PMNS Matrix Elements Without Assuming Unitarity

37
PMNS Matrix Elements Without Assuming Unitarity Enrique Fernández Martínez Universidad Autónoma de Madrid hep-ph/0607020 In collaboration with S. Antusch, C. Biggio, M.B. Gavela and J. López Pavón NOW06, September 9-16, 2006, Otranto Thanks also to C. Peña Garay

description

NOW06, September 9-16, 2006, Otranto. PMNS Matrix Elements Without Assuming Unitarity. Enrique Fernández Martínez Universidad Autónoma de Madrid. hep-ph/0607020 In collaboration with S. Antusch, C. Biggio, M.B. Gavela and J. López Pavón. Thanks also to C. Peña Garay. Motivations. - PowerPoint PPT Presentation

Transcript of PMNS Matrix Elements Without Assuming Unitarity

Page 1: PMNS Matrix Elements Without Assuming Unitarity

PMNS Matrix Elements Without Assuming Unitarity

Enrique Fernández MartínezUniversidad Autónoma de Madrid

hep-ph/0607020

In collaboration with S. Antusch, C. Biggio, M.B. Gavela and J. López Pavón

NOW06, September 9-16, 2006, Otranto

Thanks also to C. Peña Garay

Page 2: PMNS Matrix Elements Without Assuming Unitarity

Motivations

• masses and mixing → evidence of New Physics beyond the SM

• Typical explanations (see-saw) involve NP at higher energies

• This NP often induces deviations from unitarity of the PMNS at low energy

We will analyze the present constraints on the mixing matrix without assuming unitarity

Page 3: PMNS Matrix Elements Without Assuming Unitarity

13 12 12 13 13

12 23 23 13 12 12 23 23 13 12 23 13

23 12 23 13 12 23 12 23 13 12 23 13

i

i i

i i

c c s c s e

U s c s s c e c c s s s e s c

s s c s c e s c c s s e c c

1 2 3

1 2 3

1 2 3

e e eN N N

N N N N

N N N

The general idea

Page 4: PMNS Matrix Elements Without Assuming Unitarity

Effective Lagrangian

.....cos

..2

..2

1 chPZ

gchPlW

gchMKiL L

WL

c

• 3 light • deviations from unitarity from NP at high energy

Page 5: PMNS Matrix Elements Without Assuming Unitarity

Effective Lagrangian

.....cos

..2

..2

1 chPZ

gchPlW

gchMKiL L

WL

c

• 3 light • deviations from unitarity from NP at high energy

iiN

Diagonal mass and canonical kinetic terms:

unitary transformation + rescaling

.....)(cos22

1 † chNNPZg

NPlWg

miL jijLiW

iiLiiiic

ii

N non-unitary

Page 6: PMNS Matrix Elements Without Assuming Unitarity

Effective Lagrangian

.....cos

..2

..2

1 chPZ

gchPlW

gchMKiL L

WL

c

• 3 light • deviations from unitarity from NP at high energy

iiN

Diagonal mass and canonical kinetic terms:

