physiology slides usmle

download physiology slides usmle

of 46

Transcript of physiology slides usmle

  • 7/30/2019 physiology slides usmle

    1/46

    Angiotensinogen

    Angiotensin I (AI)

    Angiotensin II (AII)

    (ACE)

    Renin

    Aldosterone (Na+

    and water retention)

    Primary factors regulating Renin:

    1. Perfusion pressure to the kidney stimulates; inhibits

    2. Sympathetic stimulation to kidney viaBeta-1 receptor

    3. Na+ delivery to the macula densa delivery stimulates; delivery inhibits

    Primary factors regulating aldosterone:

    1. Plasma [angiotensin II] (AII) stimulatesrelease

    2. Plasma [K+] stimulates releasePrimary factors regulating AVP:

    1. Plasma osmolarity stimulates release

    2. Blood volume/pressure

    inhibits release

    Integration of Volume RegulationSlide # 1

    RAAS

  • 7/30/2019 physiology slides usmle

    2/46

    SummaryEdemaSlide # 2

    Primary causes of edema (High yield for exam)

    Pc: FlowVasodilation; Venous pressureVenousobstruction; heart failure; Blood volume (Na+ retention)Heart

    failure

    vascular oncotic pressure: Liver; Kidney Capillary permeability: Inflammatory response(TNF-alpha; histamine; bradykinin)

    if: HypothyroidMyxedema Lymphedema: Filarial (W Bancrofti); bacterial

    lymphangitis (streptococci); trauma; surgery; tumor

  • 7/30/2019 physiology slides usmle

    3/46

    - +-70 mV

    (Em)

    [K+]OLow

    [K+]iHigh

    [Na+]OHigh

    [Na+]iLow

    [Cl-]OHigh

    [Cl-]i

    Low

    Prot -

    Prot -

    Prot -

    Prot -[Ca2+]iLow*

    [Ca2+]OHigh

    High YieldIonic EquilibriumSlide # 3

    *-refers to cytosolic free calcium

  • 7/30/2019 physiology slides usmle

    4/46

    High YieldIonic EquilibriumSlide # 45 fundamental principles

    1. Membrane po tential (Em ):electrical charge (voltage) across

    a cells membrane.

    2. Electrochemical gradient:term describing the combination

    of chemical and electrical gradients driving the diffusion of ions.

    3. Equi l ibr ium po tent ial :membrane potential that balanceschemical and electrical force across the membrane. In other

    words, the membrane potential that results in no NET diffusion of

    an ion. (Nernst equation)

    4. Conduc tance (g) or permeabi l i ty:ease with which an ioncrosses the cell membrane. Determined by number of open

    channels that allow the ion to pass through the membrane.

    5. Driv ing force (net forc e):Resting membrane potential minus

    equilibrium potential.

  • 7/30/2019 physiology slides usmle

    5/46

    Fast Sodium ChannelsSlide # 5

    Open

    Na+

    Na+Na+

    Positive membrane

    potential and timeclose h-gate

    h-gate

    (inactivation)

    M-gate

    (activation)

    Inactivated

    Depolarization

    opens M-gate

    Closed at Em

    Repolariztion

    TTX; STX; Caine

    Ca2+

    Pharmacology

    Integration

    Tetrodotoxin (TTX)/Saxitoxin (STX)/Caine drugs

    Outside

    Inside

    Ciguatoxin (CTX)/Batrachotoxin (BTX)

  • 7/30/2019 physiology slides usmle

    6/46

    Nerve DysfunctionSlide # 6

    Alpha motor neuronSkeletal

    muscle

    Decreased excitability/Lack of conduction

    Ion disturbances Hypokalemia ( gradient) Hypercalcemia (Na+

    channels)

    Demyelination

    Guillain-Barr syndrome

    (GBS)

