Physics Driven Geometrical Model Reduction (GMM)

21
HAL Id: hal-02964494 https://hal.inria.fr/hal-02964494 Submitted on 12 Oct 2020 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Physics Driven Geometrical Model Reduction (GMM) Vincent Vadez, François Brunetti, Pierre Alliez To cite this version: Vincent Vadez, François Brunetti, Pierre Alliez. Physics Driven Geometrical Model Reduction (GMM). 2020. hal-02964494

Transcript of Physics Driven Geometrical Model Reduction (GMM)

Page 1: Physics Driven Geometrical Model Reduction (GMM)

HAL Id: hal-02964494https://hal.inria.fr/hal-02964494

Submitted on 12 Oct 2020

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Physics Driven Geometrical Model Reduction (GMM)Vincent Vadez, François Brunetti, Pierre Alliez

To cite this version:Vincent Vadez, François Brunetti, Pierre Alliez. Physics Driven Geometrical Model Reduction(GMM). 2020. �hal-02964494�

Page 2: Physics Driven Geometrical Model Reduction (GMM)

ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics Driven Geometrical Model Reduction

(GMM)

Vincent [email protected]

François [email protected]

Pierre [email protected]

Page 3: Physics Driven Geometrical Model Reduction (GMM)

Page 2Page 2ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Outline

‣ Previous results on new view factor computation methods

‣ Physics driven geometrical model reduction

‣ Problem statement

‣ Reduction process coupled to an oracle for the physical component (here thermal)

‣ Limits

‣ Conclusion & future works

Page 4: Physics Driven Geometrical Model Reduction (GMM)

Page 3Page 3ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Progressive geometric view factors

‣ Polygon-based quadrature

‣ Adaptive splitting

‣ Predictions

More details here:

V. Vadez, F. Brunetti, P. Alliez. Progressive Geometric View Factorsfor Radiative Thermal Simulation.International Conference on Environmental Systems (ICES2020)

Page 5: Physics Driven Geometrical Model Reduction (GMM)

Page 4Page 4ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

‣ Problem statement:

‣ Radiative thermal computations are time consuming

‣ Goal: Geometric reduction consulting physics unaware but physics driven thanks to an oracleUser inputs: Geometric file & decimation stepOutput: Distortion

‣ Global generic architecture:

‣ Preparation: reference calculation case request and clustering

‣ Reduction: decimation iterations for each cluster

‣ Reassembling: reduced geometry reconstitution and calculations request

‣ Distortion: stop criteria according to user input and calculations results (max distortion)

Page 6: Physics Driven Geometrical Model Reduction (GMM)

Page 5ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Model geometry

Inputs: reduction ratio & max distortion

Preparation

input: geometry format

output: distortion quantity Clustering

(If required)

Reduction

ComputationsReassemble geometric clusters

Distortion

If max distortion

not reached

If max distortion reached Output

Oracle (physics calculus)

Reduction tool

physics unaware

but

physics driven

API

Page 7: Physics Driven Geometrical Model Reduction (GMM)

Page 6ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Model geometry

Inputs: reduction ratio & max distortion

Preparation

input: geometry format

output: distortion quantity Clustering

(If required)

Reduction

ComputationsReassemble geometric clusters

Distortion

If max distortion

not reached

Output

Reduction tool

physics unaware

but

physics driven

If max distortion reached

Nodal breakdown

Thermal solver

Oracle (physics calculus)

Temperatures

API

Page 8: Physics Driven Geometrical Model Reduction (GMM)

Page 7Page 7ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

‣ Current prototype thermal limitations

‣ View surfaces face to face only (no solar or albedo fluxes computed)

‣ Node-to-node radiative couplings

‣ Thermal equation solved: steady state

‣ No conductive part in considered model (so only radiative couplings influence final temperatures aka radiative component totally drives temperatures)

‣ Same thermo-optical properties everywhere

Note: if solar and albedo computations are performed, if

conductive couplings are added, if thermo-optical properties

are different for each node -> final reduced output would be

different BUT reduction algorithm does not change

Page 9: Physics Driven Geometrical Model Reduction (GMM)

Page 8Page 8ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

‣ State of the art on geometric model reduction

‣ Edge-collapse or halfedge-collapse

‣ Cost function & placement function

‣ Lindstrom-Turk [1]: optimizes shape, volume & boundaries

‣ Garland-Heckbert [2]: encodes approximate distance to the original mesh by using quadric matrices that it assigns to each vertex

‣ Volume preserving memory-aware

‣ Normal preserving

[1] Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal simplification. In IEEE Visualization, pages 279–286, 1998.

[2] M. Garland and P. S. Heckbert. Surface simplification using quadricerror metrics. In Proc. SIGGRAPH '97, pages 209–216, 1997.

