Planetesimal* Formaon* - University of...

30
Planetesimal Forma.on gas drag se1ling of dust turbulent diffusion damping and excita.on mechanisms for planetesimals embedded in disks minimum mass solar nebula par.cle growth core accre.on Radial dri= of par.cles is unstable to streaming instability Johansen & Youdin (2007); Youdin & Johansen (2007)

Transcript of Planetesimal* Formaon* - University of...

Page 1: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Planetesimal  Forma.on  

gas  drag    se1ling  of  dust  turbulent  diffusion  damping  and  excita.on  mechanisms  for  planetesimals  embedded  in  disks  minimum  mass  solar  nebula  par.cle  growth  core  accre.on    

Radial  dri=  of  par.cles  is  unstable  to  streaming  instability  Johansen  &  Youdin  (2007);  Youdin  &    Johansen  (2007)    

Page 2: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Gas  drag  

Gas  drag  force  

where  s  is  radius  of  body,  v  is  velocity  difference  •  Stokes  regime  when  Reynold’s  number  is  less  than  10  

•  High  Reynolds  number  regime  CD  ~0.5  for  a  sphere  •  If  body  is  smaller  than  the  mean  free  path  in  the  gas    Epstein  regime  (note  mean  free  path  could  be  meter  sized  in  a  low  density  disk)  

FD = CD⇥gas�s2v2/2

CD � 24Re�1

FD =4�

3⇥gass

2csvEssen.ally  ballis.c  except  the  cross  sec.on  can  be  integrated  over  angle  

Page 3: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Drag  Coefficient  

cri.cal  drop  moves  to  the  le=  in  main  stream  turbulence  or  if  the  surface  is  rough  

Note:  we  do  not  used  turbulent  viscosity  to  calculate  drag  coefficients  

Re =sv

Page 4: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Stopping  .mescale  

•  Stopping  .mescale,  ts,    is  that  for  the  par.cle  to  be  coupled  to  gas  mo.ons  

•  Smaller  par.cles  have  short  stopping  .mescales  

•  Useful  to  consider  a  dimensionless  number  tsΩ  which  is  approximately  the  Stokes  number  

F = Mdv/dt ts =Mv

FD

Page 5: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Se1ling  .mescale  for  dust  par.cles  

•  Use  gravita.onal  force  in  ver.cal  direc.on,  equate  to  drag  force  for  a  terminal  velocity  

•  Timescale  to  fall  to  midplane    

•  Par.cles  would  se1le  unless  something  is  stopping  them    

•  Turbulent  diffusion  via  coupling  to  gas  

Fz = Mdvz

dt�M

vz

tsFz = �M�2z

tsettle = z/z = z/vz = ��1(�ts)�1

vz = (ts�)z�

Page 6: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Turbulent  diffusion  

•  Diffusion  coefficient  for  gas  •  For  a  dust  par.cle  •  Schmidt  number  Sc  •  Stokes,  St,    number  is  ra.o  of  stopping  .me  to  eddy  turn  over  

.me    •  Eddy  sizes  and  veloci.es      

–  Eddy  turnover  .mes  are  of  order  t~Ω-­‐1  

•  In  Epstein  regime  

•  When  well  coupled  to  gas,  the  Diffusion  coefficient  is  the  same  as  for  the  gas  

•  When  less  well  coupled,  the  diffusion  coefficient  is  smaller  

D0 = �cshD = �csh/Sc

Sc = (1 + St)

St � 34�

M

s2

�⇥gcs

Following  Dullemond  &  Dominik  04  

l �⇥

�h dv �⇥

�cs

Page 7: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Mean  height  for  different  sized  par.cles    Diffusion  vs  se1ling  

•  Diffusion  processes  act  like  a      random  walk  

•  In  the  absence  of  se1ling  •  Diffusion  .mescale  

•  To  find  mean  z  equate  td  to  tse1le  

•  This  gives  

 and  so  a  predic.on  for  the  height  distribu.on  as  a  func.on  of  par.cle  size  

z =�

Dt

z =�

< z2 >

td � z/ ˙z ˙zz =D

2td = 2z2/D

tsettle = ��1(�ts)�1

z2 =D

2�(�ts)�1

Page 8: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Equilibrium  heights  

Dullemond  &  Dominik  04  

Page 9: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Effect  of  sedimenta.on  on  SED  

Dullemond  &  Dominik  04  

Page 10: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Minimum  Mass  Solar  Nebula  

•  Many  papers  work  with  the  MMSN,  but  what  is  it?    Commonly  used  for  references:    Gas    Dust  