    Neuronal loss

    ALS

    Aging

    Toxins/drugs

    TTX/STX

    Local anesthetics

    Weakness; fatigue; ataxia;

    hyporeflexia; paralysis; sensory deficit

    Ion disturbances

    Hyperkalemia

    (

    gradient) Hypocalcemia

    (Na+ channels)

    Increased excitabilityToxins/drugs 3,4-DAP; 4-AP

    CTX/BTX

    hypereflexia; spasms;

    muscle fasciculations;tetany; tremors;

    paresthesia; convulsionsCentral

    demyelination

    by MS

  • 7/30/2019 physiology slides usmle

    7/46

    Voltage-gated Ca2+

    channel

    Na+

    K+

    Ca2+

    Na+

    ACh

    Nicotinic receptor Voltage-gated Na+

    Depolarizing & non-

    depolarizing blockers Myasthenia Gravis:autoimmune/congenital

    Lambert-Eatonsyndrome:

    autoimmune

    Demyelination of GBS can block

    action potential

    AChE inhibitors

    (organophosphates)

    Botulinum toxin (Botox)

    prevents release of ACh

    Hyperkalemia/ hypocalcemia Hypokalemia/ hypercalcemia

    TTX

    STX

    Latrotoxin

    3,4-

    DAP

    4-AP

    Neuromuscular Junction (NMJ)Slide # 7

  • 7/30/2019 physiology slides usmle

    8/46

    High Yield EKG ChangesSlide # 8

    Path/Pharm

    Integration

    ST Elevation

    Transmural infarction

    Prinzmetal angina

    ST Depression

    Subendocardial ischemia

    Classic (stable) angina

    Hyperkalemia: Rate repol Sharp, spiked T wave

    QT interval

    Hypercalcemia

    QT interval

    Hypokalemia: Rate repol U waves

    QT intervalHypocalcemia

    QT interval

  • 7/30/2019 physiology slides usmle

    9/46

    Muscle DysfunctionSlide # 9

    Alpha motor

    neuron

    Skeletal muscle

    Decreased

    force (weak) Muscular dystrophies

    Disuse Atrophy

    Aging

    Protein wasting

    Pompe

    Malignant

    hyperthermia (treat

    with dantrolene)

    Tetanus toxin

    (glycine in spinal

    cord)

    Spasms/

    contractures

    Exercise-induced

    McArdle

    Exercise-induced

    McArdle

    NM block

    TTX/STX

    Local anesthetics

    Botox

    ALS

    GBS

    Severed nerve

    Flaccidparalysis

  • 7/30/2019 physiology slides usmle

    10/46

    High Yield RelationshipsSlide # 10

    Q =

    DPR CO = HR X SV C = DP

    DV

    C

    SVPP =R L

    r4

    T Pr

    (LaPlace)

    Pulse pressure (PP) = systolic - diastolic

    DP R

    MAP = 1/3 PP + diastolic pressure

    Velocity = Q/CSA

    P = height X density X

    gravity

    Uptake of O2

    A V O2 differenceFlow =

    Cardiac Index = CO/ body surface area (BSA)

    Uptake of O2 = Flow X A V O2 difference

    MAP = CO X TPR

    Reynolds number = (velocity) (diameter) (density) / viscosity

    EF = SV/EDV X 100

  • 7/30/2019 physiology slides usmle

    11/46

    Free Flow (Q)Slide # 11

    P = 70P = 80

    Q

    DownstreamPressure

    UpstreamPressure

    Change R

    here

    Vasoconstrict

    DP R

  • 7/30/2019 physiology slides usmle

    12/46

    Deeeeep

    Thoughts Brain

    = resistor

    Arterioles are

    resistors!!

    Total resistance(TPR/SVR) is sum of

    each resistor.

    Think of each

    resistor as a faucet.

    Total resistance

    (TPR/SVR) is

    AFTERLOAD for

    heart.

    Must have an adequate

    MAP to drive flow!!!!

    P = Q X R

    MAP = CO X TPR

    Slide # 12

    Cant have all

    faucets open

    simultaneously.

