pipeline design calculations.pdf

21
Item no Title Filetype 1 Wall thickness calculation based on asme b31.8 excel 2 Wall thickness calculation based on ASME B31.4 & B31.8 , 30 CFR Part 250, 49 CFR Parts 192 & 195 and DNV OS-F101 Mathcad 3 Wall Thickness calculation based on ISO 13623 Mathcad 4 Upheaval buckling analysis for onshore pipelines excel 5 Wall Thickness calculation based on ISO 13623 Mathcad 6 Cathodic protection calculations for onshore pipeline excel 7 Cathodic Protection calculations for subsea pipelines Mathcad 8 Two phase flow calculation sheet excel 9 Line size of gas and liquid pipelines excel 10 DP for single and two phase flow excel 11 calculation of Pipeline Pressure surge - water hammer Mathcad 12 Pipeline allowable span DNV 81 Mathcad 13 Pipeline allowable span DNV 2000 F-105 Mathcad 14 Allowable span- Fatigue Life DNV GL14 Mathcad 15 expansion loop calculation excel 16 Subsea Pipeline expansion analysis Mathcad 17 Subsea Pipeline on bottom stability analysis Mathcad 18 On bottom stability check RP E305 Mathcad 19 Pipeline stability (Rock berm) Mathcad 20 Calculation of saftey chek of pipeline fault crossing excel 21 Anchor block design excel 22 J-Tube anchor clamp calculation Mathcad 23 J-Tube friction clamp calculation Mathcad 24 Stress check of Welded neck flange Mathcad 25 Sviwel flange design Mathcad The price for this collection is 50 US$ Useful Calculation sheets for Oil and Gas Pipeline Engineering (Offshore & Onshore) If you are intrested to order following files pls send your request to [email protected] Design

description

Pipelin Buckling crossing free span stress upheaval flow assurance expanisin fatigue design

Transcript of pipeline design calculations.pdf

Page 1: pipeline design calculations.pdf

Item no Title Filetype

1 Wall thickness calculation based on asme b31.8 excel

2Wall thickness calculation based on ASME B31.4 & B31.8 , 30 CFR Part 250, 49 CFR Parts 192 & 195 and DNV OS-F101

Mathcad

3 Wall Thickness calculation based on ISO 13623 Mathcad

4 Upheaval buckling analysis for onshore pipelines excel

5 Wall Thickness calculation based on ISO 13623 Mathcad

6 Cathodic protection calculations for onshore pipeline excel

7 Cathodic Protection calculations for subsea pipelines Mathcad

8 Two phase flow calculation sheet excel

9 Line size of gas and liquid pipelines excel

10 DP for single and two phase flow excel

11 calculation of Pipeline Pressure surge - water hammer Mathcad

12 Pipeline allowable span DNV 81 Mathcad

13 Pipeline allowable span DNV 2000 F-105 Mathcad

14 Allowable span- Fatigue Life DNV GL14 Mathcad

15 expansion loop calculation excel

16 Subsea Pipeline expansion analysis Mathcad

17 Subsea Pipeline on bottom stability analysis Mathcad

18 On bottom stability check RP E305 Mathcad

19 Pipeline stability (Rock berm) Mathcad

20 Calculation of saftey chek of pipeline fault crossing excel

21 Anchor block design excel

22 J-Tube anchor clamp calculation Mathcad

23 J-Tube friction clamp calculation Mathcad

24 Stress check of Welded neck flange Mathcad

25 Sviwel flange design Mathcad

The price for this collection is 50 US$

Useful Calculation sheets for Oil and Gas Pipeline Engineering (Offshore & Onshore)

If you are intrested to order following files pls send your request to [email protected]

Design

Page 2: pipeline design calculations.pdf

Item no Title Filetype

The price for this collection is 50 US$

Useful Calculation sheets for Oil and Gas Pipeline Engineering (Offshore & Onshore)

If you are intrested to order following files pls send your request to [email protected]

