Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light...

23
Foto: Mesocosm Facility, University of Bergen, Norway Plankton stoichiometry and ocean change Ulf Riebesell CarboOcean Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel Impacts of Ocean Change on Primary Producers Ulf Riebesell Joana Barcelos e Ramos, Antje Biermann, Klaus von Bröckel, Jan Czerny, Arne Körtzinger, Sebastian Krug, Michael Meyerhöfer, Marius Müller, Andreas Oschlies, Kai Schulz, Julia Wohlers, Eckart Zöllner SOPRAN Mesocosm CO 2 perturbation experiment, Baltic Sea, July 2008

Transcript of Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light...

Page 1: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Foto: Mesocosm Facility, University of Bergen, Norway

Plankton stoichiometry and ocean change

Ulf Riebesell

CarboOcean

Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel

Impacts of Ocean Change on Primary Producers

Ulf Riebesell

Joana Barcelos e Ramos, Antje Biermann, Klaus von Bröckel, Jan Czerny,

Arne Körtzinger, Sebastian Krug, Michael Meyerhöfer, Marius Müller, Andreas Oschlies,

Kai Schulz, Julia Wohlers, Eckart Zöllner

SOPRAN Mesocosm CO2 perturbation experiment, Baltic Sea, July 2008

Page 2: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Mixing,stratification

Circulation

LightNutrients

Climate

Temperature

Nutrient utilizationefficiency

Atmospheric

deposition

Ocean biota

Atmospheric CO2

Carbon sinks & sources

SeawaterCO2

Carbonatechemistry

Rain ratio(CaCO3/POC)

Stoichiometry(Si/C/N/P/Fe)

Pelagic ecosystems

For primary producers the ocean in a high CO2 world will be different

from the present ocean in several respects

C-partitioning(POC-DOC-TEP)

Ocean acidification Ocean warming

Page 3: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Will the future ocean be more or less

productive?

• Will primary producers provide more

or less food to higher trophic levels?

• Will marine biota sequester more or

less CO2?

Impacts of Ocean Change on Primary Producers

Overarching questions:

Mixing,stratification

Circulation

LightNutrients

Climate

Temperature

Nutrient utilizationefficiency

Atmospheric

deposition

Ocean biota

Atmospheric CO2

Carbon sinks & sources

SeawaterCO2

Carbonatechemistry

Rain ratioStoichiometry

Pelagic ecosystems

C-partitioning

Assess OA- and T-driven feedbacks according to

Sign of change positive feedback amplifies initial perturbation

negative feedback dampens initial perturbation

Sensitivity level of perturbation needed to trigger a feedback

Capacity strength of feedback compared to initial perturbation

Longevity relevant time-scales: permanent vs. transient

Page 4: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

There will be winners and losers

Hinga 2002

Cyanobacteria

Eelgrass (Zostera)

Winners

Filamentous green algae

Dinoflagellates

Responses to ocean acidification/carbonation

Losers ?

Coccolithophores

pH range for maximum growth

Page 5: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Decrease in calcification, slight

increase in photosynthesis

Riebesell et al. 2000, Zondervan et al. 2001,

Sciandra et al. 2003, Delille et al. 2005, Leonardos &

Geider 2005, Langer et al. 2006, Feng et al. 2008,

Krug et al. unpubl., Müller (talk tomorrow)

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Calcification

+ weak ++ moderate +++ strong

1 μm

Gephyrocapsa oceanica

Coccolithus braarudii

Calcidiscus quadriperforatus

pCO2

present

pCO2

photosyn.

calcific.

Page 6: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

∆CaCO3 export

∆pCO2atm

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Calcification

Feedback sign Sensitivity Capacity Longevity

Calcification negative + + ?

Heinze 2004

• Decrease in calcification, slight

increase in photosynthesis

Riebesell et al. 2000, Zondervan et al. 2001,

Sciandra et al. 2003, Delille et al. 2005, Leonardos &

Geider 2005, Langer et al. 2006, Feng et al. 2008.

Krug et al. unpubl., Müller (talk tomorrow)

• Declining strength of carbonate

pump increases CO2 sequestration,

but only weak feedbackZondervan et al. 2001, Heinze 2004,

Ridgwell et al. 2007, Gehlen et al. 2007

• Open question: Replacement of

sensitive species by more robust

coccolithophorids or by other groups?

see Krug et al. M28

Ridgwell et al. 2007:

60-200 PgC until year 3000

corresponding to ∆pCO2~15-49 ppm

Page 7: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• POC flux correlates closest

with CaCO3 fluxKlaas & Archer 2002, Francois et al. 2002,

Armstrong et al. 2002, but see Passow 2004

• CaCO3 serves as ballast

Responses to ocean acidification/carbonation

Present CO2High CO2

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Ballast effect

Feedback sign Sensitivity Capacity Longevity

Ballast effect positive ? +++ +++

PO

C

CaC

O3

CaC

O3

PO

C

Decreased calcification

Klaas & Archer 2002

• Reduced calcification may

decrease deep flux of POC

Page 8: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Enhanced drawdown of C vs. N and PRiebesell et al. 2007

