Physiological and morphological responses of pampas grass ... · Physiological and morphological...

14
Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil nitrogen content Joanna L Kroon and George L Vourlitis

Transcript of Physiological and morphological responses of pampas grass ... · Physiological and morphological...

Page 1: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil nitrogen content 

Joanna L Kroon and George L Vourlitis

Page 2: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Background• Once‐popular landscape plant that is native to Argentina, Brazil, and Uruguay.

•Escaped and become invasive in sandy coastal regions in southern California.

• Large plants can create dense thickets,outcompete native seedlings, and create a fire hazard.

• Grows rapidly in relatively infertile soil.

Page 3: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Invasion and global change?Climate change:  Future warming and drying (Lobell et al., 2006).  

Atmospheric change:  N‐deposition significantly enriches N availability of chaparral and coastal sage scrub soil (Vourlitis & Zorba, 2007; Vourlitis et al., 2007a & b).  Additional enrichment is expected (Tonneson et al., 2007).

Page 4: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Objectives

Assess the importance of soil N and water availability on the growth and physiology of C. selloana juveniles including:

• Water use

• Leaf gas exchange

• Above‐ground live and dead biomass production.

• Below‐ground biomass production

• Biomass allocation (R:S ratio)

• Plant height/width

• Leaf area development

• Tissue N and P content

Page 5: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Methods

• Juvenile C. selloanaindividuals were obtained from a local nursery.

• Individuals had 2‐4 leaves/plant, ca. 8 cm tall.

• Grown in the CSUSM greenhouse for 6 months in tree‐pots filled with riverbed sand.   

Page 6: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Experiment layout

Low water table (30 cm) High water table (10 cm)

Water table:  10 and 30 cm below the soil surface.

n = 13 plants per treatment combination

Significant treatment effects on response variables were assessed using either repeated measures ANOVA or MANOVA.  

Added N: 0, 5, and 10 ugN/g dry soil added as granular NH4NO3 applied once at the beginning of the 6 month experiment.  

Plants were exposed to a fully‐random, 2 x 3 factorial design with N and water table depth as fixed‐effects.

Page 7: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Results: GrowthHeight

Plan

t hei

ght (

cm)

100

120

140

160

180

LowHigh

Tiller production

N-addition (ug/g)0 5 10

Num

ber o

f tille

rs p

er p

lant

0

2

4

6

8

LowHigh

•N‐ availability and water table depth significantly increased plant height and tiller production, and there was a significant N*W interaction. 

Page 8: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Results: Biomass production

•N‐availability significantly increased biomass production.  However, addition rates > 5ugN/g failed to increase biomass production.  

•Water table depth did not significantly affect biomass production.  

Above-ground

Biom

ass

prod

uctio

n (g

dry

mas

s)

0

10

20

30

40

Low: LiveHigh: LiveLow: DeadHigh: Dead

Below-ground

N-addition (ugN/g)0 5 10

0

5

10

15

20

LowHigh

Page 9: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Results: Biomass allocation

•N‐availability caused a significant increase in biomass allocation to above‐ground tissues.  However, addition rates > 5ugN/g failed to increase biomass production.  

•Water table depth did not significantly affect biomass allocation.  

N-addition (ugN/g)0 5 10

Roo

t:sho

ot ra

tio

0.0

0.5

1.0

1.5

2.0

LowHigh

Page 10: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Results: Total water use

N-addition (ugN/g)0 5 10

Tota

l wat

er u

se (l

iters

)

10

12

14

16

18

20

22

24

26

28

LowHigh

•N‐ availability and water table depth significantly increased total water use. 

Page 11: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Results: Tissue N and P

Above-ground live

2

4

6

8

10

12

14

LowHigh

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Below-ground live

N-addition (ugN/g)0 5 10

Tiss

ue N

con

cent

ratio

n (m

gN/g

)

2

4

6

8

10

12

14

LowHigh

0 5 10

Tissue P concentration (mgP/g)

0.2

0.3

0.4

0.5

•N‐ availability significantly increased tissue N but significantly decreased tissue P.  

•Water table depth did not significantly affect tissue N and P.  

Page 12: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Results: Tissue N and P

Above-ground live

N-additiion (ug/g)0 5 10

Tiss

ue N

:P ra

tio (m

gN/m

gP)

0

10

20

30

40

50

60

70

LowHigh

N limitation

P limitation

•An increase in N‐availability lead to P‐limitation.  

•Water table depth did not significantly affect tissue N:P ratio.  

Page 13: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Conclusions

•Experimental increases in N availability stimulated biomass production, biomass allocation to above‐ground tissues, growth and tiller production, and water use.  

•Most of the N‐induced growth increases were observed between the 0 and 5ugN/g treatment levels, indicating possible limitations by other non‐N resources. 

•Water table depth significantly affected water use, growth, and tiller production, but was less important for the growth and physiology of C.selloana juveniles than N availability.  

Page 14: Physiological and morphological responses of pampas grass ... · Physiological and morphological responses of pampas grass (Cortaderia selloana) to variations in water table and soil

Implications

Relatively small increases in N deposition will likely increase the growth, survivorship, and invasiveness of C. selloana; however, P (or other) limitation may reduce the N‐induced stimulation.  

‐Enhanced water use and the potential to exacerbate drought stress for native flora.  

‐Increased shading of native seedlings.

‐Increase sequestration of available nutrients.  

While future warming and drying in response to climate change may limit the growth and physiology of C. selloana, these limitations may be compensated if accompanied by even modest N‐enrichment