PJM/MISO Update on CO-114

19
1 PJM/MISO Update on CO- 114 Frank Koza – PJM Dave Zwergel – Midwest ISO

description

PJM/MISO Update on CO-114. Frank Koza – PJM Dave Zwergel – Midwest ISO. CO 114 Behavior. TLR results on PJM Coordinated Flowgates have been questionable since AEP and DPL joined PJM - PowerPoint PPT Presentation

Transcript of PJM/MISO Update on CO-114

Page 1: PJM/MISO Update on CO-114

1

PJM/MISO Update on CO-114

Frank Koza – PJMDave Zwergel – Midwest ISO

Page 2: PJM/MISO Update on CO-114

2

CO 114 Behavior• TLR results on PJM Coordinated Flowgates

have been questionable since AEP and DPL joined PJM

• Calculations produce “unrealistically excessive flow” across all priorities (7-Firm, 6-Non-Firm Network, and 2-Hourly)

• PJM flows have often increased tenfold• Results add uncertainty to operations

– How much is relief should I ask for? – How much is relief will I get?

Page 3: PJM/MISO Update on CO-114

3

Pre Control Area Consolidation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

Examples

Current Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

t Im

pact

ED2

ED6

NNL

101 Kammer #8 xfmr l/o Kammer-South Canton 765 kV line

Flowgate Limit is 3695

PJM Impact Based on Distribution Factors calculated with PSS/e MUST and Generator Output from Jan 5, 2005

Page 4: PJM/MISO Update on CO-114

4

Pre Control Area Consolidation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

Examples

Current Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time

Meg

awat

t Im

pact

ED2

ED6

NNL

1719 Mt. Storm-Doubs 500/Mt. Storm-Meadow Brook 500

Flowgate Limit is 2598

PJM Impact Based on Distribution Factors calculated with PSS/e MUST and Generator Output from Jan 5, 2005

Page 5: PJM/MISO Update on CO-114

5

Examples

Pre Control Area Consolidation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

2337 Cook-Palisades345/BentnHrbr-Palisades345

Flowgate Limit is 2094

PJM Impact Based on Distribution Factors calculated with PSS/e MUST and Generator Output from Jan 5, 2005

Current Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

t Im

pact

ED2

ED6

NNL

Page 6: PJM/MISO Update on CO-114

6

Results and Consequences

RCs may have to request much more relief than is actually necessary to effect curtailments

RCs may believe flows represent available relief, when in fact, the flows are reported erroneously and no relief is available

Operator Flow Change Request: -1500 MW

Page 7: PJM/MISO Update on CO-114

7

Analysis• Since the RTO is responsible for calculating Market

Flow, PJM and MISO jointly investigated the discrepancies to find the cause

• Assumptions hid an inequality in the basic calculation mechanism– Testing was done with generators at the same output levels, but

shifts in output levels would have demonstrated the inequality• Load Shift Factor aggregations must be consistent

between pre- and post-expansion models• Since CE joined PJM as a separate Control Area,

problem remained hidden until AEP and DPL joined and the LSFs were merged

Page 8: PJM/MISO Update on CO-114

8

Historic Footprint

ControlArea 1

ControlArea 2

Gen 11100 MW Output

GSF = 0.10

Gen 2900 MW Output

GSF = -0.20

Load 11000 MW Demand

LSF = -0.20

Load 21000 MW Demand

LSF = -0.30

Flowgate X

Gen Out(Scaled to meet

Load) GSF LSF GLDF Impact on Flowgate

Control Area 1 1000 0.10 -0.20 0.30 300

Control Area 2 900 -0.20 -0.30 0.10 90

390 NNLPTP Tag would be 100MW * (.10 – (-.20)) = 30MW

Page 9: PJM/MISO Update on CO-114

9

New Control Area

Merged

ControlZone 1

ControlZone 2

Gen 11100 MW Output

GSF = 0.10

Gen 2900 MW Output

GSF = -0.20

Load 11000 MW Demand

LSF = -0.20

Load 21000 MW Demand

LSF = -0.30

Flowgate X

Gen Out(Raw,

Unscaled) GSF LSF GLDF Impact on Flowgate

Control Zone 1 1100 0.10 -0.25 0.35 385

Control Zone 2 900 -0.20 -0.25 0.05 45

430 MFNo Point to Point Tag (becomes internalized)

Page 10: PJM/MISO Update on CO-114

10

Comparison

Gen Out GSF LSF GLDF Impact on Flowgate

Control Area 1 1000 0.10 -0.20 0.30 300

Control Area 2 900 -0.20 -0.30 0.10 90

30

420 NNL

Gen Out GSF LSF GLDF Impact on Flowgate

Control Zone 1 1100 0.10 -0.25 0.35 385

Control Zone 2 900 -0.20 -0.25 0.05 45

430 MF

Plus Point to Point Impact

Page 11: PJM/MISO Update on CO-114

11

Solution• Considered multiple solutions

– Threshold change– Netting– Partial netting

• Best Solution Found– RTOs use load shift factors similar to those used in the firm

usage calculation• Control Zone impacts will be determined as if Historic CAs remain in

place (GLDF = GSF – Historic LSF)• Inter-Zone Transfer Impacts will be determined as if Historic CAs

remain in place (Xfer TDF = Historic TDF – Historic TDF)• Generation in a Zone in excess of Zone Load will be considered

transfer MW (but sum of all Zonal Gen + Transfer Gen will not exceed RTO Load)

