PID Controller Design for Nonlinear Systems Using Discrete ...

31
Motivation PID Controller Design Feedforward Control Conclusion & Outlook PID Controller Design for Nonlinear Systems Using Discrete-Time Local Model Networks 4. Workshop f¨ ur Modellbasierte Kalibriermethoden Nikolaus Euler-Rolle, Christoph Hametner, Stefan Jakubek Christian Mayr (AVL List GmbH) 08.11.2013 4. Workshop f¨ur ModellbasierteKalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 1/26

Transcript of PID Controller Design for Nonlinear Systems Using Discrete ...

Page 1: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

PID Controller Design for Nonlinear Systems UsingDiscrete-Time Local Model Networks

4. Workshop fur Modellbasierte Kalibriermethoden

Nikolaus Euler-Rolle, Christoph Hametner, Stefan Jakubek

Christian Mayr (AVL List GmbH)

08.11.2013

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 1/26

Page 2: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedback Control of Nonlinear Systems

Motivation

Implementation of Two-Degrees-of-Freedom control using local model networks

Feedforward part improves the dynamic performance- Reference tracking- Deadtime- Input saturation

Controller design on (semi)-physical process models instead of testbed runs

Opportunity of inexpensive feasibility studies and rapid prototyping

PID Plant

ww*

u*

uy

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 2/26

Page 3: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedback Control of Nonlinear Systems

Motivation

Implementation of Two-Degrees-of-Freedom control using local model networks

Feedforward part improves the dynamic performance- Reference tracking- Deadtime- Input saturation

Controller design on (semi)-physical process models instead of testbed runs

Opportunity of inexpensive feasibility studies and rapid prototyping

Approach

Globally nonlinear process model (based on input/output measurements)

Design of nonlinear PID controllers with guaranteed global stability

Fully automated generation of a dynamic feedforward control

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 2/26

Page 4: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Controller Design Workflow

TestbedMaps

Signals

DoE

[n, q, u]

LMNSS-ModelLocal PIDs

DoE

Optimisation

y

SimulationParameter

ControllerMaps

Performance

Stability

Ide

ntifica

tio

n

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 3/26

Page 5: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Controller Design Workflow

TestbedMaps

Signals

DoE

[n, q, u]

LMNSS-ModelLocal PIDs

DoE

Optimisation

y

SimulationParameter

ControllerMaps

Performance

Stability

Ide

ntifica

tio

n

DynamicFF-Control

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 3/26

Page 6: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

2 PID Controller Design

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 4/26

Page 7: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Local Model NetworkOverview

1000 1500 2000 2500

5

10

15

20

25

30

InjectionMass,mg/stroke

Engine Speed, rpm

local

global

Local Model Network

Globally nonlinear dynamical systemrepresented by local linear models

Found by system identification

Local stability proof & controllerdesign using linear methods

⇒ Global approach necessary (due totransition, model interpolation...)

o for nonlinear systemso based on Lyapunov stability theory

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 5/26

Page 8: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Typical PID Controller StructureExample: Engine Control Unit

-

min

max

P-Part

I-Part

DT1-Part

anti windup

Map

Map

Feedforward-

Feedback-Control

n

n

n

q

q

q

u

w

y

e

ufb

uff

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 6/26

Page 9: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedback Controlled Local Model Network

Concept

One local controller (LC) per local model(LM)

Scheduling of parameters according to thevalidity functions of local models (ParallelDistributed Compensator)

KPID(Φ) =∑

ΦiK(i)PID

Formal split into inputs used for control uand disturbances z

!"#$%"&&'%

(')*+#

,-!.

,- /

,!!.

,! /+

01'%2$*#+!

1"*#$!

('1'#('#$

3,-!/

,--

,!!/

,! -,-!- ,!!-

Nonlinear process is approximated by a local model networkTrade-Off: model fit ↔ simple controller design

Closed-loop state-space representation necessary (to prove Lyapunov stability)

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 7/26

Page 10: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Closed-Loop State-Space RepresentationIncluding Error Signal Adaptation

InputScheduler

q−1I

v(k)B(Φ)

B(Φ)

E(Φ) A(Φ)

KPID(Φ, e)

we(Φ, e)

cTx(k + 1)

x(k)

y(k)w(k)

z(k)z(k)

f(Φ)