unitary transformation + rescaling

.....)(cos22

1 † chNNPZg

NPlWg

miL jijLiW

iiLiiiic

ii

N non-unitaryunchanged

ijji

Page 7: PMNS Matrix Elements Without Assuming Unitarity

The effects of non-unitarity…

… appear in the interactions

†2

NNN SMi

iSM ij

ijSM NN2†

This affects electroweak processes…

W -i

iN l

Z

i

ijNN † j

Page 8: PMNS Matrix Elements Without Assuming Unitarity

The effects of non-unitarity…

… appear in the interactions

†2

NNN SMi

iSM ij

ijSM NN2†

This affects electroweak processes…

ii

iii

i

ii

NNN

~12 tNN

~~

… and oscillation probabilities…

W -i

iN l

Z

i

ijNN † j

Page 9: PMNS Matrix Elements Without Assuming Unitarity

oscillations in vacuum

iijj

freeiji

freei EHH

dt

di ˆ• mass basis

0)(i

itiEi et

Page 10: PMNS Matrix Elements Without Assuming Unitarity

oscillations in vacuum

freefree EHdt

di ˆ• flavour basis

iijj

freeiji

freei EHH

dt

di ˆ• mass basis

0)(i

itiEi et

1** ~~ j

freeiji

free NHNEwith tj

freeiji

free NHNH ~~*≠

Page 11: PMNS Matrix Elements Without Assuming Unitarity

oscillations in vacuum

freefree EHdt

di ˆ• flavour basis

iijj

freeiji

freei EHH

dt

di ˆ• mass basis

0)(i

itiEi et

1** ~~ j

freeiji

free NHNEwith tj

freeiji

free NHNH ~~*≠

††

2

*

,NNNN

NeN

LEP ii

LiPi

i

Page 12: PMNS Matrix Elements Without Assuming Unitarity

oscillations in vacuum

freefree EHdt

di ˆ• flavour basis

††

2

*

,NNNN

NeN

LEP ii

LiPi

i

Zero-distance effect:

iijj

freeiji

freei EHH

dt

di ˆ• mass basis

0)(i

itiEi et

1** ~~ j

freeiji

free NHNEwith tj

freeiji

free NHNH ~~*≠

††

2†

0,NNNN

NNEP

Page 13: PMNS Matrix Elements Without Assuming Unitarity

oscillations in matter

2 families

00int

2

12 nFeeeF nGnGL

VCC VNC

e

NC

NCCCte

V

VVU

E

EU

dt

di

0

0

0

0

2

1*

Page 14: PMNS Matrix Elements Without Assuming Unitarity

oscillations in matter

2 families

00int

2

12 nFeeeF nGnGL

VCC VNC

e

NC

NCCCte

V

VVU

E

EU

dt

di

0

0

0

0

2

1*

e

NCeee

NCCC

eee

NCeeNCCCe

NNVNNNN

NNVV

NNNN

NNVNNVV

NE

EN

dt

di

†††

††

††

1*

2

1*

0

0

1. non-diagonal elements 2. NC effects do not disappear

Page 15: PMNS Matrix Elements Without Assuming Unitarity

N elements from oscillations: e-row

23

2

3

2

2

2

1

4

3

22

2

2

1 cos2ˆ eeeeeeee NNNNNNP

Only disappearance exps → information only on |Ni|2

CHOOZ: Δ12≈0

K2K (→ ): Δ23

1. Degeneracy

2. cannot be disentangled

2

3

2

2

2

1 eee NNN

2

2

2

1 , ee NN

ELmijij 22

UNITARITY

Page 16: PMNS Matrix Elements Without Assuming Unitarity

N elements from oscillations: e-row

12

2

2

2

1

4

3

4

2

4

1 cos2ˆ eeeeeee NNNNNP

0

12

3

2

2

2

1

e

ee

N

NN

KamLAND: Δ23>>1

→ first degeneracy solved

KamLAND+CHOOZ+K2K

Page 17: PMNS Matrix Elements Without Assuming Unitarity

N elements from oscillations: e-row

12

2

2

2

1

4

3

4

2

4

1 cos2ˆ eeeeeee NNNNNP

0

12

3

2

2

2

1

e

ee

N

NN

KamLAND: Δ23>>1

SNO:

2

2

2

1 9.01.0ˆeeee NNP

→ first degeneracy solved

→ all |Nei|2 determined

KamLAND+CHOOZ+K2K

SNO

Page 18: PMNS Matrix Elements Without Assuming Unitarity

N elements from oscillations: -row

23

2

3

2

2

2

1

4

3

22

2

2

1 cos2ˆ NNNNNNP

1. Degeneracy

2. cannot be disentangled

2

3

2

2

2

1 NNN

2

2

2

1 , NN

Atmospheric + K2K: Δ12≈0

UNITARITY

Page 19: PMNS Matrix Elements Without Assuming Unitarity

N elements from oscillations only

81.056.074.044.053.020.0

82.058.073.042.052.019.0

20.061.047.088.079.0

U

González-García 04

with unitarityOSCILLATIONS

without unitarityOSCILLATIONS

???