•  Solids  (ices)  3-­‐4  .mes  dust  density  •  The  above  is  1.4  .mes  minimum  to  make  giant  planets  

with  current  spacing  –  Hyashi,  C.  1981,  Prog.  Theor.  Physics  Supp.  70,  35  

•  However  could  be  modified  to  take  into  account  closer  spacing  as  proposed  by  Nice  model  and  reversal  of  Uranus  +  Neptune  (e.g.  recent  paper  by  Steve  Desch)  

�g = 2400� r

1AU

⇥�3/2g cm�2

�d = 10� r

1AU

⇥�3/2g cm�2

Page 11: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Larger  par.cles  (~km  and  larger)  

•  Drag  forces:  – Gas  drag,  collisions,    – excita.on  of  spiral  density  waves,  (Tanaka  &  Ward)  – dynamical  fric.on        – All  damp  eccentrici.es  and  inclina.ons  

•  Excita.on  sources:  – Gravita.onal  s.rring  – Density  fluctua.ons  in  disk  caused  by  turbulence  (recently  Ogihara  et  al.  07)    

Page 12: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Damping  via  waves  •  In  addi.on  to  migra.on  both  eccentricity  and  inclina.on  on  averaged  damped  for  a  planet  embedded  in  a  disk.                            Tanaka  &  Ward  2004  

•  Damping  .mescale  is  short  for  earth  mass  objects  but  very  long  for  km  sized  bodies  

•  Balance  between  wave  damping  and  gravita.onal  s.rring  considered  by  Papaloizou  &  Larwood  2000  

e/e = �0.78 t�1wave

i/i = �0.54 t�1wave

twave = ⇥�1p

�Mp

M⇥

⇥�1⇤

�g(rp)r2p

M⇥

⌅�1 �cs

VK

⇥4

Note  more  recent  studies  get  much  higher  rates  of  eccentricity  damping!  

Page 13: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Excita.on  via  turbulence  Stochas.c  Migra.on  

•  Johnson  et  al.  2006,    Ogihara  et  al.  07,  Laughlin  04,  Nelson  et  al.  2005  

•  Diffusion  coefficient  set  by  torque  fluctua.ons  divided  by  a  .mescale  for  these  fluctua.ons  

•  Gravita.onal  force  due  to  a      density  enhancement  scales  with  

•  Torque  fluctua.ons  •  parameter  γ  depends  on  density  fluctua.ons  δΣ/Σ    •   γ~α      though  could  depend  on  the  nature  of  incompressible  

turbulence  •  See  recent  papers  by  Hanno  Rein,  Ketchum  et  al.  2011  

tfluc � ��1

Mp2�G�g

(⇥�)2 � (�Mp2⇤rG⇥g)2

Page 14: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Eccentricity  diffusion  because  of  turbulence  

•  We  expect  eccentricity  evolu.on  •  with  

•  or  in  the  absence  of  damping  

•  constant  taken  from  es.mate  by  Ida  et  al.  08  and  based  on  numerical  work  by  Ogihara  et  al.07  

•  Independent  of  mass  of  par.cle  •  Ida  et  al  08  balanced  this  against  gas  drag  to  es.mate  when  

planetesimals  would  be  below  destruc.vity  threshold        

< e2 >= Dt

D � (⇥�)2

L2⇤ � �2

�⇥gr2

M�

⇥2

e � 100�

��gr2

M�

⇥(⇥t)1/2

Page 15: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

In-­‐spiral  via  headwinds  

•  For  m  sized  par.cles  headwinds  can  be  large  –  possibly  stopped  by  

clumping  instabili.es  (Johanse  &  Youdin)  or  spiral  structure  (Rice)  

•  For  planetary  embryos  type  I  migra.on  is  problem  –  possibly  reduced  by  

turbulent  sca1ering  and  planetesimal  growth  (e.g.,  Johnson  et  al.  06)  

Heading  is  important  for  m  sized  bodies,  above  from  Weidenschilling  1977  

Page 16: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Density  peaks  Pressure  gradient  trapping  

•  Pressure  gradient  caused  by  a  density  peak  gives  sub  Keplerian  veloci.es  on  outer  side  (leading  to  a  headwind)  and  super  Keplerian  veloci.es  on  inner  side  (pushing  par.cles  outwards).      