26 Pipeline Settlement in soil Mathcad

27 Horizontal directional drilling calculations for pipeline crossing excel

28 Pipe stacking calculation excel

29 Soil modeling of pipeline lies on sea bed Mathcad

30 Pull force required for Pipeline towing Mathcad

31 Soil pressure at touch down Mathcad

32 Simplified analysis for determination of stinger reaction force V-lay, J-lay vs S-lay Mathcad

33 Engineering units converter excel

34 Pipes and flanges data excel

35 Calculation of pipe basic properties excel

36 dew point calculation from psycometric table excel

37 Preliminary cost estimation for Offshore pipelines excel

38 Calculation of natural gas properties based on gas composition excel

SOME EXAMPLES:

Construction

General

Page 3: pipeline design calculations.pdf

As D2 D 2t−( )2− π4

⋅:= As 0.031m2= steel area

Iπ64

D4 D 2t−( )4− ⋅:= I 9.143 10 4−× m4= moment of inertia

Wdry As ρst⋅ g⋅:= Wdry 2.361kN

m= dry weight

Bπ4

D2⋅ ρsw⋅ g⋅:= B 2.038kN

m= buoyancy

Wsub Wdry B−:= Wsub 0.323kN

m= submerged weight

Sg

Wdry

B:= Sg 1.159= relative density of the pipe

Msag εLCCE− I⋅

2D⋅:= Msag 226.77− kN m⋅= allowwable bending moment in the

sagbend

Simplified analysis for determination of stinger reaction force V-lay, J-lay vs S-lay

Pipe parameters

D 20 in⋅:= D 0.508m= Pipe outside diameter

t 20 mm⋅:= * t 0.02 m= Wall thickness

SMYS 485 MPa⋅:= Specified Minimum Yield strength

E 210000 MPa⋅:= Youngs modules

ρst 7850kg

m3⋅:= density steel

Environmental paremeters

y 2500 m⋅:= Waterdepth

ρsw 1025kg

m3:= Seawater density

Lay parameter

εLCC 0.12%:= allawable beding strain in sagbend (DNV, LCC criteria)

Calculated pipe parameters

Page 4: pipeline design calculations.pdf

L 2.632 103× m= Sagbend Length

H LH1:= H 50kN= Required Horizontal tension for bending strain criteria

T H2 Wsub L⋅( )2+:= T 852 kN= Total tension

V Wsub L⋅:= V 850.629 kN= Vertical tension

π2

atan h L H,( )( )α L( ) h L H,( )⋅

h L H,( ) 1+( )0.75+

− 86.651 deg= lay angle from differential equation

φ atanV

H:= φ 86.67deg= lay angle calculation

Stiffened Catenary Calculations in Pipline Laying problemD.A. Dixon, D.R. Rutledge, Journal of Engineering for industry, february 1968

LD

2 εLCC⋅1

εLCC y⋅ 2⋅

D+

2

1− 0.5

⋅:= L 2.703 103× m= estimate catenary lenght

H 1εLCC y⋅ 2⋅

D+

2

1− 0.5−

Wsub⋅ L⋅:= H 68.4 kN= Lay tension

dimensionless horizontal force dimensionless touchdown point

α L( )E I⋅

Wsub L3⋅:= h L H,( )

H

Wsub L⋅:= z0 L H,( )

E I⋅

L2 H⋅( )−:=

Given

y L h L H,( )2 1+( )0.5h L H,( )2 z0 L H,( )2+( )0.5

− α L( )2 1

h L H,( )0.5 h L H,( )2 z0 L H,( )2−( )0.75⋅

h L H,( )2

h L H,( )2 1+( )2−

⋅+

⋅=

Msagh L H,( )

h L H,( )2 z0 L H,( )2+

h L H,( )2 z0 L H,( )2+( )0.25

h L H,( )1.5−

E I⋅L

⋅=

LH Find L H,( ):=

L LH0:=

Page 5: pipeline design calculations.pdf

Rv 1.439kN=Rv Rvst sin β( )⋅:=d 0.576m=d sin β( ) clv⋅:=

Rh 49.5 kN=Rh Rvst cos β( )⋅:=Rvst 49.521 kN=Rvst T 2⋅ sin β( ):=Support reactions:

VRadius 341.3m=chord angleβ 1.665deg=β

π2

φ−

2:=

VRadius

clv

2 cosπ4

φ2

+ :=Stinger chord length and radius clv 19.833 m=clv

19.8m

sin φ( ):=

V - lay

φ

(π/2 +φ)/2

(π/2 +φ)/2

(π−φ)/2

(π−φ)/2

φ/2

(π/2 −φ)/2

φ

(π/2 +φ)/2

(π/2 +φ)/2

(π−φ)/2

(π−φ)/2

φ/2

(π/2 −φ)/2

Page 6: pipeline design calculations.pdf

SRadius

cls

2 cos 0.5 π φ−( )⋅ ⋅:=

βφ2

:= β 43.335 deg= SRadius 80.1 m=

Rsst T 2⋅ sin β( ):= Rsst 1.169 103× kN= Rhs Rsst sin β( )⋅:= Rhs 802.568 kN=

d sin β( ) cls⋅:= d 75.489 m= Rvs Rsst cos β( )⋅:= Rvs 850.629 kN=

R sst

T

V

H

Rhs

RvsSum H = 0 round T H− Rhs−( ) 0 kN=

Sum V = 0 round V Rvs−( ) 0 kN=

Sum M = 0 round T d⋅ Rsst

cls

2⋅− 0 kN m⋅=

R vst

T

V

HRh

Rv

Sum H = 0 round H Rh−( ) 0 kN=

Sum V = 0 round T V− Rv−( ) 0 kN=

Sum M = 0 round T d⋅ Rvst

clv

2⋅− 0 kN m⋅=

R jst

TV

HRhj

Rvj

J - lay

Rhj H:= Rhj 49.5 kN=

Rvj V:= Rvj 850.629 kN=

Rjst T:= Rjst 852.068 kN=

Sum H = 0 , sum V = 0 and Sum M = 0

S - lay

Stinger chord length cls 110 m⋅:=

Page 7: pipeline design calculations.pdf

year 365 day⋅≡day 24 hour⋅≡hour 60 minute⋅≡minute 60 s⋅≡

Time Units

psi1

145MPa⋅≡bar 0.1 MPa⋅≡MPa 1000000 Pa⋅≡Pa

N

m2≡

MNm 106 N⋅ m⋅≡kNm 1000 N⋅ m⋅≡MN 106 N⋅≡kN 1000 N⋅≡N kgm

s2⋅≡

Force/Pressures etc

km 1000 m⋅≡in 0.0254 m⋅≡mm 0.001 m⋅≡

Length Units

C 1Q≡g 9.81m

s2⋅≡s 1T≡m 1L≡kg 1M≡

Define Units and Conversions and Constants

Page 8: pipeline design calculations.pdf

PROJECTTITLE

d 457.20 mmTp 14.30 mmTcte 6.00 mmTconc 140.00 mmDs 7850.00 Kg/m3

Dcte 1400.00 Kg/m3

Dconc 3192.00 Kg/m3

Dw 1030.00 Kg/m3

Dprod 1030.00 Kg/m3

We 0.000 Kg/mγsoil 9.300 KN/m3

C 0.000 KN/m2

Φ 30.000 Degrees

Nq 18.40Nc 30.14Nγ 15.07Wp 156.193 Kg/mWcte 12.224 Kg/mWconc 855.265 Kg/mWcont 148.604 Kg/mWbouy 454.070 Kg/mWsub 718.2160 Kg/m

D 0.7492 mP 7.0457 KN/mB 0.3171 m

QU1 22.2201 KN/m2

QU2 22.2200 KN/m2

≈ 0.000 -

δ 35 mmK 0.2013 N/mm

D / 2 - [(D / 2)2 - (B / 2)2 ]1/2

P / δPipe Sinkage [Refer Figure]Soil Stiffness

RESULTS

QU1 - QU2

Pipe overall diameter

Ultimate bearing capacity of soilUltimate bearing capacity of soilTolerance of iterations

Submerged unit weight of pipePipe width in contact with soil after sinkage

d + 2Tcte + 2Tconc

P / BC NC + 0.5 B γsoil Nγ

Wp + We + Wcte + Wconc + Wcon t - Wbouy

Brinch Hansen's Bearing capacity factors

Unit weight of pipeUnit weight of corrosion coatingUnit weight of concrete coatingUnit weight of pipeline contentBouyancy of unit length of pipeSubmerged unit weight of pipe