    Vasoconstrictors

    Sym (NE)alpha!!! Epialpha

    AII & AVP

    Alpha agonists

    NE releasers

    Reuptake blockers

    Vasodilators

    sym!!! EpiBeta-2

    metabolism & NO Alpha blockers

    NO releasers

    CCB

    K+ channel

  • 7/30/2019 physiology slides usmle

    13/46

    Low

    Compliance

    Water

    ComplianceSlide # 13

    DV = DP X C

    High

    Compliance

    DP = CDV

    C = DPDV

    Water

  • 7/30/2019 physiology slides usmle

    14/46

    Venous Return is the flow of blood TO the heart.

    Central blood volume is directly related to venous return.

    Central blood

    volume

    (PRELOAD)

    CVP and pulmonary wedge pressure are clinical markers ofcentralblood volume

    Venous return is

    DIRECTLY related to

    blood volume and

    INVERSELY relatedto venous

    compliance

    Blood volume in?Sympathetic stimulation

    compliance, thus venous return

    Pharm Integration:

    Nitrates preferentially

    dilate veins ( theircompliance)

    What does an elevated CVP suggest?

    Pump failure

    Venous ReturnSlide # 14

    Venous

    return

    blood volume; Venoconstriction

  • 7/30/2019 physiology slides usmle

    15/46

    MAP = CO X TPR

    4 factors determine

    1. HR ( CO exercise; COwith tachyarrhythmias)

    2. Contractility (direct)

    3. Afterload (inverse)

    4. Preload (direct)

    Directly related to venous return

    Blood volume (direct)

    Venous compliance (inverse)

    Tone of arterioles

    Sympathetic (alpha)

    AII AVP

    Epi (alpha/beta-2)

    Metabolism

    NO

    Pharm integration

    Whole Body CV RegulationSlide # 15

  • 7/30/2019 physiology slides usmle

    16/46

    Effect of GravityCompensationsSlide # 16

    Venous Pooling

    ventricular volume(sensed by cardio-

    pulmonary

    baroreceptors)

    Reflex sympatheticnervous system

    Sympathetic activation:

    Constricts veins (Rec?)

    HR/Inotropy (Rec?) Constricts arterioles (TPRRec?)

    Path/PharmIntegration

    Orthostatic intolerance

    vascular volume Venodilators; alpha blockers

    Denervated heart/ heart failure

    Dysautonomias (diabetes mellitus)

    Arterial baroreceptorsif MAP falls

  • 7/30/2019 physiology slides usmle

    17/46

    Anti-hypertensive

    drugs

    Short/Long Term MAP RegSlide # 17

    Mean Arterial

    Pressure

    InhibitsStimulates

    Baroreceptor activity

    Sympathetic

    activity

    Contractility

    TPRCardiac

    output

    Heart rateb1

    a

    b1 Veno-constrictiona

    Stroke volumePreload

    M2

    Parasympathetic

    activity

    Urine volume

    Blood volume

    Renin

    A II

    b

    VR

    VRF-S

    Aldo

    Shock

    Autonomic

    drugs

  • 7/30/2019 physiology slides usmle

    18/46

    High Yield Application of Fick Principle

    Cvo2Cao2Q

    Cell

    consumes

    O2

    VO2 = Q X (CaO2 CvO2)

    Fick

    O2 delivery = Q X CaO2

    Q Extraction Venous O2 CaO

    2with same Q & extraction Venous O

    2

    O2 extraction (by

    the tissue)

    O2

    consumption

    Slide # 18For any given O2

    consumption, a

    indelivery results in: 1)

    possible hypoxic/ischemic

    damage, & 2) a theamount of O2 in the veins

    draining the tissue.