86.057.086.057.0

34.066.045.089.075.0

][ 2/12

2

2

1 NNN

3

Page 20: PMNS Matrix Elements Without Assuming Unitarity

(NN†) from decays

• Rare leptons decays

††

2†

NNNN

NN

W

il l

Info on (NN†)

Wi

l

††

NNNN

NN

ee

iZ

j

††

NNNN

NN

ee

• W decays

• Invisible Z

• Universality tests

NN

NN

Info on(NN†)

Page 21: PMNS Matrix Elements Without Assuming Unitarity

(NN†) and (N†N) from decays

005.0003.1103.1106.1

103.1005.0003.1102.7

106.1102.7005.0002.1

22

25

25

†NNExperimentally

Page 22: PMNS Matrix Elements Without Assuming Unitarity

(NN†) and (N†N) from decays

005.0003.1103.1106.1

103.1005.0003.1102.7

106.1102.7005.0002.1

22

25

25

†NNExperimentally

032.000.1032.0032.0

032.0032.000.1032.0

032.0032.0032.000.1†NN

→ N is unitary at % level

†2† with 1 HNN

'1 1 †† VVNN 03.0'2

ij

HVN

Page 23: PMNS Matrix Elements Without Assuming Unitarity

N elements from oscillations & decays

81.056.074.044.053.020.0

82.058.073.042.052.019.0

20.061.047.088.079.0

U

González-García 04

with unitarityOSCILLATIONS

without unitarityOSCILLATIONS

+DECAYS

82.054.075.036.056.013.0

82.057.073.042.054.019.0

20.065.045.089.076.0

N

3

Page 24: PMNS Matrix Elements Without Assuming Unitarity

In the future…

MEASUREMENT OF MATRIX ELEMENTS

• |Ne|2 , -row → MINOS, T2K, Superbeams, NUFACT…• -row → high energies: NUFACT• phases → appearance experiments: NUFACTs, -beams

Page 25: PMNS Matrix Elements Without Assuming Unitarity

In the future…

Rare leptons decays

• →e

• →e

• →

TESTS OF UNITARITY

016.0† eNN

013.0† NN

5† 102.7 eNN

PRESENT

MEASUREMENT OF MATRIX ELEMENTS

• |Ne|2 , -row → MINOS, T2K, Superbeams, NUFACT…• -row → high energies: NUFACT• phases → appearance experiments: NUFACTs, -beams

Page 26: PMNS Matrix Elements Without Assuming Unitarity

In the future…

PRESENT FUTURE

~ 10-6 MEG

~ 10-7 NUFACT

Rare leptons decays

• →e

• →e

• →

TESTS OF UNITARITY

016.0† eNN

013.0† NN

5† 102.7 eNN

MEASUREMENT OF MATRIX ELEMENTS

• |Ne|2 , -row → MINOS, T2K, Superbeams, NUFACT…• -row → high energies: NUFACT• phases → appearance experiments: NUFACTs, -beams

Page 27: PMNS Matrix Elements Without Assuming Unitarity

In the future…

ZERO-DISTANCE EFFECT 40Kt Iron calorimeter near NUFACT

• e→

4Kt OPERA-like near NUFACT

• e→

• → 3† 106.2 NN

3† 109.2 eNN

4† 103.2 eNN

PRESENT FUTURE

~ 10-6 MEG

~ 10-7 NUFACT

Rare leptons decays

• →e

• →e

• →

TESTS OF UNITARITY

016.0† eNN

013.0† NN

5† 102.7 eNN

MEASUREMENT OF MATRIX ELEMENTS

• |Ne|2 , -row → MINOS, T2K, Superbeams, NUFACT…• -row → high energies: NUFACT• phases → appearance experiments: NUFACTs, -beams

