM based Lithography

Page 63: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Top down technologies for micro-/nanostructure preparation

2d,3d Electronbeam & Optical, X-ray Lithography,

2d,3d Soft-Lithography

2d AFM based Lithography (dip pen, SNOM,..)

Page 64: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Ebeam and optical lithography

Substrate

Resist layer

Resist layerPositive resist

(becomes soluble upon irradiation)Negative resist

(becomes insoluble upon irradiation)

Pattern transfer

Irradiation

Page 65: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Film formation by spin coating

Substrate

Resist layer

Inhomogeneous thickness of resist layer and time evolution of layer thickness

Page 66: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Film formation by spin coating

Process and materials parameter influencing film thickness

• Solution viscosity • Solid content • Angular speed • Spin Time

Page 67: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Wetting of (polymer) solutions on solid substrates

ω ~ 0 deg. Spreading

0 < ω < 90 deg. Wetting

ω > 90 deg. Non-wetting

Page 68: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Wetting and dewetting of thin polymer (liquid films) on solidsubstrates

Page 69: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Stability of thin films on surfaces

1) Stable film , 2) Unstable film 3) Metastable filmΦ effective interface potential

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

Page 70: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Stability of thin films on surfaces

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

Page 71: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Stability of thin films on surfaces

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

SiSiOPolymerfilm

dh

h: thickness of polymer filmd: Thickness of SiO layer

Page 72: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Stability of thin films on surfaces on variable SiO interface

R. Seemann, S. Herminghaus, and K. Jacobs, PRL 86 (2001) 5534

Page 73: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Wetting and partial wetting on surfaces

G. Reiter et. Al. Langmuir 15 (1999) 2551

Page 74: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

25.10.2010

Page 75: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Thick layer resist technology : High aspect ratios

Page 76: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Thick layer resist technology : High aspect ratios

H

I(d)

I(d) = I * exp- ε * d

Inhomogeneous irradiation of polymer due to strong optical absorption (H > 100 µm)

Page 77: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Thick layer resist technology : Thick layer resist systems (SU-8)

Page 78: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Chemically amplified negative resist

Page 79: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

T-BOC cleavage

Acid catalyst negative resist

Alkaline development

Chemically amplified negative resist

Page 80: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

3‘ rd lecture 25.10.2010

Page 81: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Light sources and structure resolution

Hg KrF ArF F2

365nm

248nm

193nm

157nm

Page 82: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Lenses for KrF laser sources (248 nm)

Structure resolution <180 nm

Lense Material Calziumfluorid

Optical Transmission highabove 170 nm

No birefringence

Page 83: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Lenses for ArF laser sources (198 nm)

Structure resolution 80 nm

Increasing na to ~ 1.3

Page 84: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Resist for 157 nm VUV Lithography

Page 85: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Resist for 157 nm VUV Lithography

Page 86: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Two-photon lithography for complex 3d structures

Page 87: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Two-photon lithography for complex 3d structures

Page 88: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography

Two-photon lithography for complex 3d structures

Page 89: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithographyTwo-photon lithography for complex 3d structures

Page 90: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithographyQuantum dots as 2 photon initiators

CdS

o

o

o o

( )

2 hν

N.C. Strandwitz JACS 2008, 130(26), 8280-8288

Page 91: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithographyin aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff.

Page 92: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography2 Photon photoabsorption

Page 93: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography of complex 3d microstructures Multiphoton fabrication of chemically responsive protein hydrogels for microactuationBryan Kaehr and Jason B. Shear , PNAS 105 (2008) , 8850 ff.

Dynamic cell enclosures

Page 94: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography of complex 3d microstructures Multiphoton fabrication of chemically responsive protein hydrogelsBryan Kaehr et. al. , PNAS 101 (2004) , 16104 ff.

Guiding neurons by crosslinked BSA

Page 95: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithographyin aqueous solutions

Jhaveri, et. al. Chem. Mater. 2009, 21 (10), 2004 ff.

Page 96: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Maskless optical lithography - A simple setup

Musgraves et. al. Am. J. Phys. 2005, 73 (10), 980 ff.