π [d + Tcte] Tcte Dcte

π [d + 2Tcte + Tconc] Tconc Dconc

0.25 π [d - 2Tp]2 Dprod

0.25 π [d + 2Tcte + 2Tconc]2 Dw

Angle of Friction of soil (For Sandy Soil only else 0)

CALCULATIONSe π tan φ tan2 [45 + ( Φ / 2)]

[Nq - 1] cot Φ1.5 [Nq - 1] tan Φ

π [d - Tp] Tp Ds

-

Density of pipe contentUnit extra weightSubmerged density of soilCohesion of soil (For Clayey Soil only else 0)

Pipe outer diameterPipe wall thicknessThickness of corrosion coatingConcrete coating thicknessDensity of steelDensity of corrosion coatingDensity of concreteDensity of water

Sample calculations

INPUT PARAMETERS

DASinkage Ver 1.0.1 PIPELINE SINKAGE CALCULATIONS

Sample calculations

B

δ

D/2

D

P

QU

DESIGN AIDE - PIPELINE ENGINEERING [http://www.narendranath.itgo.com] Pipe Sinkage/DASinkage.xls

Page 9: pipeline design calculations.pdf

Pressure Drop Through a Pipe of a Two-Phase Fluid

1. Introduction

A mixture of gas and oil flow through a pipeline. This worksheet will use theLockhart-Martinelli correlation to find the two-phase pressure gradient.

2. Physical Parameters

The following physical parameters are known.

Pipe relative roughness e 0.0001:=

Pipe diameter D 150mm:=

Liquid flowrate WL 20kg s1−⋅:=

Gas flowrate WG 2kg s1−⋅:=

Liquid viscosity µL 0.005 Pa⋅ s⋅:=

Gas viscosity µG 1.35 105−⋅ Pa⋅ s⋅:=

Liquid density ρL 710kg m3−⋅:=

Gas density ρG 2.73kg m3−⋅:=

3. Mass Fluxes

Cross-sectionalarea of pipe

Aπ D

2⋅4

:= A 0.018 m2=

Liqud mass flux GL

WL

A:= GL 1131.8

kg

m2

s⋅=

Gas mass flux GG

WG

A:= GG 113.2

kg

m2

s⋅=

4. Reynolds Numbers

Liquid Reynolds number ReL

GL D⋅

µL:= ReL 3.395 10

4×=

Gas Reynolds number ReG

GG D⋅

µG:= ReG 1.258 10

6×=

Page 10: pipeline design calculations.pdf

5. Friction Factors

The individual liquid and gas friction factors are calculated with the Colebrook equation.

guess value fturb 0.01:=

Given

1

fturb2− log

e

3.7

2.51

Re fturb⋅+

⋅=

friction Re e,( ) Find fturb( ):=

Liquid friction factor fL friction ReL e,( ):= fL 0.023=

Gas friction factor fG friction ReG e,( ):= fG 0.013=

6. Individual Pressure Gradients

Liquid phase pressuregradient

dPdLL

fL

2

GL2

ρL D⋅⋅:= dPdLL 138.932

Pa

m=

Gas phase pressuregradient

dPdLG

fG

2

GG2

ρG D⋅⋅:= dPdLG 206.384

Pa

m=

7. Lockhart-Martinelli Factor and the Total Pressure Gradient

The two-phase multiplier will be calculated using the Lockhart-Martinelli paremeter and the correlations provided by Chisholm (1967).

Lockhart-Martinellifactor

Xtt

dPdLL

dPdLG:= Xtt 0.82=

Liquid two-phasemultiplier

ΦL 1 18Xtt1−+ Xtt

2−+

0.5:= ΦL 4.942=

Gas two-phase mutiplier ΦG 1 18Xtt+ Xtt2+

0.5:= ΦG 4.055=

Hence the total pressure gradient is calculated using both the gas and liquidtwo-phase multipliers. They should both be the same.