•  Par.cles  are  pushed  toward  the  density  peak  from  both  sides.  

figures  by  Anders  Johansen  

Page 17: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Forma.on  of  gravita.onal  bound  clusters  of  boulders  

points  of  high  pressure  are  stable  and  collect  par.cles  

Johansen,  Oishi,  Mac  Low,  Klahr,  Henning,  &  Youdin  (2007)    

Page 18: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

The  restructuring/compac4on  growth  regime  (s1  ≈  s2  ≈  1  mm…1  cm;  v  ≈  10-­‐2…10-­‐1  m/s)    

  Collisions  result  in  s4cking  

  Impact  energy  exceeds  energy  to  overcome  rolling  fric4on    (Dominik  and  Tielens  1997;  Wada  et  al.  2007)  

  Dust  aggregates  become  non-­‐fractal  (?)  but  are  s4ll  highly  porous  

Low  impact  energy:  hit-­‐and-­‐s.ck  collisions  

Intermediate  impact  energy:  compac.on   Blum  &  Wurm  2000  Paszun  &  Dominik,    pers.  comm.  

From  a  talk  by  Blum!  

Page 19: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

contour  plot  by  Weidenschilling  &  Cuzzi  1993  

1  AU  

collisions  bounce  

collisions  erode    

from  a  talk  by  Blum  

Page 20: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Diameter

Dia

met

er

1 µm

100 m

100 µm

1 cm

1 m

1 µm 100 m 100 µm 1 cm 1 m

Non-fractal Aggregate Growth (Hit-and-Stick) Erosion

Non

-fra

ctal

Agg

rega

te

Stic

king

+ C

ompa

ctio

n

Cra

teri

ng/F

ragm

en-

tati

on/A

ccre

tion

Cratering/ Fragmentation

Restructuring/ Compaction

Eros

ion

N

on-f

ract

al A

ggre

gate

Gro

wth

(H

it-a

nd-S

tick

)

Non-fractal Aggregate Sticking + Compaction

Cratering/Fragmen-tation/Accretion

Cra

teri

ng/

Fr

agm

enta

tion

Mass loss

Mass conservation

Mass gain

* *

* *

* for compact targets only

Blum  &    Wurm  2008  

1  AU  

Page 21: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Clumps  

•  In  order  to  be  self-­‐gravita.ng  clump  must  be  inside  its  own  Roche  radius  

•  Concentra.ons  above  1000  or  so  at  AU  for  minimum  solar  mass  nebula  required  in  order  for  them  to  be  self-­‐gravita.ng  

�s > M⇥/r3 � 6� 10�7g cm�3

⇤M⇥M⇤

⌅ � r

1AU

⇥�3

s < rH s < r

��ss3

M�

⇥1/3

Page 22: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Clump  Weber  number  

•  Cuzzi  et  al.  08  suggested  that  a  clump  with  gravita.onal  Weber  number  We<  1  would  not  be  shredded  by  ram  pressure  associated  turbulence  

•  We  =  ra.o  of  ram  pressure  to  self-­‐gravita.onal  accelera.on  at  surface  of  clump  

•  Analogy  to  surface  tension  maintained  stability  for  falling  droplets  

•  Introduces  a  size-­‐scale  into  the  problem  for  a  given  Concentra.on  C  and  velocity  difference  c.    Cuzzi  et  al.  used  a  headwind  velocity  for  c,  but  one  could  also  consider  a  turbulent  velocity  

We =�gc2

G�2ds

2= C�2

⇤c

vK

⌅2 �r

s

⇥2⇤

M⇥/r3

�g

Page 23: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Growth  rates  of  planetesimals    by  collisions  

•  With  gravita.onal  focusing  

•  Density  of  planetsimal  disk  ρ,    •  Dispersion  of  planetesimals  σ  •  Σ=ρh,    σ=hΩ  •  Ignoring  gravita.onal  focusing  •  With  solu.on      

dM

dt= �s2⇥⇤

�1 +

v2esc

⇤2

dM

dt⇥�1 � �(M/�d)2/3

s � t

Page 24: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Growth  rate  including  focusing  

•  If  focusing  is  large  

•  with  solu.on                                                  quickly  reaches  infinity  •  As  largest  bodies  are  ones  where  gravita.onal  focusing  is  important,  largest  bodies  tend  to  get  most  of  the  mass  

Fg =�

1 +v2

esc

�2

⇥� M

s

dM

dt��1 �M4/3

s(t) ⇥ 1C � �t

Page 25: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Isola.on  mass  

•  Body  can  keep  growing  un.l  it  has  swept  out  an  annulus  of  width  rH  (hill  radius)  