  • 7/30/2019 physiology slides usmle

    19/46

    Tip 2: Pressure/volume behind the defective valve

    Systolic murmur: Mitral/Tricuspid insufficiency;

    Aortic/Pulmonic stenosis Diastolic murmur: Mitral/Tricuspic stenosis;

    Aortic/Pulmonic insufficiency

    Stenosis: Narrowed opening through valve. Bottom

    line is increased resistance to outflow. Murmur when open

    Insufficiency (also called regurgitant and/or

    incompetent): Valve fails to close properly. Bottom line is

    backflow of blood occurs. Murmur when closed

    Tip 1: Think of when valve is open and closed

    Valvular ProblemsSlide # 19

    F A ti th R i t S t Slid #20

  • 7/30/2019 physiology slides usmle

    20/46

    Forces Acting on the Respiratory SystemSlide #20

    Key forces to be aware of to understand ventilation

    Chest wall recoil: Force exerted by the chest wall; At rest,

    this is an OUTWARD force.

    Intrapleural pressure (IPP): Fluid pressure in the intrapleural

    space. It is the OUTSIDE pressure for the alveoli, airways, and

    blood vessels within the chest.

    Transmural (PTM) pressure gradient: Pressure gradient

    across alveoli and small airways (see handout, slide #21)

    Lung recoil: Force exerted by the alveoli; This is an INWARD

    force and is inversely related to compliance.

    T l P G di t Slid # 21

  • 7/30/2019 physiology slides usmle

    21/46

    Transmural pressure (PTM) gradient is the pressure

    gradient across the wall of any tube or sphere.

    PTM

    = Pi

    - Po

    Po

    Transmural Pressure GradientSlide # 21

    Pi

    Alveolus, airway, or blood vessel

    IPP P l Bl d Fl Slid # 22

  • 7/30/2019 physiology slides usmle

    22/46

    Pg 147

    IPPPulmonary Blood FlowSlide # 22

    Inspiration

    PTM = 0-5 = 5

    Becomesmore

    negative

    RA in chest expands pressure so Q (VR)

    Increased output delays

    closing of pulmonic valve

    (physiologic splitting of S2

    )

    PTM forpulmonary

    vessels; their

    volume increases

    Increases pulmonary

    vascular resistance

    Flow to LH

    MAP = CO X TPR

    Inspiration decreases vagal outflow

    to the heart, thus HR increases

    (respiratory sinus arrhythmia)

    Veins here are

    unaffected

    S V /Q Mi t h Slid # 23

  • 7/30/2019 physiology slides usmle

    23/46

    Severe VA/Q MismatchSlide # 23

    1. Increased A a gradient

    2. Increasing FIO2 helpful

    Diagnostic signs:

    PAO2 = (Patm 47) FIO2 (PACO2/R)

    Flow from low VA/Qunits (

  • 7/30/2019 physiology slides usmle

    24/46

    Differential for Causes of HypoxemiaSlide # 24

    Low PaO2

    (hypoxemia)

    A a gradient

    FIO2 corrects

    PaCO2 likely

    elevated

    Normal

    Cause is

    PAO2

    Elevated

    Increase FIO2

    Doesnt

    correct PaO2

    Cause is right-

    to-left shunts

    Corrects

    PaO2

    VA/Q

    mismatch

    Diffusion

    impairment

    PAO2: calculate usingalveolar air equation or

    use end-tidal PO2

    H i Slid # 25

  • 7/30/2019 physiology slides usmle

    25/46

    HypoxemiaSlide # 25

    PAO2: Obstructive disease; Drug overdose; Anesthesia; Altitude;Chest restriction, e.g., kyphoscoliosis

    Diffusion Impairment: Restrictive disease (pulmonary fibrosis);

    Pulmonary edema (ARDS, Left ventricular failure)

