Planck Visualization project:

27
PLANCK VISUALIZATION PROJECT Immersive and Interactive Software for Astronomy and Cosmology Education Jatila van der Veen 1 Ryan McGee 1 John Moreland 2 1: University of California Santa Barbara 2: Purdue University Calumet

description

Planck Visualization project:. Immersive and Interactive Software for Astronomy and Cosmology Education. Jatila van der Veen 1 Ryan McGee 1 John Moreland 2 1: University of California Santa Barbara 2: Purdue University Calumet. - PowerPoint PPT Presentation

Transcript of Planck Visualization project:

Page 1: Planck Visualization project:

PLANCK VISUALIZATION PROJECT:Immersive and Interactive Software

for Astronomy and Cosmology Education

Jatila van der Veen 1

Ryan McGee 1 John Moreland 2

1: University of California Santa Barbara2: Purdue University Calumet

Page 2: Planck Visualization project:

THIS RESEARCH IS SUPPORTED BY THE PLANCK MISSION AND THE

NASA OFFICE OF EDUCATION

Looking Back to the Dawn of Time

Page 3: Planck Visualization project:

Outline of this talk: • Arguments in favor of using games &

simulations in STEM education• Brief explanation of the Cosmic Microwave

Background (CMB)• Brief description of the Planck Mission• Description & Demo of our simulations• Plans for implementation • Where you can download our materials

Page 4: Planck Visualization project:

• Enable learners to see and interact with natural phenomena that would be impossible to observe directly (US National Research Council, 2011)

• Facilitate discovery learning• Provide strong sense of engagement with

science content• Promote important aspects of learning from

the affective and motivational domains

Why use games and simulations in STEM education:

Page 5: Planck Visualization project:

Six Learnings framework for VR:• Learning by exploring• Learning by collaborating• Learning by being• Learning by building• Learning by championing• Learning by expressing

Lim, K. 2009, Jour. Vir. Worlds Res., 2(1)

Page 6: Planck Visualization project:

PLANCK VISUALIZATION PROJECT

Interactive Mission Simulation: Teaching about Planck and solarsystem astronomy in VR

Visualization and Sonification of the CMB: Using Media Arts Technology to teach about the physics of the early universe using the analogy of the physics or sound

Page 7: Planck Visualization project:

Brief explanation of the CMB

Looking out in space = Looking back in time

Page 8: Planck Visualization project:

Brief description of the Planck Mission

• Launched May 14, 2009 from French Guiana by Arianne V rocket• Orbit around L2, 1.5 million km from Earth• Cooled to within 1 tenth of a degree above absolute zero• Designed to map the Cosmic Microwave Background (CMB) with a

sensitivity of a few millionths of a degree Kelvin, and an angular resolution as fine as 5 arc minutes on the sky, in 9 frequencies.

• Goals: – extract essentially all the information contained in the CMB temperature

anisotropies, with which to constrain models of how the universe originated and evolved

– map the polarization of the CMB in both intensity & direction– map the foreground sources in greatest detail and coverage so as to

understand how the CMB photons interact with the foreground sources as well as remove them accurately from the CMB maps

Page 9: Planck Visualization project:

Planck Mission in Virtual Reality (PMVR)

Page 10: Planck Visualization project:

Originally developed in the Center for Immersive

Visualization and Simulations

at Purdue University Calumet

Runs in Windows andLinux

Works with PCs in 2Dand 5 3D formats

Page 11: Planck Visualization project:

The PMVR embodies the characteristics of a successful VR environment (Zeltzer, 1992):

Autonomy : The mission and the planets behave independently of the user;

Interaction : The simulation responds consistently to the user’s input regarding navigation, scale of the display, and passage of time;

Presence : The user gets a sense of being ‘inside’ the Solar System, even in the 2D mode on a PC.

