Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

56
Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03

Transcript of Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Page 1: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarisation atLinear Colliders

Achim StahlZeuthen 15.Oct.03

Page 2: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarisation atLinear Colliders

Physics Motivation

Polarisation Measurement

Creation of Polarised Beams

Contents

Page 3: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

DefinitionsSingle Particle: Helicity

Particle Bunch: Polarisation

Page 4: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

4 Beam Configurations

Unpolarised Beams

Long. Polarisation: Electrons only

Long. Polarisation: Both Beams

Transverse Polarisation

Page 5: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

QM States:

J = 0

J = 1

J = 0

J = 1

Pol: -90% / 60%

6 %

4 %

36 %

54 %

Page 6: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Understanding Matter, Energy, Space and Time

Physics Motivation

http://blueox.uoregon.edu/~lc/wwwstudy/

Page 7: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Electron PolarisationTDR assumes polarised electron beam (~80 %)

Higgs-W coupling from:

For mH = 120 GeV:

on gHWW

no pol. 2.8 %

e- pol. 0.8 %

Page 8: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation I:

known

to be discovered

but which is which ?

eL eR eL eR

μL μR μL μR

… …

~ ~

~ ~

Page 9: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation I:

e+~e+

e- e-~

, Z

e+L

e-L

e+L

~

e-L

~

ν~

e+L

~e-

L

~

e+R

~e-

R

~and

e+L

~e-

L

~

e+R

~e-

R

~or

J = 1

J = 0,1

Page 10: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation II:Giga – Z option needs positron polarisation

109 Z0 in 100 days

sin2θeff from ALR

Δsin2θeff: ≈ 10-5

ΔALR: 8 10-5

Page 11: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation II:

Elektron Positron

ALR = =L - R

L + R

2 (1 – 4 sin2θeff)

1 + (1 – 4 sin2θeff)2

needsΔP/P ≈ 10-4

4 Measurements4 Unknown L, R, P+, P-

Page 12: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation II:

ALR = =L - R

L + R

2 (1 – 4 sin2θeff)

1 + (1 – 4 sin2θeff)2

Klaus Mönig

Page 13: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation III:

enhance signalsuppress background

gravitons intoextra dimensions e+e- G main background e+e- ν ν

Page 14: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation III:

e+e- Χ0Χ0~ ~ enhance signalsuppress background

Page 15: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation IV:

= (1 – P+P-) 0 ( 1 + Peff ALR)

effective polarisation

Peff = P+ - P-

1 - P+ P-

for any s-channel J=1 process

Page 16: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarisation:effective polarisation

in contact interactions(by Sabine Riemann)

Page 17: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Transverse Polarisation:c,be+

e- c,b

Gtransverse asymmetryindicate Spin-2 exchange

trans. polarisation asymmetriesneed both beams polarised

Page 18: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Transverse Polarisation:

trans. polarisation asymmetriesneed both beams polarised

e

e

, Z

W

W

TGC

e

e

W

W

ν

Jegerlehner / Fleischer / Kołodziej

Triple Gauge Couplings trans. asym. dominated by WLWL

Page 19: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Precision Polarimetry

Page 20: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Phys. Processes for Polarimetry:

Mott Scattering: e – Nucleonspin-orbital mom. couplingmeasures trans. pol. energy ≤ 1 MeV

Møller Scattering: e – epolarised iron foilsdestructive measurement cross check @ LC

Compton Scattering: e – polarised laser targetnon-invasive main polarimeter @ LC

Page 21: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Møller Polarimeter:

JLab 1 – 6 GeV 1.4 %

E143 16/29 GeV 3.7 %

SLD 45 GeV 4.2 %

TESLA 250 GeV 1.0 %

JLab Polarimeter

Page 22: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Compton Polarimeter:

pol. Laser

electron beam

N- - N+

N- + N+

Page 23: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Compton Polarimeter:

Page 24: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Compton Polarimeter:

main beam

large -background near beam

Čerenkov detectors only sensitive to electrons

light guides allow PMT behind schielding

Page 25: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Optimal Position ?