    VA/Q mismatch: Severe obstruction (Status asthmaticus, Cystic

    fibrosis, anaphylaxis); Infection (pneumonia); Partial occlusion

    from mucus plugs

    Shunts: Atelectasis (pneumothorax; ARDS); complete occlusion

    of an airway (mucus plug, foreign object); TOF

    R l ti hi /E ti f R l Slid # 26

  • 7/30/2019 physiology slides usmle

    26/46

    Relationships/Equations for RenalSlide # 26

    GFR

    RPF

    FF =

    FF impacts Pc!!! Filtered load = GFR X PXRate of excretion = UX X V

    Transport = excretion filtered load

    Renal

    clearance =UX X V

    PX

    UPAH X VCPAH =

    PPAH

    ERPF =

    Renal blood flow =1- Hct

    ERPF

    F t Aff ti GFR d FF Slid # 27

  • 7/30/2019 physiology slides usmle

    27/46

    Factors Affecting GFR and FFSlide # 27

    Glomerularcap

    pressure

    Peritubularcap

    pressure

    Nephronplasma

    flow

    GFR FF

    Constrict efferent Dilate efferent Constrict afferent Dilate afferent

    U i A id Slid # 28

  • 7/30/2019 physiology slides usmle

    28/46

    Uric AcidSlide # 28

    Pharmacology

    Integration

    Adenosine

    Guanosine

    Hypoxanthine

    Guanine

    Salvage

    Xanthine

    Uric Acid H+ + Urate-

    Xanthine

    Oxidase

    Urate-

    Urate-

    Urate-Allopurinol

    Biochemistry

    IntegrationProbenecid

    Lesch-Nyhan

    80-90% of

    urate isreabsorbed

    in PT

    UA

    +

    Precipitate

    At low

    tubular

    pH

    Gout

    X

    Ele ated Anion Gap MUDPILES Slide # 29

  • 7/30/2019 physiology slides usmle

    29/46

    Elevated Anion GapMUDPILESSlide # 29

    L: Lactic acidosis

    E: Ethylene glycol; Ethanol ketoacidosis

    S: Salicylates; starvation ketoacidosis; sepsis

    I: Iron; Isoniazid

    U: Uremia (renal failure)

    D: Diabetic ketoacidosis

    P: Paraldehyde

    M: Methanol

    Normal Anion Gap HARD UP Slide # 30

  • 7/30/2019 physiology slides usmle

    30/46

    Normal Anion GapHARD UPSlide # 30

    P: Pancreatic drainage (pancreatic fistula)

    U: Ureteral diversion (ureterosigmoidostomy)

    A: Acetazolamide

    R: Renal tubular acidosis

    D: Diarrhea

    H: Hyperchloremia (Parental nutrition)

    Acid Base Decision Tree Slide # 31

  • 7/30/2019 physiology slides usmle

    31/46

    Acid-Base Decision TreeSlide # 31

    Compensation?

    Osis?

    (pH)

    Compensation?

    Cause of

    the osis?

    ACIDOSIS ALKALOSIS

    NOTE: Paco2 in resp acidosis; compensatory metab alkalosis (compute Paco2)

    NOTE: Paco2

    in resp alkalosis; compensatory

    metab acidosis (compute Paco2)NOTE: Calculate anion gap: [Na+ - (Cl- + bicarb)]

    Low

    (Acidosis)

    High

    (Alkalosis)

    Low Elevated

    Respiratory MetabolicMetabolic Respiratory

    Use Winters to

    determine what

    Paco2 should be

    Determine if

    acute (1:0.2) or

    chronic (1:0.4)

    Determine if

    acute (1:0.1) or

    chronic (1:0.4)

    Paco2 0.7 torrfor every 1 mEq/L

    in bicarb

    Look at bicarb

    Cause of

    the osis?

