Physics Floats My Boat”abud.me/wp/wp-content/uploads/2013/03/MDSTABuoyancyHandout.pdf · "Physics...

10
Gary G. Abud, Jr., MA Grosse Pointe North High School http://bit.ly/abudsite | @mr_abud "Physics Floats My Boat” A Modeling Approach to Teaching Archimedes’ Principle & Buoyant Force Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object.” — Archimedes of Syracuse Introduction Using the activities and methodology listed in this handout, which is influenced by the Arizona State University Modeling Instruction Program in Physics , students will apply their knowledge of forces to determine the concept of a buoyant force, quantify the relationship between the buoyant force and the volume of displaced, and finally arrive at Archimedes' Principle. Students will then apply their newly formulated model of buoyancy to activities, projects, and performance assessment challenges. The entire investigation of buoyancy culminates with a largescale project called the Cardboard Boat Regatta. In this project, students build cardboard boats to hold themselves and they race their boats in a body of water (pool, pond, or lake.) It is critical to note that the teaching of the buoyancy concept should follow a discussion of forces and a discussion of density. Students should be able to draw force diagrams or identify the forces acting on an object prior to investigating buoyancy, have a familiarity with the difference between mass and weight, as well as understand a relationship between density, mass, and volume. The activities are appropriate for upper elementary grades all the way through high school. Depending on the resources available in your classroom, these activities can be modified to be appropriately hightech, or they can be done in a lowtech version with most of the listed materials and directions.

Transcript of Physics Floats My Boat”abud.me/wp/wp-content/uploads/2013/03/MDSTABuoyancyHandout.pdf · "Physics...

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

"Physics Floats My Boat” A Modeling Approach to Teaching Archimedes’ Principle & Buoyant Force

“Any  object,  wholly  or  partially  immersed  in  a  fluid,  is  buoyed  up  by  a  force  equal  to  the  weight  of  the  fluid  displaced  by  the  object.”  —  Archimedes  of  Syracuse  

   

Introduction    Using  the  activities  and  methodology  listed  in  this  handout,  which  is  influenced  by  the  Arizona  State  University  

Modeling  Instruction  Program  in  Physics,  students  will  apply  their  knowledge  of  forces  to  determine  the  

concept  of  a  buoyant  force,  quantify  the  relationship  between  the  buoyant  force  and  the  volume  of  displaced,  

and  finally  arrive  at  Archimedes'  Principle.  Students  will  then  apply  their  newly  formulated  model  of  buoyancy  

to  activities,  projects,  and  performance  assessment  challenges.  The  entire  investigation  of  buoyancy  

culminates  with  a  large-­‐scale  project  called  the  Cardboard  Boat  Regatta.  In  this  project,  students  build  

cardboard  boats  to  hold  themselves  and  they  race  their  boats  in  a  body  of  water  (pool,  pond,  or  lake.)  

 

It  is  critical  to  note  that  the  teaching  of  the  buoyancy  concept  should  follow  a  discussion  of  forces  and  a  

discussion  of  density.  Students  should  be  able  to  draw  force  diagrams  or  identify  the  forces  acting  on  an  object  

prior  to  investigating  buoyancy,  have  a  familiarity  with  the  difference  between  mass  and  weight,  as  well  as  

understand  a  relationship  between  density,  mass,  and  volume.    

 

The  activities  are  appropriate  for  upper  elementary  grades  all  the  way  through  high  school.  Depending  on  the  

resources  available  in  your  classroom,  these  activities  can  be  modified  to  be  appropriately  high-­‐tech,  or  they  

can  be  done  in  a  low-­‐tech  version  with  most  of  the  listed  materials  and  directions.    

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Differentiation  Any  of  the  listed  activities,  projects,  or  labs  can  be  adapted  for  any  grade.      

Explanations  can  be  limited  to  qualitative  analysis  or  conceptual  understanding  for  lower  grades.   Calculations  can  be  included  and  tailored  to  the  level  of  the  learner.   Guidelines  and  expectations  can  be  modified  to  be  appropriate  for  the  level  of  the  learner  in  activities,  

projects,  or  challenges  (performance  assessments)  

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Application  of  Force:  Buoyancy    

 

Foreword:  These  activities  are  applications  of  the  force  concept.  They  should  be  done  only  after  an  introduction  to  forces,  force  pairs,  and  normal  force  is  completed.  