-

SystemPre-Filter

Figure: Local model network with PID controller in state-space representation

State Equation

x(k + 1) = [A(Φ)−B(Φ)KPID(Φ, e)]x(k) +B(Φ)G(Φ, e)w(k) +E(Φ)z(k)

+ f(Φ) +B(Φ)we(Φ, e)

y(k) =cTx(k)

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 8/26

Page 11: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Overview of the Design Procedure

Controller Design

Basic calibration (linear design methods per local model)

Generation of a suitable performance sequence (DoE)- Operating range (e.g.: 1000–4000 rpm, 0–70 mg/stroke)- Holding time- Gradients (e.g.: engine speed)- Filtering

Nonlinear, multi-objective optimisation of controller parameters considering- Performance- Stability

Multi-objective optimisation of the parameters of the error signal adaptation(optional)

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 9/26

Page 12: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Multi-Objective Genetic Algorithm

Objective Function

min fm(xopt)subject to gj(xopt) ≥ 0

hk(xopt) = 0

x(lb)i ≤ xi ≤ x

(ub)i

fS Stability (by Lyapunov’s direct method)

fP Performance (by a closed-loop simulation)

0

fP

fS

Paretofrontier

GA Population

1 n

· · ·

· · ·Individuals

Gen

ome

Gen

ome

Fitness

Fitness

Stability

Stability

Perform

ance

Perform

ance

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 10/26

Page 13: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Fitness Function: StabilityLyapunov’s Direct Method for Discrete-Time Systems

Stability of Dynamic Systems

A positive definite, scalar Lyapunov functionV (k) = V (x(k)) with state vector x(k)proves global asymptotic stability if:

o V (x(k) = 0) = 0

o V (k) > 0 for x(k) 6= 0

o V (k) → ∞ as ‖x(k)‖ → ∞

o V (k + 1) < V (k) ∀k ∈ N+

or global exponential stability if:o V (k + 1) ≤ α2V (k) ∀k ∈ N

+

with decay rate 0 < α < 1

Results in Linear Matrix Inequalities (LMIs),which are solved by optimisation

Sufficient but not necessary condition

Common Quadratic Lyapunov Function

V (k) = xT(k)Px(k)

LMI Problem

P ≻ 0

inf{

0 < α < 1 :

ΛTijPΛij +Xij � α2P

}

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 11/26

Page 14: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Fitness Function: Performance

Requirements

Assessment of the closed-loopperformance for a given set ofparameters

Representative synthetic reference isgenerated by DoE

Desired trajectory is PT1-filtered

Fitness Function

Closed-loop simulation of the referencecycle for each genome

Sum of squared errorsfP =

∀k(y(k)− ydmd(k))2

Time

0 5 10 150

0.5

1

1.5

2

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 12/26

Page 15: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Pareto-Optimal Solutions

0.995 1 1.005 1.01 1.015 1.02 1.025 1.03

1

1.5

2

2.5

3

3.5

4x 10

7

A

B

Pe

rfo

rma

nce

Stability

fS

fP

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 13/26

Page 16: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

3 Feedforward Control

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 14/26

Page 17: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedforward Control

State of the Art: Static Model Inversion

Steady state input is found by static model inversion

u(Φ) = [cT(I − A(Φ))−1B(Φ)]−1(w(Φ) − c

T(I − A(Φ))−1(E(Φ)z(Φ) + f(Φ)))

Stored in a map

Dynamic Feedforward Control

PID Plant

ww*

u*

uy

Dynamic feedforward control improves the closed-loop performance.

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 15/26

Page 18: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Dynamic Feedforward ControlGeneration using Local Model Networks

Benefits

Automatic generation of a dynamic feedforward control law for nonlineardynamic systems

Exploits the generic model structure of local model networks

Model complexity may be arbitrarily high

Applicable online for any reference trajectory without pre-planning

Properties

Based on an open-loop state-space model

Realised by a feedback linearizing input transformation

Restricted to globally minimum-phase local model networks

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 16/26

Page 19: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedback LinearizationUndamped Nonlinear Oscillation

Consider an undamped oscillator with anonlinear spring force characteristicf(y), which is to be stabilized usingconstant c and input u

y + f(y) = cu

Figure: Air suspension

Exact Linearization

For this second order system, the state variables are chosen as

y = x1

y = x1 = x2

y = x1 = x2 = cu− f(y)

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 17/26

Page 20: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedback LinearizationUndamped Nonlinear Oscillation