    Low Elevated

    Look at bicarb

    Properties of Receptors Slide # 32

  • 7/30/2019 physiology slides usmle

    32/46

    50

    100

    0[H]

    %R

    espons

    e

    E + S (ES) E + P H + R (HR) responsestimulus response

    50

    100

    0[S]

    Velocity(%o

    fmax)

    Michaelis-Menten

    Km

    Vmax: determined

    by [E] & [S]

    Properties of ReceptorsSlide # 32

    [H] is

    limiting

    [S] is

    limiting

    [R] is onefactor

    Properties of Receptors Slide # 33

  • 7/30/2019 physiology slides usmle

    33/46

    50

    100

    0Log [A]

    %R

    esponse

    50

    100

    0[H]

    %R

    esponse

    Properties of ReceptorsSlide # 33

    H + R (HR) responsestimulus response A + R (AR) responsestimulus response

    EC50

    [H] is

    limiting

    [H] is

    limiting

    [R] is onefactor

    Overview of AVP Pathophysiology Slide # 34

  • 7/30/2019 physiology slides usmle

    34/46

    Overview of AVP PathophysiologySlide # 34

    Low

    Dehydration(2O)

    High

    Primary Poly-dipsia (2O)

    SIADH(1O)

    Plasma AVP

    POSM

    UOSM< 1

    POSM

    UOSM> 1

    LowHigh

    LowHigh

    Plasma osmolality

    *Nephro DI

    (1O)

    Plasma AVP

    POSM

    UOSM< 1

    POSM

    UOSM> 1

    Neuro DI*(1O)

    Note: AVP=ADH

    Metabolism Cortisol Slide # 35

  • 7/30/2019 physiology slides usmle

    35/46

    MetabolismCortisolSlide # 35

    Glucose

    G6-phos

    Glucose

    6-P

    Glucokinase

    Glyphos

    GlycogenGly

    synthase

    PEPCK

    Fructose 1,6-

    bisphosphatase

    PDH

    (thiamine)

    Acetyl CoAPyruvate

    carboxylase

    (biotin)

    OAA

    Lactate

    LDH

    Acetyl CoA

    carboxylase

    Malonyl CoA

    TCA Ketones

    FA

    FA

    synthase

    Pyruvate

    kinase

    PFK-1 (via

    PFK-2)

    Pyruvate

    AA

    (alanine)

    Cortisol

    Cortisol

    Insulin Glucagon Slide # 36

  • 7/30/2019 physiology slides usmle

    36/46

    Glucose

    G6-phos

    Glucose

    6-P

    Glucokinase

    Glyphos

    GlycogenGly

    synthase

    PEPCK

    Fructose 1,6-

    bisphosphatase

    PDH

    (thiamine)

    Acetyl CoAPyruvate

    carboxylase

    (biotin)

    OAA

    Acetyl CoA

    carboxylase

    Malonyl CoA

    TCA Ketones

    FA

    FA

    synthase

    Pyruvate

    kinase

    PFK-1 (via

    PFK-2)

    Pyruvate

    AA

    (alanine)

    Insulin stimulates

    Glucagon stimulates

    InsulinGlucagonSlide # 36

    Urea

    Diabetes Mellitus Slide # 37

  • 7/30/2019 physiology slides usmle

    37/46

    Pharmacology Integration: Type II diabetes

    GI tract Blood Glucose

    Pancreas: Secretes

    Insulin

    Liver

    Sulfonylureas

    Acetohexamide

    TolbutamideChlorpropamide

    Glipizide

    GlyburideGLP-1 analogs

    Exenatide

    Acarbose

    X

    Thiazolidinediones

    Pioglitazone

    RosiglitazoneGI

    problems

    Hypoglycemia

    DPP-IV inhibition

    Sitagliptin

    (+)

    Uptake

    Skeletal

    muscle

    Adipose

    Uptake

    Metformin

    (-)

    (-)Metformin

    (+)

    (+)

    (+)