100 µm lines 500 µm pitch

Page 97: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Maskless optical lithography – 3d stereolithography

Sun et. al. Sensors and Actuators A 121, 2005, 113 ff.

Page 98: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Maskless optical lithography – 3d stereolithography

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff.

Page 99: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Maskless optical lithography – 3d stereolithography

Choi et. al. J. Mat. Process. Tech. 209, 2009, 5494 ff.

Kidney scaffold

Page 100: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

DMD chip element

Monk et. al. Microelectronic Eng., 27, 1995, 489 ff.

Page 101: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography in microfluidic systems

Lee et. al. Lab Chip 9, 2009, 1670 ff.

Page 102: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography in microfluidic systems

Chung et. al. Nature Materials 7, 2008, 581 ff.

Page 103: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Optical lithography in µ-fluidic systems – Particle assembly

Chung et. al. Nature Materials 7, 2008, 581 ff.

Page 104: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Multi-LED array

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff.

Page 105: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Multi-LED array

Grossmann et. al. J. Neural Eng., 11, 2010, 016004 ff.

Local stimulation of nerve cells

Page 106: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Ebeam lithography Penetration depth of electrons with different energies in different materials

Page 107: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Ebeam lithography Penetration depth of electrons with different energies

Page 108: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Ebeam lithography Resolution down to 8 nm (A. Tilke LMU München) – Resist: Calixarene

Page 109: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Ebeam lithography Chemical structure of Calixarene

Page 110: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Ebeam lithography SCALPEL Technique

Page 111: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Ebeam lithography SCALPEL Technique

Page 112: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Synchroton lithography / SynchrotonX-rays

Page 113: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Synchroton lithography X-rays

Page 114: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Synchroton lithography / LIGA X-rays

Page 115: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Synchroton lithography / Mask productionX-rays

Page 116: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymer embossing

Embossing machine(Jenoptik)

Process stepsCycle time ~ 7 minutes

Heating of substrate and tools above Tg

Application of pressure (~ kN)

Cooling of substrate and embossingtool below Tg

Removal of tool

Page 117: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymer embossing

Silicon master embossing tool Polymer replica made by embossing

Page 118: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymer microysystems

Lensarrays Beam splitter

Page 119: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Microdropdeposition

Page 120: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications
Page 121: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The material

Linear flexible polymer (liquid @RT)

Pt

Curing

CrosslinkingFlexible crosslinkedRubber ( @RT)

- Me : - CH3

Page 122: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The material

Chemical crosslinking by hydrosilylation

Schmid,H. Macromolecules 33, 3042 (2000)

Page 123: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The material

Chemical modification by hydrosilylation

(-O-CH2-CH2)- EO

Hydrophilic

Page 124: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The material

Jessamine Ng Lee, Cheolmin Park,† and George M. Whitesides*

Anal. Chem.2003, 75,6544-6554

Page 125: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The materialT.R.E. Simpsona, Z. Tabatabaianb, C. Jeynesb, B. Parbhooc, and J.L. Keddiea*

Page 126: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The materialHydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Page 127: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Liquid filling of a capillary by Surface interactions

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Page 128: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

S. Stark,Microelectronic Eng. 67/68, 229 (2003)

Liquid filling of a capillary by Surface interactions

Page 129: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The materialHydrophilization by surface plasma treatment

O. Steinbock, Langmuir 19, 8117 (2003)

Page 130: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The materialHydrophilization by surface plasma treatment

M. Meincken, T.A. Berhane, P.E. Mallon, Polymer 46 (2005) 203–208

Hydrophobic recovery measured by surcface force AFM

Page 131: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polydimethylsiloxane (PDMS) - The material

Compression mold 2 N/mm2

Compression mold 9.7 N/mm2

Schmid,H. Macromolecules 33, 3042 (2000)

Page 132: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Page 133: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Page 134: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Permeation induced flow in PDMS channels

P. Silberzan, Europhys. Letters 68, 412 (2004)

Page 135: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

TIRF measurement of particle velocity near surfaces

K.Breuer2003 ASME International Mechanical Engineering Congress & ExpositionWashington, D.C., November 16-21, 2003