• Market flow values will regain accuracy consistent with firm usage

Page 12: PJM/MISO Update on CO-114

12

New Control Area

Solution Step 1

ControlArea 1

ControlArea 2

Gen 11100 MW Output

GSF = 0.10

Gen 2900 MW Output

GSF = -0.20

Load 11000 MW Demand

LSF = -0.20

Load 21000 MW Demand

LSF = -0.30

Flowgate X

Gen Out (Min of Gen or Load) GSF LSF GLDF Impact on Flowgate

Control Area 1 1000 0.10 -0.20 0.30 300

Control Area 2 900 -0.20 -0.30 0.10 90

390 MFCalculate GTL Impacts as if Historic Footprint still existed

Page 13: PJM/MISO Update on CO-114

13

New Control Area

Solution Step 2

ControlArea 1

ControlArea 2

Gen 11100 MW Output

GSF = 0.10

Gen 2900 MW Output

GSF = -0.20

Load 11000 MW Demand

LSF = -0.20

Load 21000 MW Demand

LSF = -0.30

Flowgate X

Excess Gen TDF 1 TDF 2 PTP TDF Impact on Flowgate

1 to 2 Transfer 100 0.10 -0.20 0.30 30

30 MFCalculate PTP Impacts of Transferring Excess MW

Page 14: PJM/MISO Update on CO-114

14

Comparison

Gen Out GSF LSF GLDF Impact on Flowgate

Control Area 1 1000 0.10 -0.20 0.30 300

Control Area 2 900 -0.20 -0.30 0.10 90

30

420 NNL

Gen Out GSF LSF GLDF Impact on Flowgate

Control Zone 1 1000 0.10 -0.20 0.30 300

Control Zone 2 900 -0.20 -0.30 0.10 90

1 to 2 Transfer 100 0.10 -0.20 0.30 30

420 MF

Plus Point to Point Impact

Page 15: PJM/MISO Update on CO-114

15

New vs. Old Process

Current Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

t Im

pact

ED2

ED6

NNL

Pre Control Area Consolidation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

101 Kammer #8 xfmr l/o Kammer-South Canton 765 kV line

Moderate Increase in Flows

PJM Impact Based on Distribution Factors calculated with PSS/e MUST and Generator Output from Jan 5, 2005

New Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

Page 16: PJM/MISO Update on CO-114

16

New vs. Old Process

Current Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time

Meg

awat

t Im

pact ED2

ED6

NNL

New Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time

Meg

awat

ts Im

pact ED2

ED6

NNL

1719 Mt. Storm-Doubs 500/Mt. Storm-Meadow Brook 500

Mild Increase in FlowsSome Firm became Non-Firm

PJM Impact Based on Distribution Factors calculated with PSS/e MUST and Generator Output from Jan 5, 2005

Pre Control Area Consolidation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

Page 17: PJM/MISO Update on CO-114

17

Current Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

t Im

pact

ED2

ED6

NNL

New vs. Old Process

Pre Control Area Consolidation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

2337 Cook-Palisades345/BentnHrbr-Palisades345

Moderate Increase in Flows

PJM Impact Based on Distribution Factors calculated with PSS/e MUST and Generator Output from Jan 5, 2005

New Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19 21 23

Time

Meg

awat

ts Im

pact

ED2

ED6

NNL

Page 18: PJM/MISO Update on CO-114

18

Questions?

Page 19: PJM/MISO Update on CO-114

19

ReferenceMathematical Explanation of Inequality

Assume 2 Control Areas A and B. Each Control Area has a single Generators G and a single Load L. Each Generator and the Aggregate Load has a shift factor S. Impact I on a flowgate for a generator is calculated as follows:

GSSI LGG )( The impacts of multiple Control Areas can be summed to determine the impacts of both Control Areas.

BAAB III Now assume the Control Areas merge to create Control Area C. Create an Aggregate Load Shift Factor for the new Control Area SLC as follows:

C

BLB

C

ALALC L

LS

LL

SS

Impact I on a flowgate for a generator in the merged Control Area is calculated as follows:

GSSI LCGG )( The impacts of the two generators can be summed to determine the impact of the new Control Area:

BA GGC III Hypothesis: CAB II

CBA III

CBLBGBALAGA IGSSGSS ))(())((

BA GGBLBGBALAGA IIGSSGSS ))(())((

))(())(())(())(( BLCGBALCGABLBGBALAGA GSSGSSGSSGSS

BLCBGBALCAGABLBBGBALAAGA GSGSGSGSGSGSGSGS

C

BLB

C

ALALC L

LSLLSS

BC

BLB

C

ALABGBA

C

BLB

C

ALAAGA

BLBBGBALAAGA

GLL

SLL

SGSGLL

SLL

SGS

GSGSGSGS

BC

BLB

C

ALAA

C

BLB

C

ALABLBALA G

LL

SLL

SGLL

SLL

SGSGS

C

BBLB

C

BALA

C

ABLB

C

AALABLBALA L

GLSL

GLSL

GLSL

GLSGSGS

BBLBBALAABLBAALABCLBACLA GLSGLSGLSGLSGLSGLS

BBLBBALAABLBAALABBLBBALBABLAAALA GLSGLSGLSGLSGLSGLSGLSGLS

ABLBBBLBBALABBLBBALBABLA GLSGLSGLSGLSGLSGLS

ABLAABLBBBLBBALABBLBBALB GLSGLSGLSGLSGLSGLS

)()( BLABLBABLBALABLBALBB LSLSGLSLSLSLSG

)5653(7)53465343(2

)3015(7)15241512(2

)45(7)18(2

31536

CAB II