Page 10: Physics Driven Geometrical Model Reduction (GMM)

Page 9ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Considered model:

• 10 thermal nodes

• 1006 triangle faces

• 4 antennas oriented towards Earth and 2 reflectors

• 0,1W injected at the nozzle

• 1 boundary node

Algorithm inputs:

• reduction step ratio: 10% of faces

• desired max distortion: 0.5°C

• Lindstrom-Turk edge collapse (appropriate since boundaries are preserved and view factors depend on area, squared distance and orientations of the faces)

Page 11: Physics Driven Geometrical Model Reduction (GMM)

Page 10ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 1:

895 faces over 1006 original faces (89%)

Max distortion: 0.083°C

0

200

400

600

800

1000

1200

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1

Num

ber

of f

aces

Max

dis

tort

ion

Iteration number

Max distortion and number of faces over iteration number

Max distortion Number of faces

Page 12: Physics Driven Geometrical Model Reduction (GMM)

Page 11ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 2:

797 faces over 1006 original faces (79%)

Max distortion: 0.058°C

0

200

400

600

800

1000

1200

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2

Num

ber

of f

aces

Max

dis

tort

ion

Iteration number

Max distortion and number of faces over iteration number

Max distortion Number of faces

Page 13: Physics Driven Geometrical Model Reduction (GMM)

Page 12ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 3:

703 faces over 1006 original faces (70%)

Max distortion: 0.149°C

0

200

400

600

800

1000

1200

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3

Num

ber

of f

aces

Max

dis

tort

ion

Iteration number

Max distortion and number of faces over iteration number

Max distortion Number of faces

Page 14: Physics Driven Geometrical Model Reduction (GMM)

Page 13ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 4:

630 faces over 1006 original faces (63%)

Max distortion: 0.133°C

0

200

400

600

800

1000

1200

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4

Num

ber

of f

aces

Max

dis

tort

ion

Iteration number

Max distortion and number of faces over iteration number

Max distortion Number of faces

Page 15: Physics Driven Geometrical Model Reduction (GMM)

Page 14ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 5:

552 faces over 1006 original faces (55%)

Max distortion: 0.204°C

0

200

400

600

800

1000

1200

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4 5

Num

ber

of f

aces

Max

dis

tort

ion

Iteration number

Max distortion and number of faces over iteration number

Max distortion Number of faces

Page 16: Physics Driven Geometrical Model Reduction (GMM)

Page 15ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 6:

486 faces over 1006 original faces (48%)

Max distortion: 0.462°C

0

200

400

600

800

1000

1200

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4 5 6

Num

ber

of f

aces

Max

dis

tort

ion

Iteration number

Max distortion and number of faces over iteration number

Max distortion Number of faces

Page 17: Physics Driven Geometrical Model Reduction (GMM)

Page 16ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 7:

429 faces over 1006 original faces (48%)

Max distortion: 0.466°C

0

200

400

600

800

1000

1200

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4 5 6 7

Num

ber

of f

aces

Max

dis

tort

ion

Iteration number

Max distortion and number of faces over iteration number

Max distortion Number of faces

Page 18: Physics Driven Geometrical Model Reduction (GMM)

Page 17Page 17ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

‣ Conclusion

‣ Volume and boundaries preserved thanks to Lindstrom-Turk edge collapse

‣ Results are acceptable until geometry is too much approximated

‣ Fast computation times (around 2 minutes for reduction and thermal calculus for this model). And faster at each iteration.

Iteration 8:

370 faces

Distortion: 1.838°C

But antennas can still be reduced without altering too much the global geometry!

Note: The prototype shows that the algorithm can be

improved. Even if the geometry is drastically corrupted, the

temperatures are still acceptable thanks to the chosen

reduction metric preserving the areas.

Page 19: Physics Driven Geometrical Model Reduction (GMM)

Page 18Page 18ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

‣ Future works on geometric model reduction

‣ Progressive reduction (with adaptive ratio for each reduction step)

‣ Reduce large clusters first to avoid small clusters to be too much approximated

‣ Future works for thermal simulation

‣ Test on a complete radiative model by adding maskings & shadows for incident fluxes (albedo, solar & Earth)

‣ Test on a real model, with ESA permission Sentinel-3 and BepiColombo are good candidates

‣ Examine standard exchange formats between our reduction outputs and STEP-TAS & STEP AP203

‣ Sensitivity analysis on thermo-optical properties, use of machine learning to acquire thermal expertise about what drives the reduction process

Page 20: Physics Driven Geometrical Model Reduction (GMM)

Page 19Page 19ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

‣ Future works for 3D conductive couplings

‣ Implement a new oracle for 3D conductive couplings (finite elements computations)

‣ Max distortion based on conservation of defined interface nodes conductive couplings

‣ The oracle could be improved to preserve mechanical structures characteristics

Note: Edge connectivity conforming is not required for the

radiative calculation. Due to finite elements (volumic

connectivity), the edge connectivity between clusters is

mandatory.

Edge connectivity between clusters is not preserved

Page 21: Physics Driven Geometrical Model Reduction (GMM)

Page 20ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Thank you for your attention!Questions are welcomed!