•  Isola.on  mass  of  order  

•  Of  order  10  earth  masses  in  Jovian  region  for  solids  le=  in  a  minimum  mass  solar  nebula    

M = 2�a�rH rH = a(M/3M�)1/3

Miso � a3�3/2M�1/2⇥

Page 26: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Self-­‐similar  coagula.on  

•  Coefficients  dependent  on  s.cking  probability  as  a  func.on  of  mass  ra.o  

•  Simple  cases  leading  to  a  power-­‐  law  form  for  the  mass  distribu.on  but  with  cutoff  on  lower  mass  end  and  increasingly  dominated  by  larger  bodies  

•  dN(M)/dt  =  –  rate  smaller  bodies  combine  to  make  mass  M  

–  subtracted  by  rate  M  mass  bodies  combine  to  make  larger  mass  bodies  

Page 27: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Core  accre.on  (Earth  mass  cores)  

•  Planetesimals  raining  down  on  a  core  •  Energy  gained  leads  to  a  hydrosta.c  envelope  •  Energy  loss  via  radia.on  through  opaque  envelope  

•  Maximum  limit  to  core  mass  that  is  dependent  on  accre.on  rate  sezng  atmosphere  opacity    

•  Possibly  a1rac.ve  way  to  account  for  different  core  masses  in  Jovian  planets  

Page 28: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Giant  planet  forma.on  Core  accre.on  vs  Gravita.onal  Instability  

•  Two  compe.ng  models  for  giant  planet  forma.on  championed  by    

–  Pollack  (core  accre.on)      –  Alan  Boss  (gravita.onal  instability  of  en.re  disk)  

•  Gravita.onal  instability:    Clumps  will  not  form  in  a  disk  via  gravita.onal  instability  if  the  cooling  .me  is  longer  than  the  rota.on  period  (Gammie  2001)    

Where  U  is  the  thermal  energy  per  unit  area    

–  Applied  by  Rafikov  to  argue  that  fragmenta.on  in  a  gaseous  circumstellar  disk  is  impossible.        Applied  by  Murray-­‐Clay  and  collaborators  to  suggest  that  gravita.onal  instability  is  likely  in  dense  outer  disks  (HR8799A)  

•  Gas  accre.on  on  to  a  core.    Either  accre.on  limited  by  gap  opening  or  accre.on  con.nues  but  inefficiently  a=er  gap  opening  

tcool =U

�T 4� ��1

Page 29: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Connec.on  to  observa.ons  

•  Chondrules    •  Composi.on  of  different  solar  system  bodies  

•  Disk  deple.on  life.mes  

•  Disk  velocity  dispersion  as  seen  from  edge  on  disks  

•  Disk  structure,  composi.on  

•  Binary  sta.s.cs  

Page 30: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Reading  •  Weidenschilling,  S.  J.  1977,  Areodynamics  of  Solid  bodies  in  the  solar  nebula,  

MNRAS,  180,  57  •  Dullemond,  C.P.  &  Dominik,  C.  2004,  The  effect  of  dust  se1ling  on  the  appearance  

of  protoplanetary  disks,    A&A,  421,  1075  •  Tanaka,  H.  &  Ward,  W.  R.  2004,  Three-­‐dimensional  Interac.on  Between  A  Planet  

And  An  Isothermal  Gaseous  Disk.  II.  Eccentricity  waves  and  bending  waves,    ApJ,  602,  388  

•  Johnson,  E.  T.,  Goodman,  J,  &  Menou,  K.  2006,  Diffusive  Migra.on  Of  Low-­‐mass  Protoplanets  In  Turbulent  Disks,  ApJ,  647,  1413      

•  Johansen,  A.,  Oishi,  J.  S.,  Mac-­‐Low,  M.  M.,  Klahr,  H.,  Henning,  T.  &  Youdin,  A.  2007,  Rapid  Planetesimal  forma.on  in  Turbulent  circumstellar  disks,  Nature,  448,  1022  

•  Cuzzi,  J.  N.,  Hogan,  R.  C.,  &  Shariff,  K.  2008,    Toward  Planetesimals:  Dense  Chondrule  Clumps  In  The  Protoplanetary  Nebula,  ApJ,  687,  143    

•  Blum,  J.  &  Wurm,  G.  2008,  ARA&A,  46,  21,  The  Growth  Mechanisms  of  Macroscopic  Bodies  in  Protoplanetary  Disks  

•  Armitage,  P.  2007  review  •  Ketchum  et  al.  2011  •  Rein,  H.  2012