Total pressure gradient dPdLT_L dPdLL ΦL2

⋅:= dPdLT_L 3.393 103×

Pa

m=

dPdLT_G dPdLG ΦG2

⋅:= dPdLT_G 3.393 103×

Pa

m=

Page 11: pipeline design calculations.pdf

INTRODUCTION

This worksheet determines the possibility of local buckle occuring in the riser at the clamp

locations using DNV OS F101, October 2010.

INPUTS

MATERIAL PROPERTIES

Nominal Diameter of Pipeline ODnom 20in:=

Actual Outer Diameter of Pipeline ODac 20in:=

Wall Thickness t 0.812in:=

Pipe Material PLmatAPI 5L X42

API 5L X46

API 5L X52

API 5L X56

:=

Corrosion Allowance CA 0.118in:=

DESIGN CONDITIONS

Design Pressure Pdes 2010psi:=

Design Temperature Tdes 225 °F:=

Product Description Product "FWS":=

Density of sea water ρsw 1025 kg⋅ m3−

⋅:=

Water Depth WD 118.5ft:=

Case Dcond1. Operating Case

2. Hydrotest Case

:=

AUTOPIPE INPUTS

MF 139321lbf ft⋅:= Moment due to Functional Load

ME 44427lbf ft⋅:= Moment due to Environmental Load

SF 9299lbf:= Axial load due to Functional Load

SE 4806lbf:= Axial load due to Environmental Load

DNV OS F101 INPUTS

γF 1.1:= Load effect factor for Functional Load, Table 4-4 DNV OS F101

γE 1.3:= Load effect factor for Environmental Load, Table 4-4 DNV OS F101

γC 1.07:= Condition Load effect factor, Table 4-5 DNV OS F101

internet
Text Box
RISER LOCAL BUCKLING
Page 12: pipeline design calculations.pdf

γm 1.15:= SLS/ULS/ALS = 1.15, FLS = 1, tABLE 5.4 Material resistance

factor

γsc 1.14:= Low = 1.04, Medium = 1.14, High = 1.26

fy.temp 23MPa:= Derating value due to temperature of the yield stress- Figure 2, the

derating value is considered for values above 50 deg C only for

Carbon steel pipes

fu.temp 23MPa:=

αu 0.96:= Material Strength factor - Table 5-6 DNV OS F101

DERIVED DATA

SMYS

SMTS

Wall thickness to be used is

Ssmys 42000 psi⋅=

Usmts 60200 psi⋅=

t 0.694 in⋅=

fy Ssmys fy.temp−( ) αu⋅ 3.712 104

× psi⋅=:=

fu Usmts fu.temp−( ) αu⋅ 5.459 104

× psi=:=

Phyd g WD⋅ ρsw⋅ 52.657 psi=:= Pressure as a result of the water depth

fcb min fy

fu

1.15,

3.712 104

× psi=:=

Pbu2 t CA−( )⋅

ODac t CA−( )−

fcb⋅2

3⋅ 2.542 10

3× psi=:=

CALCULATIONS

The Design Moment is given by

MSd MF γF⋅ γC⋅( ) ME γE⋅( )+:= Inteference and Accidental loads are assumed to be Zero

The plastic capacity for a pipe is given as

Mp fy ODac t−( )2

⋅ t⋅:=

The normalised moment is given as

MSdn

MSd

Mp

0.277=:=

The design Effective axial force is given by

Page 13: pipeline design calculations.pdf

SSd SF γF⋅ γC⋅( ) SE γE⋅( )+:= Inteference and Accidental loads are assumed to be Zero

The plastic capacity of the pipe is given as

Sp fy π⋅ ODac t−( )⋅ t⋅:=

The normalised axial force is given as

SSdn

SSd

Sp

0.011=:=

Factor used in combined loading strain is given as

β 0.5ODac

t

15<if

60ODac

t

9015

ODac

t

≤ 60≤if

0ODac

t

60>if

:=

β 0.346=

Effect of the D/t ratio is given as

αp 1 β−( )Pdes Phyd−

Pbu

2

3

<if

1 3β 1Pdes Phyd−

Pbu

⋅−

Pdes Phyd−

Pbu

2

3≥if

:=

αp 0.761=

Flow stress parameter is given as

αc 1 β−( ) βfu

fy

⋅+ 1.163=:=

LOAD CONTROLLED CONDITION

Pipe members subjected to bending moments, effective axial force and internal overpressure

shal be designed to satisfy the condition that the result of the equaltion must be less than 1