• Enhanced C loss from upper layeralso Delille et al. 2005

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Stoichiometry

Feedback sign Sensitivity Capacity Longevity

Stoichiometry negative

Feedback sign Sensitivity Capacity Longevity

Stoichiometry negative

3xCO2

2xCO2

present CO2

C/N=7.1

C/N=8.0

C/N=6.0

Riebesell et al. 2007

• Mechanism still unclear

Page 9: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Enhanced drawdown of C vs. N and PRiebesell et al. 2007

• Enhanced C loss from upper layerDelille et al. 2005

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Stoichiometry negative

Feedback sign Sensitivity Capacity Longevity

Stoichiometry negative ++ ++ ++

C:N=const.

C:N=f(pCO2)

Export production

Int(del EP)Int(del C storage)

Oschlies et al. 2008

• Low to moderate capacity until 2100 Oschlies et al. 2008, see also Matear & McNeil T32

Carbon storage

• Mechanism still unclear

Page 10: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Enhanced exudation at

elevated CO2, leading to

enhanced TEP formation

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Extracellular Corg

CO2 (µmol L-1)

0

100

200

300

400

500

20 40 60 80 1000

100

300

500

700

Tra

nspa

rent

Exopoly

mer

Part

icle

s

(µg

Xa

nth

an

Eq

uiv

. L

-1) Baltic Sea

natural community

Emiliania huxleyi

lab culture

Engel (2002)

Heemann et al. (unpubl.)

38

0

190

75

0 ppmv CO2

Page 11: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Enhanced exudation at

elevated CO2, leading to

enhanced TEP formation

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Extracellular Corg

• Accelerating aggregation

and sinking of organic

matter

Engel et al. 2004,

Schartau et al. 2007

• Uncertainties: longevity

(transient responses?)

Present CO2 High CO2

Arrigo (2007)

Feedback sign Sensitivity Capacity Longevity

Extracellular Corgnegative ++ +++ ?

Page 12: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Nitrogen fixation

Trichodesmium (diazotrophic cyanobaterium)

Hutchins et al. 2007

gla

cia

l pre

sent projected 2100

• Enhanced N2 fixation by

TrichodesmiumHutchins et al. 2007, Barcelos e Ramos et al. 2007,

Levitan et al. 2007

•Common phenomenon among all

diazotrophs? See Czerny et al. T11

Page 13: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Enhanced N2 fixation by

TrichodesmiumBarcelos e Ramos et al. 2007,

Hutchins et al. 2007, Levitan et al. 2007

• Common phenomenon among all

diazotrophs? See Czerny et al. T11

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Nitrogen fixation

Trichodesmium (diazotrophic cyanobaterium)

Barcelos e Ramos et al. 2007

Page 14: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Enhanced N2 fixation by

TrichodesmiumBarcelos e Ramos et al. 2007,

Hutchins et al. 2007, Levitan et al. 2007

• Common phenomenon among all

diazotrophs? See Czerny et al. T11

Responses to ocean acidification/carbonation

e.g. calcareous microalgae

Feedback sign Sensitivity Capacity Longevity

Nitrogen fixation

Trichodesmium (diazotrophic cyanobaterium)

N:P

C:P

C:N

Barcelos e Ramos et al. 2007

Page 15: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Enhanced N2 fixation by

TrichodesmiumBarcelos e Ramos et al. 2007,

Hutchins et al. 2007, Levitan et al. 2007

• Common phenomenon among all

diazotrophs? See Czerny et al. T11

Responses to ocean acidification/carbonation

Trichodesmium (diazotrophic cyanobaterium)

Feedback sign Sensitivity Capacity Longevity

Nitrogen fixation negative

C:N=f(pCO2).

C:N=f(pCO2)

+ N2fix=g(pCO2)

~ 6 PgC until 2100

• Low capacity (model assumes shallow remineralisation)(feedback kills itself: enhanced N2 fixation more DIN reduced N2 fixation

does Tricho-derived org. matter sink?

Feedback sign Sensitivity Capacity Longevity

Nitrogen fixation negative ++ + ?

Oschlies et al. unpubl.

Page 16: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Reduced mixing,

lower nutrient supply,

decreased productivity

Responses to ocean warming

Feedback sign Sensitivity Capacity Longevity

Nutrient supply

Feedback sign Sensitivity Capacity Longevity

Nutrient supply ++ ±0 ++

e.g. Bopp et al. 2001, Boyd &

Doney, 2002, Sarmiento et al.