Consider an undamped oscillator with anonlinear spring force characteristicf(y), which is to be stabilized usingconstant c and input u

y + f(y) = cu

Figure: Air suspension

Exact Linearization

For this second order system, the state variables are chosen as

y = x1

y = x1 = x2

y = x1 = x2 = cu− f(y) = v

1

s

1

s

v y

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 17/26

Page 21: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedforward ControlUndamped Nonlinear Oscillation

Exact Linearization

For a two times differentiable desired trajectory w, the nonlinear feedforward controlinput u∗ can be found from

v!= w = cu∗

− f(w) → u∗ =w + f(w)

c

1

s

1

s

yu

u∗

w

w

C

u∗ =w + f(w)

c

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 18/26

Page 22: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Demonstration ExampleAutomatic Feedforward Control Design

Wiener Model

G(z) =P (z)

U(z)=

0.6z−3

1− 1.3z−1 + 0.8825z−2 − 0.1325z−3

y(k) = f(p(k)) = arctan(p(k))

Figure: Wiener Model approximated by an LMN:

y(k

−1)

u(k − 3)

6

5

43

2

1

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 19/26

Page 23: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedforward Controlled SimulationWiener Model

Samples

yW

iener

uw,y

40 60 80 100 120 140 160 180 200 220

40 60 80 100 120 140 160 180 200 220

40 60 80 100 120 140 160 180 200 220

−1

0

1

−3

0

3

−1

0

1

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 20/26

Page 24: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Feedforward Controlled SimulationWiener Model

y FFCw

y

Samples0 50 100 150 200 250 300 350 400 450 500

−1.5

−1

−0.5

0

0.5

1

1.5

PID Plant

ww*

u*

uy

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 21/26

Page 25: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Two-Degrees-of-Freedom ControlWiener Model

y 2DoFy FFCw

Samples

y

0 50 100 150 200 250 300 350 400 450 500−1.5

−1

−0.5

0

0.5

1

1.5

PID Plant

ww*

u*

uy

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 22/26

Page 26: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Two-Degrees-of-Freedom ControlWiener Model

y 2DoFyPIDw

Samples

y

0 50 100 150 200 250 300 350 400 450 500−1.5

−1

−0.5

0

0.5

1

1.5

PID Plant

ww*

u*

uy

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 23/26

Page 27: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

4 Conclusion & Outlook

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 24/26

Page 28: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Conclusion & Outlook

Two-Degrees-of-Freedom Control

Nonlinear PID controller design using local model networks

Multi-objective optimisation of controller parameters consideringStabilityPerformance

Automatic feedforward control law generation for minimum-phase local modelnetworks

Outlook

Application of a Lyapunov function to check internal stability

Considering input constraints

Assessment of Two-Degrees-of-Freedom control on a physical process

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 25/26

Page 29: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Thank you for your attention!

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 26/26

Page 30: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Fitness Function: Stability

Common Quadratic Lyapunov Function for Closed-Loop Systems

Exponential stability with decay rate α of the closed-loop feedback system is shown, ifsymmetric matrices P and Xij exist and the following conditions are fulfilled:

P ≻ 0

inf{

0 < α < 1 : ΛTijPΛij + Xij � α

2P}

X =

X11 X12 · · · X1I

X12 X22 · · · X2I

.

.

.. . .

.

.

.X1I X2I · · · XII

≻ 0

∀i ∈ I, ∀i ≤ j ≤ I

using

Λij =Gij + Gji

2,

Gij = Ai − BikTPID,jC.

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 27/26

Page 31: PID Controller Design for Nonlinear Systems Using Discrete ...

Motivation PID Controller Design Feedforward Control Conclusion & Outlook

Fitness Function: Stability

Common Quadratic Lyapunov Function for Closed-Loop Systems

Exponential stability with decay rate α of the closed-loop feedback system is shown, ifsymmetric matrices P and Xij exist and the following conditions are fulfilled:

P ≻ 0

inf{

0 < α < 1 : ΛTijPΛij + Xij � α

2P}

X =

X11 X12 · · · X1I

X12 X22 · · · X2I

.

.

.. . .

.

.

.X1I X2I · · · XII

≻ 0

∀i ∈ I, ∀i ≤ j ≤ I

using

Λij =Gij + Gji

2,

Gij = Ai − BikTPID,jC.

Simultaneous solving for P and kTPID,j is not possible! → fS = α

4. Workshop fur Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 27/26