Polarimeter:electron source

Polarimeter:positron source

Polarimeter:at the IP

Polarimeter:before the IP

Polarimeter:before the IP

beam depolarises duringcollision by ≈ 1 %

Page 26: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Compton Polarimeter:

precision: ΔP/P

SLC 0.52 % achieved

NLC 0.25 % goal

TESLA 0.5 % goal

Mike Woods < 0.1 % optimist

Page 27: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e+e- Sources

Page 28: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Static e- Source:Photoeffect on GaAs crystal

Acceleration of electrons by static electrical field

Page 29: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e- source:

simple model

+ spin-orbital momentum coupling

+ anisotropy of crystal

Page 30: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e- source:Negative Electron Affinity

surface

electrons drift to surfaceL < 100 nm to avoid depolarisation

Page 31: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e- source:

100 nm GaAs

SLC source: <P> = 77 % (97/98)

But Problem: charge saturation

Page 32: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e- source:New Development: Strained Super Lattice

Page 33: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e- source:New Development: Strained Super Lattice

charge limit overcome

Page 34: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e- source:New Development: Strained Super Lattice

charge limit overcome

high polarisation

SLC: <P> = 74 %E158: <P> = 86 %LC spec: <P> = 80 %Goal: <P> = 90 %

but ...GaAs crystals are very sensitive need UHV (< 10-11 Torr)

Page 35: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e- source:

GaAs crystals are very sensitive need UHV (< 10-11 Torr)

static source: medium emittance / excellent vacuumRF-gun: excellent emittance / good vacuum

LC baseline design: static source + damping ring

New developments: improve emittance of static source: SLAC / KEK improve vacuum of RF-guns: FermiLab more robust crystal (chalcopyrite): PITZ II (?)

Page 36: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Conventional e+ source:NLC baseline design

high power needs 3 targets

+1 spare

Page 37: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Polarised e+ source:TESLA baseline design: Undulator based source

Idea byBalakin andMichailichenko(1979)

Page 38: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Proof-of-principle

Test-experiment at the SLC FFTB beam line

joint experiment between JLC / NLC / TESLA

Page 39: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

The Helical Undulator

rotating magnetic field

creates circularly polarised photons

prototype of TESLA undulatorE166 prototype

Ø 0.89 mm

Page 40: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

The Helical Undulator

rotating magnetic field

creates circularly polarised photons

E166 LCsimilar spectrummuch smaller power

Page 41: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Production

pair production on0.5 X0 Ti-W alloy target

polarised photons polarised positrons

100 % polarised photons

E166: -spec. x -pol. x pair x e+-pol.x capture prob. (LC only)

Page 42: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Experimental Setup

Page 43: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Polarimeter

Page 44: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Positron Spectrometer

select positron energyfor polarisation analysis

includes “capture prob.“

Page 45: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Transmission PolarimeterPositron beam not collimated conventional polarimeter methods failSolution: transmission polarimeter 1st step: convert e+ (bremsstrahlung) 2nd step: measure -Pol in transmission

Page 46: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Conversion e+

Page 47: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Transmission Polarimeter

Positron beam not collimated transmission polarimeter

Page 48: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Transmission Polarimeter

Page 49: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Photon Calorimeterarray of 16 CsI crystals

crystals Dresden + SLACphotodiodes Dresdenpreamp SLACreceiver U MassADCs SLAC (SLD)mechanics HU

Page 50: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Experimental Setup

Page 51: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Expected Sensitivity

Page 52: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

E166 Collaboration Undulator based production of polarised positrons

45 Collaborators / 15 Institutions

Brunel CERN Cornell DESY Durham Thomas Jefferson LabHU-Berlin KEK Princeton South Carlolina SLAC Tel AvivTokyo Metropoliten Tennessee Waseda

Page 53: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

E166 Status Conditionally approved in June 2003 by SLAC

test-run in Feb. 2004 need to demonstrate tolerable background levels

full run in early 2005 measure energy spectrum and polarisation of undulator photons and positrons

Summer 2005 conversion of SLC into XFEL

Page 54: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Our Contribution:

DESY HH polarimeter concept analyzing magnets Monte Carlo simulation

DESY Z + Humboldt CsI calorimeter Monte Carlo simulation data analysis

Peter SchülerVahagn GharibyanKlaus FlöttmannTies BehnkeNorbert MeynersRoman Pöschl

Hermann KolanoskiAchim StahlSabine RiemannKlaus MönigKarim Laihem

Thomas LohseNikolaj PavelMichael JablonskiThomas Schweizer

Page 55: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

Conclusions Physics case for positron polarisation: long. polarisation: strong physics case trans. polarisation: unclear

Polarimetry: achievable precision 0.5 … 0.05 % ? before IP / After IP / Both ? expreimental improvements ?

Sources: electrons: good perspective (90 %) positrons: undulators better than conventional demonstrate & develop

Page 56: Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.

the end