Instructional  Goals:  Students  will   Observe  when  the  buoyancy  force  is  equal  to  the  force  due  to  gravity,  the  object  floats   Observe  when  the  buoyancy  force  is  less  than  the  force  due  to  gravity,  the  object  sinks   Develop  a  qualitative  buoyancy  model  (relationship  between  displaced  water  and  loss  of  weight)   Develop  a  quantitative  buoyancy  model  (Archimedes'  Principle).   Apply  Archimedes'  Principle  to  calculate  the  weight  needed  to  sink  a  barge  to  a  predetermined  

depth.  

Sequence:      Activity  1  -­‐  Apparent  Loss  Lab      Worksheet  1    Activity  2:  The  Boat  Lab    Extension  Activity:  Mini-­‐Boat  Challenge    Performance  Assessment    Cardboard  Boat  Regatta  Project          

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Activity  1:  Apparent  Loss  Lab    

Launching  Demonstrations    QUALITATIVE:  Suspend  an  object  from  a  rubber  band.  Showing  students  the  stretched  rubber  band,  lead  them  into  a  discussion  of  the  tension  force  on  the  rubber  band  as  result  of  the  weight  of  the  object.  Gradually  lower  the  object  onto  a  table  or  other  surface,  illustrating  that  the  stretch  in  the  rubber  band  changes.  Direct  the  discussion  into  a  focus  on  the  change  in  the  tension  of  the  rubber  band  and  a  force  that  must  be  in  the  upward  direction  on  the  object.  The  amount  of  force  provided  by  the  surface  in  the  upward  direction  on  the  object  can  be  connected  to  the  loss  of  stretching  in  the  rubber  band.  This  demonstration  allows  students  to  get  a  sense  of  "normal  force"  as  well  as  relate  that  upward  force  to  a  change  in  the  rubber  band  tension.  They  should  see  that  the  more  upward  force  provided  by  the  surface,  the  less  tension  there  is  in  the  rubber  band;  furthermore,  the  more  force  provided  by  the  surface,  the  more  decrease  in  tension.  Help  students  to  conclude  that  the  "loss  of  tension"  is  equal  to  the  upward  force  provided  by  the  surface.    QUANTITATIVE:  Repeat  the  same  demonstration  but  this  time  with  a  spring  scale  instead  of  rubber  band.  This  allows  students  to  calculate  the  amount  of  force  provided  by  the  surface  in  the  upward  direction.  Have  students  record  the  reading  on  the  scale  with  differing  amounts  of  upward  force  provided  by  the  surface.  That  is,  as  you  slowly  lower  the  object  onto  the  surface,  pause  and  record  the  spring  scale  reading.  By  subtracting  from  the  initial  reading  on  the  scale  (the  actual  weight  of  the  object)  students  can  find  the  change  in  weight,  which  is  equal  to  the  upward  force  provided  by  the  surface.      LIQUID  "SURFACE"  DEMO:  Repeat  the  same  demonstration  with  an  object  (a  full  diet  soda  can  works  well)  hanging  from  the  rubber  band  (or  a  rope/string)  for  students  to  see  a  connection  between  the  loss  of  stretch  in  the  rubber  band  and  the  submerging  of  the  object  into  water.  Ask  them  to  compare  and  contrast  this  demonstration  with  the  previous  demonstration.      Ask  them  to  make  observations  about  the  demonstration.  They  should  note  that  the  water  level  rises  and  the  object  submerges  by  a  measurable  amount.    Ask  students  what  could  be  done  to  determine  the  amount  of  force  provided  by  the  water.  Lead  students  to  approach  determining  the  upward  force  provided  by  the  water  as  was  done  for  the  surface  earlier.    Students  should  measure  the  volume  of  water  displaced  by  the  submerged  object  and  the  change  in  scale  reading  (apparent  loss  of  weight)  to  then  determine  the  relationship  therein.  Students  can  graph  their  data  to  determine  a  mathematical  model  to  explain  the  relationship  (this  depends  on  the  students'  level.)  

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Apparatus   Ring  stand         Spring  scale  or  a  

centigram  balance  (hanging  pan)  

Water         Salt  water   Spill  can       Graduated  cylinder  

Kilogram  masses  

Pre-­‐lab  Discussion  Previously  we  have  seen  an  apparent  loss  of  weight  in  the  form  of  a  decreased  stretch  from  a  rubber  band.    Remind  the  students  that  the  stretch  in  a  rope,  rubber  band  or  spring  scale  will  result  in  equal,  but  opposite  forces.      A  qualitative  discussion  would  lead  students  to  see  believe  that  the  liquid,  like  the  surface  in  prior  demo,  provides  a  force  on  the  object  to  decrease  the  amount  of  stretch  of  the  spring  scale.    In  this  lab,  we  will  quantify  the  amount  of  lift  on  the  object  from  the  liquid.      The  mass  of  the  volume  of  water  displaced  by  the  submerged  object  will  equal  the  apparent  loss  of  mass  of  the  submerged  object.    The  density  formula,  D  =  m/V,  will  be  utilized  to  find  the  mass  of  the  displaced  liquid.  