Page 14: pipeline design calculations.pdf

LBpos γm γsc⋅

MSdn

αc

γm γsc⋅ SSdn⋅

αc

2

+

2

αp

Pdes Phyd−

αc Pbu⋅

2

+ 0.351=:=

is "Not Likely" LBpos 1<if

"Likely" LBpos 1≥if

:=

The possibility of buckling at the location is "Not Likely"=

Page 15: pipeline design calculations.pdf

WALL THICKNESS CALCULATION

to calculate wall thickness based on Dnv 1981 & ASME B.31.4

PREPARED BY : IVGCHECKED BY :

Input data:

maximum water depthdmax 56m:=

minimum water depth

dmin 20m:=usage factor

ηh_1 0.72:=

ηh_2 0.5:=

temperature derating factor kt 1:=

seawater density ρsw 64lb

ft3

:=

maximum external pressure Pe_max ρsw g dmax:=Pe_max 5.63 10

5 Pa=

minimum external pressure Pe_min ρsw g dmin:=Pe_min 2.011 10

5 Pa=

pressure design Pd 1100psi:=

outside diameter D 28in:=

corrosion allowance CA 2.5mm:=

Material API 5L X - 52

Specified Minimum Yield Stress SMYS 52000psi:=

Specified Minimum Tensile Stress SMTS 66000psi:=

Modulus Elasticity E 207000MPa:=

Page 16: pipeline design calculations.pdf

STANDARD DNV 1981

Zone 1:

