Physical Layer (cont’d)

26
3-1 Physical Layer (cont’d) Telephone systems referred to as PSTNs (Public Switched Telephone Systems) high coverage for voice and data low speed and high bit error rate an urge for higher efficiency to support data and multimedia applications

description

Physical Layer (cont’d). Telephone systems referred to as PSTNs (Public Switched Telephone Systems) high coverage for voice and data low speed and high bit error rate an urge for higher efficiency to support data and multimedia applications. Physical Layer (cont’d). - PowerPoint PPT Presentation

Transcript of Physical Layer (cont’d)

Page 1: Physical Layer (cont’d)

3-1

Physical Layer (cont’d)

Telephone systems referred to as PSTNs (Public Switched

Telephone Systems) high coverage for voice and data low speed and high bit error rate an urge for higher efficiency to support data and

multimedia applications

Page 2: Physical Layer (cont’d)

3-2

Physical Layer (cont’d)

Telephone systems (cont’d) structure

(Fig. 2-14, p. 103)

Page 3: Physical Layer (cont’d)

3-3

Physical Layer (cont’d) Telephone systems (cont’d)

structure (cont’d)

(Fig. 2-15, p. 105)

Page 4: Physical Layer (cont’d)

3-4

Physical Layer (cont’d)

Telephone systems (cont’d) structure (cont’d)

– transmission media twisted pair coaxial cable microwave fiber optics

– advantages of digital trans. over analog trans. higher accuracy by data regeneration integrated services cheaper (only to correctly distinguish a 0 from a 1) easier maintenance (to track down problems)

Page 5: Physical Layer (cont’d)

3-5

Physical Layer (cont’d)

Telephone systems (cont’d) structure (cont’d)

– three major components of a telephone system local loops (twisted pair, analog signaling, advanced

technologies including DPGS, ADSL and HDSL) trunks (fiber optics or microwave, mostly digital) switching offices

– CPE (customer premises equipment), e.g. telephones and fax machines, connected by a telephone system

Page 6: Physical Layer (cont’d)

3-6

Physical Layer (cont’d) Telephone systems (cont’d)

politics of telephones

(Fig. 2-16, p. 107)

In Feb. 1996, restrictions were removed so that the cable TV, local phone, long distance and cellular companies can enter one another’s business.

Page 7: Physical Layer (cont’d)

3-7

Physical Layer (cont’d) Telephone systems (cont’d)

local loop– typical configuration to support data communications

( Fig. 2-17, p. 108)

Page 8: Physical Layer (cont’d)

3-8

Physical Layer (cont’d)

Telephone systems (cont’d) local loop (cont’d)

– transmission impairments attenuation: distance and frequency dependent, recovered by

amplifiers and equalizers delay distortion: caused by frequency-dependent propagation

speeds, unavoidable noise: e.g. thermal noise, cross talk and impulse noise

– modems modulator and demodulator digital data, analog signaling and digital transmission using modulation to reduce the range of frequencies

Page 9: Physical Layer (cont’d)

3-9

Physical Layer (cont’d) Telephone systems (cont’d)

local loop (cont’d)– digital modulation techniques

(Fig. 2-18, p. 110)

Page 10: Physical Layer (cont’d)

3-10

Physical Layer (cont’d) Telephone systems (cont’d)

local loop (cont’d)– constellation patterns

(Fig. 2-19, p. 111)

Page 11: Physical Layer (cont’d)

3-11

Physical Layer (cont’d)

Telephone systems (cont’d) local loop (cont’d)

– digital modulation standards ITU V.32: 9600 bps, 16 QAM ITU V.32 bis: 14400 bps, 64 QAM ITU V.34: 28800 bps ITU V.90: 56000 bps

– trellis coding, e.g. 128 points in the constellation pattern to send 6 data bits and 1 check bit in 1 baud

– FDM (to disable noisy bands), compression and error correction to improve performance

Page 12: Physical Layer (cont’d)