    Diabetes MellitusSlide # 37

    Calcium Regulation Slide # 38

  • 7/30/2019 physiology slides usmle

    38/46

    Pg 316

    Calcium RegulationSlide # 38

    Inhibits

    Stimulates

    Plasma Ca2+Plasma

    phosphate

    Renal Ca2+

    reabsorption

    Ca2+ mobilization

    from bone

    Ca2+ absorptionfrom GI

    PTH

    7-dehydro-

    cholesterol

    25-(OH)-D3

    1,25-(OH)2-D3

    excess

    1-hydroxylase

    in kidney

    Renal phosphate

    reabsorption

    25-hydroxylase

    in liver

    GI phosphateabsorption

    H+

    Cortisol

    Estrogen *

    Sexual Differentiation Slide # 39

  • 7/30/2019 physiology slides usmle

    39/46

    Sexual DifferentiationSlide # 39

    Wolffian

    ducts

    Mllerian

    ducts

    Wolffian

    ducts

    Mllerian

    ducts

    Fallopian

    tubes,

    uterus, inner

    vagina

    Epididymis,

    vas

    deferens,

    seminalvesicles

    Epididymis,

    vas

    deferens,

    seminalvesicles

    T = Testosterone

    SRY = sex determiningregion of Y

    MIH = Mllerian inhibiting

    hormone

    Ovaries

    Fallopian

    tubes,

    uterus,

    inner vagina

    XY has

    SRY

    XXno

    SRY Testes

    TMIH

    Regress Regress

    Undifferentiated

    gonad

    Sexual DifferentiationSlide # 40

  • 7/30/2019 physiology slides usmle

    40/46

    Sexual DifferentiationSlide # 40

    Ovaries Testes

    Undifferentiated

    organs

    DHT

    Clitoris, outer

    vagina, labia

    Penis,

    scrotum, &

    prostate

    No

    DHT

    Testosterone dihydrotestosterone (DHT)5 alpha-reductase

    MenopauseSlide # 41

  • 7/30/2019 physiology slides usmle

    41/46

    MenopauseSlide # 41

    Test/A

    17b-Estradiol

    CholesCholes

    Adipose tissue

    Adrenal cortexBloodA

    DHEA

    FSH/LHACTH

    aromataseEstrone

    aromatase

    Ovary

    DHEA A

    TumorGrowth

    Anastrozole

    LetrozoleTamoxifen

    Raloxifene

    Polycystic Ovarian SyndromeSlide # 42

  • 7/30/2019 physiology slides usmle

    42/46

    Polycystic Ovarian SyndromeSlide # 42

    PCOSHirsutism; irregular menstrual bleeding; chronic anovulation; obesity;

    insulin resistance; infertility

    Thecalhormone

    production

    Adipose estrone

    LH

    FSHPituitary

    Folliclematuration

    aromatase Estradiolanovulation

    Androgens

    Adrenal

    Adipose Ovaries

    Androgens

    Oral contraceptives

    to LH

    Thiazolidinediones;

    Metformin

    insulin

    SHBG

    Clomiphene: FSH

    Dexamethasone

    Venous PulseSlide # 43

  • 7/30/2019 physiology slides usmle

    43/46

    Venous PulseSlide # 43

    No atrial contraction

    Pathology

    Integration

    Atrial pressure

    Atrial

    contraction

    PR interval

    Text on

    pg 124

    by stiff right ventricle: Pulm Sten;Pulm regurg

    Venous PulseSlide # 44

  • 7/30/2019 physiology slides usmle

    44/46

    Venous PulseSlide # 44

    Atria relax

    Pathology

    Integration

    Bulging of

    the tricuspidText on

    pg 124

    Venous PulseSlide # 45

  • 7/30/2019 physiology slides usmle

    45/46

    Venous Pulse Slide # 45

    Pathology

    Integration

    Filling of the

    atria

    Enhanced because of

    backflow of blood

    Text on

    pg 124

    Venous PulseSlide # 46

  • 7/30/2019 physiology slides usmle

    46/46

    Venous Pulse Slide # 46

    Pathology

    Integration

    Blunted because

    of resistance

    Enhanced because of

    atrial engorgement

    y-decent is

    associated

    with emptyingof right atrium