PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

44
Andrei Nomerotski 1 PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors Mark Brouard, Edward Halford, Jason Lee, Craig Slater, Claire Vallance, Edward Wilman, Benjamin Winter, Weihao Yuen Chemistry, University of Oxford Jaya John John, Laura Hill, Andrei Nomerotski Physics, University of Oxford Andy Clark, Jamie Crooks, Renato Turchetta Rutherford Appleton Laboratory VERTEX 2011, June 2011

description

PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors Mark Brouard, Edward Halford, Jason Lee, Craig Slater, Claire Vallance, Edward Wilman, Benjamin Winter, Weihao Yuen Chemistry, University of Oxford Jaya John John, Laura Hill, Andrei Nomerotski - PowerPoint PPT Presentation

Transcript of PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Page 1: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

1

PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Mark Brouard, Edward Halford, Jason Lee, Craig Slater, Claire Vallance, Edward Wilman, Benjamin Winter, Weihao Yuen

Chemistry, University of Oxford

Jaya John John, Laura Hill, Andrei Nomerotski

Physics, University of Oxford

Andy Clark, Jamie Crooks, Renato Turchetta

Rutherford Appleton Laboratory

VERTEX 2011, June 2011

Page 2: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

2

Outline

PImMS: Pixel Imaging Mass Spectrometry

Proof of concept experiments

First results with PImMS1 Sensor

Page 3: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

3

Mass Spectrometry Very popular tool in chemistry, biology, pharmaceutical industry etc. TOF MS: Heavier fragments fly slower

Mass spectrum for human plasma

Total Time ~ 100 sec Measure detector current: limited to one dimension Mass resolution M/dM for TOF MS up to 50000

Page 4: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

4

Ion ImagingFix a mass peak

Measure full scattering distribution of fragment ions

Sensitive to fragmentation process

S atom ion images for OCS photodissociation at 248nm

Page 5: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

5

Visible Light vs Direct Detection

Visible light detection

MCP Phosphor

pixel sensor

Electron detection

MCPpixel sensor

E

Typically use visible light but direct detection of electrons after MCP is possible

Page 6: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

6

Pixel Imaging Mass Spec: PImMS

PImMS = Mass Spectroscopy Χ Ion Imaging

• Recent progress in silicon technologies: fast pixel detectors overcome the single mass peak limitation

• Since 2009 a 3-year project funded by STFC in UK to build a fast camera for mass spec applications

Page 7: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

7

Pixel Imaging Mass Spec: PImMS

Imaging of multiple masses in a single acquisition

Mass resolution determined by flight tube, phosphor decay time and camera speed

Page 8: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

8

Fast Framing CCD Camera

First proof of principle experiments:CCD camera by DALSA (ZE-40-04K07)

16 sequential images at 64x64 resolution

Pixel : 100 x 100 sq.micron

Max frame rate 100 MHz (!)

Principle: fast, local storage of charge in a CCD register at imaging pixel level

Limitation: number of frames

DALSA camera

Page 9: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

9

Velocity Mapped PImMS (1)

2007-2008: Proof of concept experiment successfully performed on dimethyldisulfide (DMDS)3

Ionization and fragmentation performed with a polarized laser, data recorded with DALSA camera.

CH3S2CH3

3: M. Brouard, E.K. Campbell, A.J. Johnsen, C. Vallance, W.H. Yuen, and A. Nomerotski, Rev. Sci. Instrum. 79, 123115, (2008)

Page 10: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

10

Possible applications (1)

Surface imaging for separate mass peaks

Replace scanning with wide-field imaging

R.Heeren et al

Page 11: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

11

Possible applications (2)

Parallel processing– high throughput sampling

Page 12: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

12

Possible applications (3) Fingerprinting of molecules

mass fingerprinting of human serum albumin(from Wikipedia)

Page 13: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

13

PImMS Sensor: Imager with time stamping

Page 14: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

14

Time stamping provides same information generating much less data

BUT needs low intensity (one pixel hit only once or less)

Fast Framing vs Time Stamping

Time stamping

Page 15: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

15

Spin-off of ILC Sensor R&D PImMS and International Linear Collider have similar data

structurePImMS : 0.2 ms duration @ 20 HzILC: 1.0 ms duration @ 5 Hz

337 ns

2820x

0.2 s

0.95 ms time

0.05 s

0.2 ms

PImMS

ILC

Page 16: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

16

Signal detected in thin epitaxial layer < 20 m

Limited functionality as only NMOS transistors are allowed PMOS transistors compete for charge