Page 28: PMNS Matrix Elements Without Assuming Unitarity

In the future…

ZERO-DISTANCE EFFECT 40Kt Iron calorimeter near NUFACT

• e→

4Kt OPERA-like near NUFACT

• e→

• → 3† 106.2 NN

3† 109.2 eNN

4† 103.2 eNN

PRESENT FUTURE

~ 10-6 MEG

~ 10-7 NUFACT

Rare leptons decays

• →e

• →e

• →

TESTS OF UNITARITY

016.0† eNN

013.0† NN

5† 102.7 eNN

MEASUREMENT OF MATRIX ELEMENTS

• |Ne|2 , -row → MINOS, T2K, Superbeams, NUFACT…• -row → high energies: NUFACT• phases → appearance experiments: NUFACTs, -beams

Page 29: PMNS Matrix Elements Without Assuming Unitarity

Conclusions

If we don’t assume unitarity for the leptonic mixing matrix

• Present oscillation experiments alone can only measure half the elements

• EW decays confirms unitarity at % level

• Combining oscillations and EW decays, bounds for all the elements can be found comparable with the ones obtained with the unitary analysis

Future experiments can:

- improve the present measurements on the e- and -rows- give information on the -row and on phases (appearance exps)- test unitarity by constraining the zero-distance effect with a near detector

Page 30: PMNS Matrix Elements Without Assuming Unitarity

Back-up slides

Page 31: PMNS Matrix Elements Without Assuming Unitarity

…adding near detectors…

Test of zero-distance effect: 2†0, NNEP

???

85.057.081.022.069.000.0

27.066.045.089.075.0

N

→ also all |Ni|2 determined

• KARMEN: (NN†)e 0.05

• NOMAD: (NN†)0.09 (NN†)e0.013• MINOS: (NN†)1±0.05

• BUGEY: (NN†)ee 1±0.04

Page 32: PMNS Matrix Elements Without Assuming Unitarity

Non-unitarity from see-saw

...11 6

25

dd

SMeff LLLL

HHlYM

Yl LL

~~

4

1 *

Integrate out NR

LL lHYM

YiHl

~1~

2

d=5 operatorit gives mass to

d=6 operatorit renormalises kinetic energy

Broncano, Gavela, Jenkins 02

cRRR

cRLRRLRRSM NNNNMlHNNHlYNNiLL

2

1~~

Page 33: PMNS Matrix Elements Without Assuming Unitarity

Number of events

)()(),()(

~ EENNLEPNNdE

EddEn SM

SM

ev

)()(),()(

~ EELEPdE

EddEnev

2

*,ˆ i

iLiP

i NeNLEP i

Exceptions:• measured flux• leptonic production mechanism• detection via NC

NNdE

d

dE

d SM

~

NNSM~ produced and detected in CC

Page 34: PMNS Matrix Elements Without Assuming Unitarity

(NN†) from decays: GF

Wi

l

NNNN

NN

ee

iZ

j

NNNN

NN

ee

ijij

• W decays

• Invisible Z

• Universality tests

NN

NN

Info on(NN†)aa

GF is measured in -decay

j

e

iNi

N*ej

j

eji

iF NNmG 22

3

52

192

jej

ii

FF

NN

GG 22

2exp,2

Page 35: PMNS Matrix Elements Without Assuming Unitarity

CHOOZ

10-3

Page 36: PMNS Matrix Elements Without Assuming Unitarity

Quarks are detected in the final state → we can directly measure |Vab|

ex: |Vus| from K0 →- e+ e

uK0 -

d d

sW+

Vus*

i

e+ Uei

→ ∑i|Uei|2 =1 if U unitary

→ Measurements of VCKM elements relies on UPMNS unitarity

Unitarity in the quark sector

With Vab we check unitarity conditions: ex: |Vud|2+|Vus|2+|Vub|2 -1 = -0.0008±0.0011

Page 37: PMNS Matrix Elements Without Assuming Unitarity

Quarks are detected in the final state → we can directly measure |Vab|

ex: |Vus| from K0 →- e+ e

→ Measurements of VCKM elements relies on UPMNS unitarity

Unitarity in the quark sector

With Vab we check unitarity conditions: ex: |Vud|2+|Vus|2+|Vub|2 -1 = -0.0008±0.0011

• decays → only (NN†) and (N†N)• N elements → we need oscillations• to study the unitarity of N: no assumptions on VCKM

With leptons:

uK0 -

d d

sW+

Vus*

e

e+