Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751...

17
Physics 327: Modern Instrumentation Instructor: Prof. Weida Wu Office: Serin 117W Phone: 848-445-8751 e-mail [email protected] Office Hour: arrange by email Lab TA: Paul Sass ( [email protected] ) Textbook: “An Introduction to Modern Electronics”, by William L. Faissler, Wiley, 1 st edition (March 5, 1991) Web Site for Course: http://www.physics.rutgers.edu/u grad/327/

Transcript of Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751...

Page 1: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Physics 327: Modern InstrumentationInstructor: Prof. Weida WuOffice: Serin 117W

Phone: 848-445-8751e-mail [email protected] Hour: arrange by email

Lab TA: Paul Sass ([email protected])

Textbook: “An Introduction to Modern Electronics”, by William L. Faissler, Wiley, 1st edition (March 5, 1991)

Web Site for Course:http://www.physics.rutgers.edu/ugrad/327/

Page 2: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Lecture and Lab sessionsLecture (Wu): Wednesday (6:40-8:00 PM) SEC 208

Lab Sect. 3 (Sass): Monday (6:40pm-9:30pm) Serin 101

Lab Sect. 1 (Sass): Tuesday (10:20am-1:20pm) Serin 101

Lab Sect. 2 (Wu): Tuesday (3:20pm-6:20pm ) Serin 101

Lab Sect. 4 (Sass): Thursday (6:40pm-9:30pm) Serin 101

Nominally 2 peoples per group unless otherwise instructed.

Course Goal The goal of this class is to learn a number of basic electronic components and their analysis, so that you can understand and build circuits that are useful in physics experiments.

Lab Preparation The lab instructions are available at the course home page. You are expected to read and understand these instructions before coming to the lab. In addition, you are expected to read and understand the suggested chapters of the textbook prior to the lab.

Page 3: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Course syllabus

11 lectures, 9 labs (reports), 6-8 quizzes

Lab # TopicRead

ChaptersSuggested Problems

1 DC Voltage divider (1 week lab) 2-6 15-16 4.10-4.12 5.1 6.6

2AC, Capacitance, Impedance (1 week lab)

7-9 12 17 51 53

7.1 7.4 8.5 9.1 12.2

3 RLC Resonance (1 week lab) 8-12 12.1, 11.2 12.6

4 Diode and Transistor (1 week lab) 40-45 44.1-44.35 Operational Amplifier (2 week lab) 28-31 29.3-29.66 Difference and Instrumentation Amplifiers (2

week lab)29 31 32 31.3 31.4

7 Digital Basics: Timers, Counters (2 week lab) 19 21-24 21.1 23.4

8 DAC, ADC (2 week lab) 34-36, 54  9 LabView, GPIB (1 week lab)    

No lecture on March 4

Page 4: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Quizzes (6-8): •Short quizzes will be given occasionally during lectures through the semester. Topics in the quizzes are lecture and lab contents, reading assignments, and homework. •Make-up quizzes will not be offered unless you have a documented medical reason for missing the quiz. •The lowest quiz grade will be dropped.

Grading: The course grade will be based mostly on the lab reports (~90%), with the remainder determined by lab preparation and participation, quiz scores and lecture attendance. (~10%)

A B+ B C+ C D F

90 85 80 72 65 55 <55

Grade cutoffs (tentative)    

Page 5: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Lab Reports•Maximum score for each lab is 100.

•Lab reports are due one week after.

•Late reports will be accepted up to one week after the due date, but will be penalized by a 50% grade reduction.

•The report must be typed; the graphs are to be generated using OriginLab© (highly preferred). Drawings and circuit diagrams should be neatly drawn and labeled.

•Include the name(s) of your lab partner(s).

•The grades of lab reports also include lab preparation and participation. Late attendance of labs (>30 minutes) will be penalized by a 20% of grade reduction.

•No “carbon copies” of the reports will be accepted. Do not write a “report” if you have not actually done the lab.

•The report must be brief, yet fairly self-sufficient.

•Please make sure you answer all the questions in lab instructions in your report.

Page 6: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Lab report • Introduction

– Clearly state the objective(s), and a short explanation of the theoretically background, if appropriate. To avoid redundancy, do not copy the entire lab description in your report.

• Method– Must include brief description of the equipment used and the experimental

procedures followed. Also include accurate neatly-drawn circuit diagrams.

– Do not include your results in this section.

• Results and discussion– Tables and figures (with proper labels and units)

– Connect the results back to the theory

– Often, the obtained data are somewhat different from what was expected. In this case, you should try to understand why and justify.

• Conclusion– Discuss if the goal(s) set forth were met.

Page 7: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Important concepts: current and voltage

QI

t

VIR

Current (I): flow of positive charges.

Note: In solid conductors (e.g. metals), current is mainly carried by electrons (negative charges).

WV

q

Voltage (V): work per unit charge (potential diff.)

Unit: Coulomb/sec

Unit: Joule/Coulomb

AMeter:

VMeter:

in series

in parallel

Page 8: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Simplest I-V: Ohm’s law

V IV

I

VIR

V R I R: Resistance of the resistor.

Ohmic (linear) behavior:

Ohm’s law:

Non-ohmic I-V characteristic deviate from this linear behavior. Example: diodes.

Page 9: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Kirchhoff’s circuit laws

0ivertex

I in outI I or

0iloop

V

• Kirchhoff’s current law (charge conservation)

• Kirchhoff’s voltage law (energy conservation)

Page 10: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Equivalent circuits

1 2 1 2 eqV R I R I R R I R I

1 2eqR R R

1 2

1 2 1 2 1 2

1 1 1

eq eq

V V V V V V

I I I R R R R R R

in general, eq ii

R R

1 1in general, eq ii

R R

Resistors in series

Resistors in parallel

Page 11: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Thevenin’s theorem (pg. 45)Any complex network of linear circuit elements (sources, resistors and impedances) having 2 terminals can be replaced by a single equivalent voltage source* connected in series with a single resistor (or output impedance).

Vth

Rth

*Similar (Norton’s theorem) statement is true for equivalent current source.

Rth is also called output impedance of the equivalent circuit.

Page 12: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Lab 1: DC Voltage divider

2

1 2out in

RV V

R R

outout th

out

dVR R

dI

Non-ohmic I-V

Vth

Rth

RL

A

Page 13: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Comment electronic components

resistors

LED

Breadboard

Page 14: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Electric connection of breadboard

Page 15: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Electronic instruments

Digital Multimeter OscilloscopeFunction generator

Page 16: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Resistor Color Code Bands

Page 17: Physics 327:Modern Instrumentation Instructor:Prof. Weida Wu Office:Serin 117 W Phone:848-445-8751 e-mailwdwu@physics.rutgers.edu Office Hour:arrange by.

Metric prefixText Symbol Factor

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10-3

micro μ 10-6

nano n 10-9

pico p 10-12