• INMAPS process developed at RAL

Shields n-wells with deep p+ implant

Full CMOS capability

Monolithic Active Pixel Sensors

PImMS1 sensor

Page 17: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

17

PImMS 1 Specs 72 by 72 pixel array 70 um by 70 um pixel 5 mm x 5 mm active area 50 ns timing resolution 12 bit time stamp storage 4 memories per pixel 1 ms maximum experimental period Programmable threshold and trim

Page 18: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

18

Ion Intensity Simulations

Important to be sensitive to heavy fragments

Simulated probability to have N hits/pixel

Four buffers allow higher intensity

Page 19: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

19

The PImMS Pixel

Charge Collection Diodes

Preamplifier

Shaper

Comparator

Page 20: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

20

PImMS Pixel

Page 21: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

21

PImMS1 Technology

615 transistors in every pixel Over 3 million transistors

Submitted in Aug 2010, received in Nov 2010

• 0.18 um CMOS fabrication

• INMAPS process (Rutherford Appleton Lab)

Page 22: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

22

PImMS1 Sensor

7.2 mm

Page 23: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

23

PImMS Camera System

Page 24: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

24

PImMS Testing

PImMS Camera

Page 25: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

25

PImMS Camera read out over a USB cable.

Page 26: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

26

First Analogue Image

Page 27: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

27

First Digital Readout Image

Two laser pulses separated by 300 ns

Page 28: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

28

PImMS1 Digital ReadoutFive laser pulses, each at a different time

Page 29: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

29

Digital Readout – 3D interpretation

Tim

ecod

e

Pixel position - x Pixel position - y

Page 30: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

30

Pixel Masking

Arbitrary masks are possible

Three laser pulses separated in time

Page 31: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

31

Sensor Characterization

Photon Transfer CurvePoisson distribution of signal Noise = sqrt(Signal) absolute calibration

Full well capacity 24ke

Quantum efficiency: 8-9% for visible light, max @ 470 nmFront illuminated sensor

Slope = 0.5

Page 32: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

32

Threshold Trim• Each pixel has a trim

register: 4 bits to adjust threshold

• Maximum trim ~50mV

• Calibration procedure equalizes thresholds for all pixels

• Dispersion (sigma) before and after calibration 12.8 3.6 mV (~70 e)

Page 33: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

33

TOF MS in Oxford Chemistry

PImMS sensor is mounted here

Page 34: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

34

Comparison of PImMS and PMT

Same mass peaks seen with PImMS as with a photomultiplier tube (PMT)

Two fragments of CHCA 1.5 kV MCP; 4.0 kV Phosphor screen

Page 35: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

35

One of the two PImMS peaks

PImMS : 50 ns per timecode FWHM ≈ 100ns in both

Page 36: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

36

Ions Detected vs MCP VoltageIons Detected vs MCP: 4kV Screen

0

50

100

150

200

250

300

350

400

1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54

MCP/kV

Ions

# of

ions

/cyc

le

MCP voltage (kV)

Page 37: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

37

FWHM vs MCP VoltageFWHM vs MCP: 4.0 kV Screen

0

0.05

0.1

0.15

0.2

0.25

1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54

MCP/kV

FWH

M/u

s

FWH

M (u

s)

MCP voltage (kV)

100 ns

Page 38: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

38

Spatial mappingVelocity mapping

Ion Imaging Modes

Page 39: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

39

Potential applications: forensics and tissue analysis

Ion image Microscope image (Trypan blue)

Spatial Mode Imaging

Page 40: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

40

Conventional CCD camera image oriented 45o to PImMS

First PImMS spatial imaging results

Page 41: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

41

Spatial map imagingFirst PImMS spatial imaging results

Spatial Imaging

Page 42: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

42

Spatial map imagingFirst PImMS spatial imaging results: four registers

Time of flight

Inte

nsi

ty

Multi-hit Capabilities

Page 43: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

43

Next Steps: PImMS 2 and beyond Larger Array 324 x 324 pixels 23 x 23 sq.mm active area 50 Frames/second with existing

PImMS camera Max 380 Frames/second Reduced interface pin count for

vacuum operation

Possible future directionsFaster: 101 ns

Larger: wafer scale sensors

More sensitive: backthinned

Intensity information: ToT

Build-in ADC

Page 44: PImMS: Pixel Imaging Mass Spectrometry with Fast Pixel Detectors

Andrei Nomerotski

44

Summary

Pixel Imaging Mass Spectroscopy is a powerful hybrid of usual TOF MS and Ion Imaging

Progress in sensor technologies allows simultaneous capture of images for multiple mass peaks

First PImMS sensor under tests since Feb 2011, second generation sensor in the end of 2011

Other applications, ex. atom probe tomography, fluorescent imaging etc