Page 12: Planck Visualization project:

PMVR supports learning objectives for introductory astronomy and cosmology component of “Astro 101”

above: Visible light view of the galaxyright: Microwave view of the galaxy

•Kepler’s Laws•Earth-Moon interactions•Distances, relative sizes, & relative motion in the Solar System•Provides ‘back story’ of a live mission

Page 13: Planck Visualization project:

Targets of Opportunity:Jupiter-Venus-Mercury line upin the winter sky, 2012

Page 14: Planck Visualization project:

PMVR Demo #1

Page 15: Planck Visualization project:

PMVR: A Look Inside Planck

Page 16: Planck Visualization project:

1. As guided ‘tour’ in an immersive theater by instructor

2. As independent exploration by students on a PC or in a lab with individual HMD’s

3. Couple with real-world field observations4. As an assessment tool, in that students can record demos 5. Plans for testing with students in the PUC VisLab in

Fall 2012 6. Planks for testing with Astro 1 students at UCSB

PMVR: Applications with students

Page 17: Planck Visualization project:

Imagine a multi-user simulation that runs in3D with Kinect 360,

in which students can learn astronomy by exploring!

Page 18: Planck Visualization project:

PI: van der Veen; Collaborators: Lubin, Kuchera-Morin; Ryan McGee, Basak Alper, R.J. Duran, PhD students in Media Arts Technology at UCSB

Page 19: Planck Visualization project:

The CMB visualization and sonification were originally developed in the AlloSphere research laboratory at UCSB, directed byProfessor JoAnn Kuchera-Morin.

Page 20: Planck Visualization project:

numerical data

the transformation of data relations into perceived relations in an acoustic signal for the purposes of facilitating communication or interpretation.

Why sonification is appropriate for understandingthe CMB: Because the very early universe was an expanding plasma that was permeated by gravity-driven pressure waves – i.e., SOUND.

Page 21: Planck Visualization project:

As we understand today, for the first 380,000 years of its existence the young expanding universe was filled with a plasma of tightly coupled photons and charged particles. Dark matter, which does not interact electromagnetically, collected first in pockets, and is believed to have initiated the growth of acoustic waves in the photon-baryon fluid.

Left: Animation of stones dropping into pondanalogy with dark matter initiating acoustic waves (WMAP). Below: 1D schematic of fundamental and higher harmonics (W.Hu).

Page 22: Planck Visualization project:

Just as the power spectrum of the tones produced by a musical instrument is determined by the characteristic properties of that instrument, similarly the angular power spectrum of the CMB is controlled by the properties of the universe, characterized by ~30 cosmological parameters.

Page 23: Planck Visualization project:

Distance the longest wave could have crossed at recombination = vt = ( .6c) (380,000 years)= 2 x 1021 meters, or ~ 228,000 light years = half a wavelength

Þ Fundamental wavelength was 456,000 light years, which corresponds to a frequency of 7 x 10-14 Hz, or slightly more than 49 octaves below the lowest note on the piano (27 Hz).

1o ~ l = 200

Go down 49 more octaves !! 200 Hz

Page 24: Planck Visualization project:

As the user slides between model universes, the power spectrum, map, and sounds change. With the audio controls, you can change the timbre, and zoom in on one or more harmonic.

sound: zooming in on the harmonics, one at a time, using narrow peak width

Page 25: Planck Visualization project:

lambda = .89baryon = .05dark matter = .05

Students can compare the look and soundof different model universes.

a) 70% dark energy – best estimateb) 89% dark energy – too muchc) 10% dark energy – too little

Page 26: Planck Visualization project:

Curricula which support utilizing our CMB simulationin Astro 101 classes:

Cosmology Curricular Companion (B. Partridge)

Labs for a Lambda-Dominated Universe (J. van der Veen & P. Lubin)

http://planck.caltech.edu/epo/epo-higherEdu.html

Page 27: Planck Visualization project:

http://planck.caltech.edu/epo/epo-informalEdu.html