Page 136: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

TIRF measurement of particle velocity near surfaces

K.Breuer2003 ASME International Mechanical Engineering Congress & ExpositionWashington, D.C., November 16-21, 2003

Page 137: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Unconventional lithographic techniques

Page 138: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Unconventional lithographic techniques

Page 139: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Page 140: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

UV induced radical polymerisation of polyurethaneacrylates

Page 141: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Page 142: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Softlithographic techniques

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Page 143: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Page 144: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Rigiflex lithography

Se-Jin Choi,† Pil J. Yoo,‡ Seung J. Baek,† Tae W. Kim,† and Hong H. Lee*,‡J. AM. CHEM. SOC. 2004, 126, 7744-7745

Page 145: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Softlithographic techniques

Zentel , Advanced Materials 14, 588 (2002)

Page 146: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Softlithographic techniques Polymerisable conducting polymer

Zentel , Advanced Materials 14, 588 (2002)

Page 147: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

PDMS based complex microfluidic systems

S. Quake,Science 298, 580 (2002)

Multilayer µ-fluidic systems

a) Fluidic transport layer

b) Control layer

Page 148: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Complex shaped 3d nanoparticles

S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

Page 149: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

S.E.A. Gratton et al. / Journal of Controlled Release 121 (2007) 10–18

Page 150: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Complex shaped 3d nanoparticles

Page 151: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Complex shaped 3d nanoparticles

Jason P. Rolland,† Benjamin W. Maynor,† Larken E. Euliss,† Ansley E. Exner,†Ginger M. Denison,† and Joseph M. DeSimoneJ. AM. CHEM. SOC. 9 VOL. 127, NO. 28, 2005 10099

Page 152: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Complex shaped 3d nanoparticles

Larken E. Euliss, Julie A. DuPont, Stephanie Gratton and Joseph DeSimoneChem. Soc. Rev., 2006, 35, 1095–1104

Page 153: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications
Page 154: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Polymers in micro- and nanotechnology

3d structures2d structuresLateral structures

DNA Chip Microfluidic channel

Page 155: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

„Surface Engineering“

Tailored Surface Chemistry

SiO2 X3Si-O-R

Al2O3 (OH)3-P-O-R

Au, Cu, Ag HS-R

Page 156: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

„Surface Engineering“

Surface Polymerized Polypeptides

Page 157: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Poly-γ-benzylglutamate

Orientational Change of α-Helix by solventResulting change in layer thickness

Page 158: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Poly-γ-benzylglutamate

Orientational Change of α-Helix by solventResulting change in layer thickness

Page 159: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications
Page 160: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

„Surface Engineering“

Surface Patterning

Page 161: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Surface patterning

Microcontact Printing(Whitesides)

Electron Beam Lithography of Self-Assembled Monolayers(Craighead)

Dip-Pen Lithography of Self-Assembled Monolayers(C.A. Mirkin)

1 µm

1 nm

Page 162: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing

Siliconmicrostructure

or PMMA resist

Polymer stamp

(PDMS)

Page 163: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing

Polymer stamp

(PDMS)

„Ink“

Page 164: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing

Polymer stamp

(PDMS)

„Ink“

Page 165: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000)

Page 166: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing of solutions

M. Wang, H.-G. Braun, T. Kratzmüller, E. Meyer, Adv. Mater. 13, 1312 (2000)

Page 167: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing of dispersions

M.M. Sung,Lee B. Chem. Mater. 2007

Page 168: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing of dispersions

M.M. Sung,Lee B. Chem. Mater. 2007

Colloidal particles on the mask

Page 169: Polymers and biopolymers in€¦ · < 100 nm Layers Rods Particles. History of nanotechnology Ultrathin gold layers ( 100 nm) History of nanotechnology Technological applications

Micro-contact printing of dispersions

M.M. Sung,Lee B. Chem. Mater. 2007

Colloidal particles transfered to a surface by micro-contact printing(The particles are chemically attached to the surface)