Minimum req wall thickness

tDNV_1

Pd Pe_min-( ) D2ηh_1 SMYS kt

:=tDNV_1 0.4 in=

Nominal wall thickness

tnom_1_DNV_sw tDNV_1 CA+:=tnom_1_DNV_sw 0.499 in=

Zone 2

Minimum req wall thicknesstDNV_2

Pd Pe_min-( ) D2ηh_2 SMYS kt

:=tDNV_2 0.577 in=

Nominal wall thicknesstnom_2_DNV_sw tDNV_2 CA+:=

tnom_2_DNV_sw 0.675 in=

STANDARD ASME B.31.4

Longitudinal joint factor Ε 1:=

S 0.72 Ε SMYS:= S 2.581 108

Pa=

Design hoop stress

Minimum wall thickness t31.4

Pd D

2S:= t31.4 0.411 in=

tnom_31.4_sw t31.4 CA+:= tnom_31.4_sw 0.51 in=Nominal wall thickness

SUMMARY AND CONCLUSION

DnV 1981

Zone 1 tnom_1_DNV_sw 0.499 in=

Zone 2tnom_2_DNV_sw 0.675 in=

ASME B.314

tnom_31.4_sw 0.51 in=

Page 17: pipeline design calculations.pdf

EN 8673 Subsea Pipeline Engineering Lecture 10 Winter 2009

Lecture 10 Example #1 Riser Wall Thickness Calculation

DEFINED UNITS

MPa 106Pa�� kPa 103Pa�� GPa 109Pa�� C K�� kN 103N��

PIPELINE SYSTEM PARAMETERS

Nominal Outside Diameter Do 914.4mm��

Initial Selection Nominal Wall Thickness (Sec.5 C203 Table 5-3) tnom 22.1mm��

Fabrication Process (Sec.7 B300 Table 7-1) [SMLS, HFW, SAW] FAB "SAW"��

Corrosion Allowance (Sec.6 D203, D204) tcorr 6mm��

Elastic Modulus E 205GPa��

Specified Minimum Yield Stress (Sec.7 B300 Table 7-5; 7-11) SMYS 450MPa��

Speciifed Minimum Tensile Stress (Sec.7 B300 Table 7-5; 7-11) SMTS 535MPa��

Coefficient of Thermal Expansion αT 1.15 10 5�� C 1�

��

Poisson's Ratio ν 0.3��

Pipeline Route Length Lp 10km��

Linepipe Density ρs 7850kg m 3����

Riser Neoprene Coating Thickness tc 12.5mm��

Riser Neoprene Coating Density ρc 1450kg m 3����

OPERATATIONAL PARAMETERS

API Gravity API 38��

Product Contents Density

ρcont 1000 kg� m 3��

141.5131.5 API�

��� ρcont 835 m 3� kg��

Design Pressure (Gauge) Pd 10MPa��

Safety Class (Sec.2 C200-C400) [L, M, H] SC "H"��

Design Pressure Reference Level href 25m��

Operational Temperature To 45 C���

Tie-in Temperature Tti 0 C���

Maximum Water Depth hl 0m��

Seawater Density ρw 1025kg m 3����

Hydrotest Fluid Density ρt 1025kg m 3����

09/02/2009 Page 1 of 5

Page 18: pipeline design calculations.pdf

EN 8673 Subsea Pipeline Engineering Lecture 10 Winter 2009

DNV OS-F101 PARTIAL FACTORS AND DESIGN PARAMETERS

System Operations Incidental/Design Pressure Factor (Sec.3 Table 3-1) γinc_o 1.10��

System Test Incidental/Design Pressure Factor (Sec.3 Table 3-1) γinc_t 1.00��

Material Resistance Factor (Sec.5 C205 Table 5-4) γm 1.15��

Safety Class Resistance Factor - Operatiosn (Sec.5 C206 Table 5-5) γSC_o 1.308��

Safety Class Resistance Factor - System Test (Sec.5 C206 Table 5-5) γSC_t 1.046��

Material Strength Factor (Sec.5 C306 Table 5-6) αU 0.96��

Maximum Fabrication Factor (Sec.5 C307 Table 5-7)

αfab 1.00 FAB "SMLS"=if

0.93 FAB "HFW"=if

0.85 FAB "SAW"=if

�� αfab 0.85�

Diameter Fabrication Tolerance(Sec.7 G201 Table 7-17)

ΔDo max 0.5mm 0.0075 Do��� FAB "SMLS"= Do 610mm��if

0.01 Do� FAB "SMLS"= Do 610mm �if

min max 0.5mm 0.0075 Do��� 3.2mm�� FAB "HFW"= Do 610mm��if

min 0.005 Do� 3.2mm�� FAB "HFW"= Do 610mm �if

min max 0.5mm 0.0075 Do��� 3.2mm�� FAB "SAW"= Do 610mm��if

min 0.005 Do� 3.2mm�� FAB "SAW"= Do 610mm �if

�� ΔDo 3.200 mm��

Wall Thickness Fabrication Tolerance(Sec.7 G307 Table 7-18)

tfab 0.5mm FAB "SMLS"= tnom 4mm��if

0.125 tnom� FAB "SMLS"= tnom 4mm �if

0.125 tnom� FAB "SMLS"= tnom 10mm��if

0.100 tnom� FAB "SMLS"= tnom 25mm��if

3mm FAB "SMLS"= tnom 30mm��if

0.4mm FAB "HFW"= tnom 6mm��if

0.7mm FAB "HFW"= tnom 6mm �if

1.0mm FAB "HFW"= tnom 15mm �if

0.5mm FAB "SAW"= tnom 6mm��if

0.7mm FAB "SAW"= tnom 6mm �if

1.0mm FAB "SAW"= tnom 10mm �if

1.0mm FAB "SAW"= tnom 20mm �if

�� tfab 1.000 mm��

09/02/2009 Page 2 of 5

Page 19: pipeline design calculations.pdf

EN 8673 Subsea Pipeline Engineering Lecture 10 Winter 2009

Material Derating (Sec.5 C300 Figure 2)