2004, Schmittner et al. 2008,

Schneider et al. 2008

Schneider et al. 2008

Page 17: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Reduced mixing,

lower nutrient supply,

decreased productivity

Responses to ocean warming

Doney 2006

Feedback sign Sensitivity Capacity Longevity

Nutrient supply ++ ±0 ++

Feedback sign Sensitivity Capacity Longevity

Nutrient supply ++ ±0 ++

Nut. utiliz. efficiency

Feedback sign Sensitivity Capacity Longevity

Nutrient supply +++ ±0 ++

Nut. utiliz. efficiency negative ++ ++ ++

• Reduced mixing,

increased light availability,

increased productivity

e.g. Bopp et al. 2001, Boyd &

Doney, 2002, Sarmiento et al.

2004, Schmittner et al. 2008,

Schneider et al. 2008

Page 18: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Responses to ocean warming

Q10 = rate increase for 10°C

temperature increase

DIC/DIN/DIP

Phytoplankton

DOM Bacteria

Zooplankton

Sinking

Detritus

1<Q10<2

2<Q10<3

1<Q10<2 2<Q10<3

Feedback sign Sensitivity Capacity Longevity

Auto- vs.heterotrophy

• Expected: bacterial degradation

increases stronger than primary

production

Kiel in-door mesocosms

Temperatures:

ambient

+2°C

+4°C

+6°C

Page 19: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Responses to ocean warming

Feedback sign Sensitivity Capacity Longevity

Auto- vs.heterotrophy positive ++ ++ ++

∆ DIC∆ DOC

R S

AP

E

∆ POC

∆ DIC ∆ DOC

R

S

A

Thermocline

E

∆ POCP ∆ DIC

∆ DOC

R S

AP

E

∆ POC

∆ DIC ∆ DOC

R

S

A

Thermocline

E

∆ POCP

• Expected: bacterial degradation

increases stronger than primary

production

• Observed: enhanced

community respiration (R),

DOC exudation (E),

TEP formation (A)

decreased sinking (S)

decreased DIC drawdown∆DIC etc. = absolute change in pool size

Red arrows = temp. - sensitive processes

ambient temp.

∆ DIC∆ DOC

R S

AP

E

∆ POC

∆ DIC ∆ DOC

R

S

A

Thermocline

E

∆ POCP ∆ DIC

∆ DOC

R S

AP

E

∆ POC

∆ DIC ∆ DOC

R

S

A

Thermocline

E

∆ POCP

elevated temp.

Wohlers et al. subm.

Page 20: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

• Decreased deep ocean

ventilation expands oxygen

minimum zones (OMZ)

Matear & Hirst 2003

Responses to ocean warming

Feedback sign Sensitivity Capacity Longevity

Nutrient inventories

Feedback sign Sensitivity Capacity Longevity

Nutrient inventories ? ? ++ +++

• Decreases N inventory due to

denitrification and anammox

• Increases P and Fe release

from anoxic sediments

Page 21: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Responses to ocean acidification/carbonation

Feedback sign Sensitivity Capacity Longevity

Calcification negative + + ?

Ballast effect positive ? +++ +++

Stoichiometry negative ++ ++ ++

Extracellular Corg negative ++ +++ ?

Nitrogen fixation negative ++ + ?

(Trace) nutr. speciation presentations by H. de Baar and E. Breitbarth (yesterday)

Production of CR gases see presentation by F. Hopkins (tomorrow)

Feedback sign Sensitivity Capacity Longevity

Nutrient supply +++ ±0 ++

Nutr. utiliz. efficiency negative ++ ++ +++

Nutrient inventory ? ? ++ +++

Auto- vs. heterotrophy. positive ++ ++ ++

Responses to ocean warming

Impacts of Ocean Change on Primary Producers

Page 22: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Responses to ocean acidification

Feedback sign

Calcification negative

Ballast effect positive

Stoichiometry negative

Extracellular Corg negative

Nitrogen fixation negative

Feedback sign

Nutrient supply

Nutr. utiliz. efficiency negative

Nutrient inventory ?

Auto- vs. heterotrophy. positive

Responses to ocean warming

Impacts of Ocean Change on Primary Producers

• Will the future ocean be more or

less productive?

• Will primary producers provide

more or less food to higher

trophic levels?

• Will marine biota sequester more

or less CO2?

Overarching questions:

Less in low latitudes, more in high

latitudes

Probably less (higher turnover in

microbial loop), less nutritious

Possibly more, may partly

compensate for decrease in

physical carbon pump

Page 23: Plankton stoichiometry and ocean change - scor-int.org · Mixing, stratification Circulation Light Nutrients Climate Temperature Nutrient utilization efficiency Atmospheric deposition

Impacts of Ocean Change on Primary Producers

• Short-term (stress) vs. acclimated responses

• Species (strain)-specific differences

• Synergetic effects with other stressors (e.g. warming)

• Single species vs. community level responses

• Physiological and genetic adaptation

• Species replacement vs. loss of ecosystem functionality

Major uncertainties