Piggyback seal Micromegas

15
Piggyback seal Micromegas D. Attié, A. Chaus, D. Durand, D. Deforges, E. Ferrer Ribas , J. Galán, I.Giomataris, A. Gongadze, F.J. Iguaz, F. Jeanneau, R. De Oliveira, T. Papaevangelou, A. Peyaud, A. Teixeira CERN and IRFU (CEA-Saclay)

description

Piggyback seal Micromegas. D. Attié, A. Chaus, D. Durand, D. Deforges, E. Ferrer Ribas , J. Galán, I.Giomataris, A. Gongadze, F.J. Iguaz, F. Jeanneau, R. De Oliveira, T. Papaevangelou, A. Peyaud, A. Teixeira CERN and IRFU (CEA-Saclay). Concept. - PowerPoint PPT Presentation

Transcript of Piggyback seal Micromegas

Page 1: Piggyback seal Micromegas

Piggyback seal Micromegas

• D. Attié, A. Chaus, D. Durand, D. Deforges, E. Ferrer Ribas, J. Galán, I.Giomataris, A. Gongadze, F.J. Iguaz, F. Jeanneau, R. De Oliveira, T. Papaevangelou, A. Peyaud, A. Teixeira

• CERN and IRFU (CEA-Saclay)

Page 2: Piggyback seal Micromegas

Concept• Separation of the amplification structure and the readout plane

Resistive thin layer (1 MΩ /□ to 100 GΩ /□)

• Signal is transmitted by capacitive coupling to the readout plane

• Optimisation of the induced signal : tinsulator << tgas εinsulator/εgas

• εinsulator should be as high as possible (first prototype alumina with ε~10 )

Standard bulk structure

Insulator (Ceramic substrate~100-500 µm)

Readout plane

Page 3: Piggyback seal Micromegas

I. Giomataris

First set-up

3 detectors with active area: 3×3 cm2

1 cm drift, 128 µm amplification gap, 20 µm of RuO2 with 100 MΩ/□, ceramic layer 300 µm

Argon + 5%Iso and Ne + 5% Ethane and a standard buk in Argon + 5%Iso

-HVdrift

-HVresist

Ground

-HVamp

Page 4: Piggyback seal Micromegas

First experimental resultsChecking possibles looses by the ceramic layer: signal entirely transmitted

Test with a 252Cf (fission fragments signals) reading simultaneously mesh and anode

Amplitude within 5%

Same rise time for both polarities

Page 5: Piggyback seal Micromegas

I. Giomataris

Page 6: Piggyback seal Micromegas

I. Giomataris

Page 7: Piggyback seal Micromegas

I. Giomataris

Rate capabilityWith X-rays from a gun (8keV)

Page 8: Piggyback seal Micromegas

I. Giomataris

Comparison with Monte Carlo

Page 9: Piggyback seal Micromegas

I. Giomataris

1 G/sq

10 G/sq

100 M/sq

10 M/sq

Page 10: Piggyback seal Micromegas

CMOS chip readoutMedipix2/TimepixCMOS chip256×256 square pixels of 55 µm side each

To be used with MPGD the MPGD needs to be covered by a layerof high resistivity material (amorphous silicon or silicon-rich nitride)

Set-up with Piggyback30×20 mm2 bulkAmplification gap 128 µmDrift gap 10 mm

Signal observed on Medipix chip with Ar + 5% IsoNo damage of the chip during operation at high gain 105

Page 11: Piggyback seal Micromegas

[email protected]

Spot diameter about 500 mWith a ceramic plate of 100 mWe expect to get it down to 150 m

5555Fe events (G ~ 50 000)Fe events (G ~ 50 000)5555Fe events (G ~ 50 000)Fe events (G ~ 50 000)

Page 12: Piggyback seal Micromegas

Second set-up: towards a sealed detector

Gai

n

Ar+5% Iso

Page 13: Piggyback seal Micromegas

Detector chamber gluedOne night oven at 60°C + pumping

Flushed with gas for only 4 hoursStability over 14 days

Second set-up: towards a sealed detector

Page 14: Piggyback seal Micromegas

Latest result for a sealed detector

Stability over 30 daysSmall fluctuations due to day night effectsBig amplitude fluctuation due to the removal of the source

Piggyback resistive Micromegas , D. Attié et al

e-Print: arXiv:1310.1242 [physics.ins-det]

Page 15: Piggyback seal Micromegas

Conclusions and outlook

• Floating mesh, Bulk Micromegas, Microbulk, Ingrid and now Piggyback

• Piggyback resistive Micromegas provides spark protection

• Detector dissociated from readout plane

• Can optimise dead space

• High rate vs resistivity has been studied

• Test higher values of resistivity, different thickness of ceramic

• Seal detector is under development