Apparent  Loss  Lab:  Performance  Notes  For  this  lab  the  following  information  will  need  to  be  collected:  

Density of each liquid Weight of the object in air Weight of the object in water Difference in these weight measurements Volume of water displaced

  Find  the  weight  of  each  object  in  the  air  

  Completely  submerge  the  object  into  the  liquid  and  find  the  weight  of  the  object  in  the  liquid.    

Repeat  for  each  of  the  liquids.    

For  each  object,  in  each  different  liquid,  find  the  difference  between  the  weight  in  the  air  and  the  weight  in  the  liquid.  

  Fill  a  spill  can  with  the  liquid.  Place  a  graduated  cylinder  so  that  it  will  collect  the  "runoff"  liquid  as  

the  object  is  slowly  placed  into  the  spill  can.    

Calculate  the  mass  of  the  displaced  liquid  using  the  density  formula    

Using  the  equation  from  the  “Comparing  Weight  and  Mass”  lab,  calculate  the  weight  of  the  displaced  liquid.  

  Compare  the  weight  of  the  displaced  liquid  to  the  apparent  loss  of  weight  for  the  submerged  

object.    

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Post-­‐lab  discussion   Lead  a  discussion  of  this  lab  to  engage  the  idea  that  the  weight  of  an  object  can  have  an  apparent  

alteration.    

How  does  the  weight  of  the  displaced  liquid  compare  to  the  apparent  loss  of  weight  of  the  object?    

How  does  the  mass  of  the  displaced  liquid  compare  to  the  apparent  loss  of  mass  of  the  submerged  object?  

  How  can  you  justify  that  the  object  did  not  truly  lose  mass?  

  Archimedes'  Principle  can  be  cited  as  the  reason  for  the  apparent  loss  of  weight  for  the  submerged  

object.    The  weight  of  the  displaced  liquid  is  equal  to  the  apparent  loss  of  weight  of  the  object.        

What  does  the  liquid  do  to  cause  this  apparent  loss  of  weight  of  the  object?    

How  can  you  explain  that  the  liquid  is  responsible  for  the  apparent  loss  of  weight?    

Discuss  with  the  class  and  lead  them  to  state  that  the  liquid  is  providing  a  lift,  or  push,  on  the  object.    This  push  would  be  called  the  Buoyant  Force.    Continue  a  discussion  to  engage  the  idea  and  explain  that  in  order  for  it  to  be  a  force,  it  must  have  units  of  force  (N)  and  based  on  the  measured  quantities  obtained  from  the  experimental  relationships  derived,  an  equation  can  be  arrived  at  as  follows:  

       Buoyancy       =  Density  liquid    *  Volume  liquid  displaced  *  g     (apparent  loss  of  weight)  

where  g  =  9.8m/s2  ~  10m/s2    

This  should  allow  students  to  see  that  the  unit  analysis  (kg/L  x  L  x  m/s2  =  N)  and  thus  the  Buoyant  Force  is  indeed  a  force.        

Have  the  students  draw  force  diagrams  for  each  object,  both  in  the  air  and  in  the  liquids.          

 

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Application  Activity  #2:  The  Boat  Lab  

Apparatus  -­‐  "Titanic  Revisited",  Boat  Lab   Aluminum  foil  cut  into  a  30cm  x  30cm  piece  per  student   Tank  of  freshwater   Washers,  slotted  masses,  coins,  or  marbles,  etc.  as  payload  

 

Pre-­‐lab  discussion  -­‐  Boat  Lab  We  have  seen  when  the  weight  (force  of  gravity)  is  greater  than  the  buoyant  force  an  object  will  sink.    Lead  students  to  use  a  force  diagram  to  justify  this  idea.  

LAB  PERFORMANCE  NOTES  -­‐  Boat  Lab  o Design  a  boat  made  of  only  aluminum  foil,  

which  will  hold  the  most  weight  in  a  tank  of  freshwater.  

o Make  diagrams  and  plans  for  the  boat,  which  includes  dimensions  of  all  sides.  

o At  the  moment  of  the  boat  launch,  place  the  foil  boat  into  the  tank  and  begin  adding  payload  objects  until  the  boat  sinks.  

o Record  observations  for  how  your  boat  reacted  to  the  increased  weight  o Dry  the  payload  objects  and  determine  the  maximum  weight  each  boat  held.  