3-12

Physical Layer (cont’d) Telephone systems (cont’d)

local loop (cont’d)– echo suppresser for long distance transmission

(Fig. 2-20, p. 113)

only half-duplex is possible with significant reverse time designed for human speech, not digital data in-band pure tone at 2100 Hz to disable the echo suppresser replaced by echo chancellors

Page 13: Physical Layer (cont’d)

3-13

Physical Layer (cont’d)

Telephone systems (cont’d) RS-232-C and RS-449

– standardized by EIA and ITU

– physical layer specifications

– to connect the computer and the modem

– null modems to connect two devices without modems

– 20 Kbps over 15-meter trans. limit for RS-232-C

– 2 Mbps over 60-meter trans. limit for RS-449 with RS-422-A (balanced transmission)

Page 14: Physical Layer (cont’d)

3-14

Physical Layer (cont’d) Telephone systems (cont’d)

fiber in the local loop– FTTH (Fiber To The Home)

– FTTC (Fiber To The Curb)

– HFC (Hybrid Fiber Coax)

Page 15: Physical Layer (cont’d)

3-15

Physical Layer (cont’d) Telephone systems (cont’d)

trunks and multiplexing– FDM (frequency division multiplexing)

(Fig. 2-24, p.119)

Page 16: Physical Layer (cont’d)

3-16

Physical Layer (cont’d) Telephone systems (cont’d)

trunks and multiplexing– WDM (wavelength division multiplexing)

(Fig. 2-25, p.120)

highly reliable (completely passive) desired due to the speed limit on E/O and O/E conversion can be used in the FTTC architecture

Page 17: Physical Layer (cont’d)

3-17

Physical Layer (cont’d) Telephone systems (cont’d)

trunks and multiplexing (cont’d)– TDM (time division multiplexing)

digitizing voice by a codec (sampling and quantizing) PCM (Pulse Code Modulation) T1 carrier

(Fig. 2-26, p.122)

Page 18: Physical Layer (cont’d)

3-18

Physical Layer (cont’d) Telephone systems (cont’d)

trunks and multiplexing (cont’d)– TDM (cont’d)

DPCM (Differential PCM) DM (Delta Modulation)

(Fig. 2-27, p.123)

Page 19: Physical Layer (cont’d)

3-19

Physical Layer (cont’d) Telephone systems (cont’d)

trunks and multiplexing (cont’d)– TDM (cont’d)

carrier hierarchy

(Fig. 2-28, p.124)

Page 20: Physical Layer (cont’d)

3-20

Physical Layer (cont’d) Telephone systems (cont’d)

switching– from manual to automatic

– schematic illustration

(Fig. 2-34, p. 131)

Page 21: Physical Layer (cont’d)

3-21

Physical Layer (cont’d) Telephone systems (cont’d)

switching (cont’d)– comparison of switching techniques

(Fig. 2-35, p. 132)

Page 22: Physical Layer (cont’d)

3-22

Physical Layer (cont’d) Telephone systems (cont’d)

switching (cont’d)– comparison of switching techniques (cont’d)

(Fig. 2-36, p. 134)

Page 23: Physical Layer (cont’d)

3-23

Physical Layer (cont’d) Telephone systems (cont’d)

switching (cont’d)– switching hierarchy

(Fig. 2-37, p. 135)

Page 24: Physical Layer (cont’d)

3-24

Physical Layer (cont’d)

Telephone systems (cont’d) switching (cont’d)

– crossbar (crosspoint) switches

(Fig. 2-38, p. 136)

– simplest and nonblocking– the number of crosspoints grows fast with n2

Page 25: Physical Layer (cont’d)

3-25

Physical Layer (cont’d) Telephone systems (cont’d)

switching (cont’d)– space division switches

(Fig. 2-39, p. 137)

– smaller number of crosspoints– possible call blocking

Page 26: Physical Layer (cont’d)

3-26

Physical Layer (cont’d) Telephone systems (cont’d)

switching (cont’d)– time division switches

(Fig. 2-40, p. 138)

– the table size and the RAM buffer grow linearly with n