ΔSMYS 0MPa To 50C�if

To 50 C�� 30MPa50 C�

���

���

����

���

50 C� To� 100C�if

30MPa To 100 C�� 40MPa100 C�

���

���

�����

���

otherwise

�� ΔSMYS 0.00 MPa��

ΔSMTS 0MPa To 50C�if

To 50 C�� 30MPa50 C�

���

���

����

���

50 C� To� 100C�if

30MPa To 100 C�� 40MPa100 C�

���

���

�����

���

otherwise

�� ΔSMYS 0.00 MPa��

fy SMYS ΔSMYS�( ) αU��� fy 432 MPa��

fu SMTS ΔSMTS�( ) αU��� fu 514 MPa��

09/02/2009 Page 3 of 5

Page 20: pipeline design calculations.pdf

EN 8673 Subsea Pipeline Engineering Lecture 10 Winter 2009

ENGINEERING ANALYSIS

PIPELINE GEOMETRIC PROPERTIES

Astπ

4Do

2 Do 2 tnom�� 2��

������ Ast 6.20 104

� mm2��

Acπ

4Do 2 tc�� 2 Do

2��

������ Ac 3.64 104

� mm2��

Apπ

4Do 2 tc�� 2

��� Ap 6.93 105� mm2

��

BUOYANCY FORCE CALCULATION

BF g m� ρw Ap� ρc Ac�� ρs Ast�� ��� BF 1.68 kN��

Buoyancy Force Check

BFchk "NEGATIVE BUOYANCY" BF 0�if

"FLOTATION" otherwise

��

BFchk "FLOTATION"�

PRESSURE CONTAINMENT (Sec.5 D200)

Local Incidental Pressure During Operations (Sec.4 B202; Sec.5 D203)

Pli γinc_o Pd� ρcont g� href hl� ���� Pli 11.20 MPa��

Local Incidental Pressure System Test (Sec.4 B202; Sec.5 B203 & D203)

Plt γinc_t Pd� ρt g� href hl� �� γinc_t Pd� ρt g� href hl� �� Pli�if

1.03 Pli� SC "L"=if

1.05 Pli� SC "M"=if

1.05 Pli� SC "H"=if

�� Plt 11.76 MPa��

External Hydrostatic Pressure

Pe ρw g� hl��� Pe 0.00 MPa��

Characteristic Yield Resistance - Operations (Sec.5 D203)

fcb_o min fyfu

1.15��

���

���

�� fcb_o 432.00 MPa��

Characteristic Yield Resistance - System Test (Sec.5 D203)

fcb_t min SMYSSMTS1.15

�����

���

�� fcb_t 450.00 MPa��

09/02/2009 Page 4 of 5

Page 21: pipeline design calculations.pdf

EN 8673 Subsea Pipeline Engineering Lecture 10 Winter 2009

Wall Thickness Requirement - Operations (Sec.5 D202 Eqn.5.7)

t1_oDo

12

γSC_o γm� Pli Pe� �

2

3� fcb_o��

�� t1_o 15.19 mm��

Minimum Wall Thickness -Operations (Sec.5 C202 Table 5-2)

tmin_o t1_o tfab� tcorr��� tmin_o 22.19 mm��

Wall Thickness Requirement - System Test (Sec.5 D202 Eqn.5.7)

t1_tDo

12

γSC_t γm� Plt Pe� �

2

3� fcb_t��

�� t1_t 12.28 mm��

Minimum Wall Thickness - System Test (Sec.5 C202 Table 5-2)

tmin_t t1_t tfab��� tmin_t 13.28 mm��

Minimum Wall Thickness Requirement for Pressure Containment

tmin max tmin_o tmin_t�� �� tmin 22.19 mm��

WALL THICKNESS DESIGN CHECK - PRESSURE CONTAINMENT

Wall Thickness Check - Pressure Containment

tmin_chk_o "WT PRESSURE CONTAINMENT OPERATIONS OK" tnom tmin_o if

"INCREASE WT PRESSURE CONTAINMENT OPERATIONS" otherwise

��

tmin_chk_o "INCREASE WT PRESSURE CONTAINMENT OPERATIONS"�

Wall Thickness Check - System Test

tmin_chk_t "WT PRESSURE CONTAINMENT SYSTEM TEST OK" tnom tmin_t if

"INCREASE WT PRESSURE CONTAINMENT SYSTEM TEST" otherwise

��

tmin_chk_t "WT PRESSURE CONTAINMENT SYSTEM TEST OK"�

09/02/2009 Page 5 of 5