Post-­‐lab  discussion  -­‐  Boat  Lab  Discuss  the  outcome  of  the  lab.    Probe  for  answers  to  why  some  designs  worked  and  some  did  not.    Ask  students  of  both  successful  and  not-­‐so-­‐  successful  boats  to  describe  their  structural  techniques  in  building  the  boat.    Have  students  refer  to  the  model  of  Buoyancy  found  in  the  Apparent  Loss  of  Weight  Lab:             Buoyancy       =  Density  liquid    *  Volume  liquid  displaced  *  g       (apparent  loss  of  weight)                       where  g  =  9.8m/s2  ~  10m/s2  Discuss  how  the  buoyancy  of  the  boat  in  the  water  could  have  been  calculated.    Compare  the  amount  of  weight  that  the  foil  boats  held  in  freshwater  to  the  theoretical  payload  capacity  in  salt  water  or  alcohol.    Review  the  concept  of  adding  forces  that  act  in  the  same  direction.    Discuss  how  the  liquid  is  pushing  up  on  the  boat  and  the  boat  itself  is  being  pulled  down.    As  long  as  the  buoyant  force  is  equal  to  the  weight,  the  boat  will  remain  afloat.    Adding  the  payload  to  the  boat  increases  the  weight  and  causes  the  boat  to  ride  lower  and  displace  more  water.    As  more  water  is  displaced,  the  buoyant  force  increases.    When  the  weight  becomes  greater  than  the  buoyant  force,  the  object  will  sink.    

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Extension  Activity  -­‐  Mini  Boat  Challenge    

The  Challenge:  

Students  must  build  a  boat  made  only  of  aluminum  foil  (a  30cm  x  30  cm  piece),  10  Popsicle  sticks  and  Elmer's  Glue  that  will  float  with  at  least  500  grams  of  mass  in  a  tank  of  water.      

The  minimum  mass  that  the  boat  must  hold  is  500  grams,  but  more  mass  can  be  added  to  find  out  which  boat  holds  the  most  mass  before  sinking.      NOTES:    1. The  Popsicle  sticks  will  provide  more  rigidity  and  strength  to  the  boat.      2. The  Elmer's  Glue  dissolves  in  water;  therefore,  students  who  use  too  much  glue  will  develop  structural  flaws  as  the  glue  dissolves.      

3. A  comparison  between  the  boats  made  only  with  aluminum  foil  against  boats  made  of  foil  with  added  support  could  be  made.      

4. Using  this  extension  activity,  students  have  been  able  to  create  boats  that  have  held  as  much  as  2100  grams!  

                                 

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Performance  Assessment  -­‐  Make  a  barge  sink  to  the  marked  water  line  

Apparatus  -­‐  Lab  Practical   1 metal container (candy tin or tea canister)

o Painted a line around it to represent the depth to which you want the barge to sink Tank  of  water   Set  of  masses  (could  be  miscellaneous  objects,  e.g.,  pennies,  washers,  or  lab  masses)  

Pre-­‐lab/Performance  -­‐  Lab  Practical  Directions   Students  must  add  a  calculated  weight  to  the  barge  prior  to  placing  the  vessel  in  the  tank.  

The  barge  will  sink  to  a  certain  line  that  has  been  painted  around  the  vessel.   Students  are  graded  according  to  the  number  of  attempts  it  takes  to  get  the  barge  to  sink  to  the  desired  water  line  (e.g.,  first  attempt  is  a  success  =  A;  2nd  attempt  =  B,  etc.)  

Post-­‐Lab  -­‐  Lab  Practical   Students  must  create  a  summary  of  their  calculations  and  method  for  solving  the  problem  of  getting  the  boat  to  sink.  This  can  be  presented  to  the  class  for  students  to  demonstrate  their  understanding  and  reasoning;  presentation  allows  the  teacher  to  ask  questions  of  the  students  to  assess  their  understanding  or  clear  up  misconceptions.  

     

    Gary  G.  Abud,  Jr.,  MA       Grosse  Pointe  North  High  School  

http://bit.ly/abudsite    |    @mr_abud      

 

Culminating  Application  Project  -­‐  Cardboard  Boat  Regatta    Goal:    To  use  physics  principles  to  design  and  build  a  cardboard  boat  that  can  be  paddled  by  two  students  across  the  school  pool  and  back.        Permitted  Materials:      •   Corrugated  cardboard  •   Utility  knife  •   Straight  edge  •   Tape  (of  any  kind)  •   Wood  glue  •   Acrylic  latex  caulk  •   Creasing  tool  •   Clamps        For  more  details  of  the  project  and  resources  for  holding  a  cardboard  boat  regatta  at  your  school,  please  see  the  links  on  the  presentation  resources  page.