Photolithography 光刻 Part I: Optics

51
Xing Sheng, EE@Tsinghua 1 Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University [email protected] Photolithography 光刻 Part I: Optics Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Transcript of Photolithography 光刻 Part I: Optics

Page 1: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

1

Xing Sheng盛兴

Department of Electronic EngineeringTsinghua University

[email protected]

Photolithography 光刻Part I: Optics

Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Page 2: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Integrate Circuits

5

Moore's law

transistor number transistor size

Page 3: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Transistor Size

6

< 100 nm1 cm

1947 2000s

~ 2 mm

1961

revolution evolution

Page 4: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

CMOS Process

7

'Lithography is the cornerstone of modern IC technology'---- Silicon VLSI, Plummer et al.,

Page 5: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Lithography

8

litho- 石头-graph 图案

石版画

Page 6: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Photography

9

曝光

显影

打印

Page 7: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Photolithography(光刻)

10

Page 8: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Photolithography(光刻)

11

光刻胶

掩膜

光源

Video

Page 9: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

12

Exposure (曝光)

接触式 接近式 投影式

Page 10: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

13

Exposure (曝光)

stepper (步进投影)

mass chip production in industry

Video

Page 11: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Photomasks (掩膜)

14

write by laser or electron beam

Page 12: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Photomasks (掩膜)

15

Page 13: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Photomasks (掩膜)

16

Layout design CAD tools

see examples

Transparency film flexible mask

Chrome mask glass substrate

chrome coating

Example

transparency film chrome mask

design layout

Page 14: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

17

Resolution

ideal case actual case

Page 15: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

18

Resolution

diffraction: light is a wave!

Page 16: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

19

Resolution

the smaller, the harder

Page 17: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

20

Resolution

contact and proximity mode

gR ~

R resolution wavelengthg gap size

smaller , g ---> smaller R

UV, DUV, EUV, x-ray, ...g minimum: resist film thickness

Page 18: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

21

Resolution

projection mode

Page 19: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

22

Resolution

modulation transfer function (MTF)

minmax

minmax

II

IIMTF

ideal MTF = 1poor MTF ~ 0

MTF = ?

Page 20: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

23

Resolution

diffraction pattern (Airy's disk)

Page 21: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

24

Resolution

Rayleigh Criterion:the first diffraction minimum of one source

coincides with the maximum of another

Page 22: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

25

Resolution

smaller , larger NA ---> smaller resolution

UV, DUV, EUV, x-ray, ...n refractive index (air: 1, oil: 1.4~1.7)sin maximum = 1.0

resolution

sin6.0~n

R

Page 23: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

26

Spatial Coherence

Page 24: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

27

Resolution Improvement

sin6.0~n

R decrease increase increase n???

Page 25: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

28

Large Aperture

FAST (天眼,贵州)

Page 26: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

29

Immersion Lithography

n = 1.0n > 1.0

If high index fluid n = 1.7,resolution is reduced by ~40%

B. J. Lin (林本坚)2018 未来科学大奖

B. J. Lin, Microelec. Eng. 6, 31 (1987)

sin6.0~n

R

Page 27: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

30

Phase Shift Mask

Page 28: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

31

Double Patterning

Page 29: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

32

Double Patterning

Page 30: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

33

Multiple Patterning

Page 31: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

34

Optical Proximity Correction (OPC)

mask resist

Page 32: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

35

Resolution Improvement

sin6.0~n

R

For deep-UV, = 193 nm

17 nm+ immersion (n = 1.7)

+ quad pattern

34 nm+ immersion (n = 1.7)

+ double pattern

......

68 nm+ immersion (n = 1.7)

116 nmnormal R

Page 33: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Manufacturing Gets Complicated

36

multiple patterning steps

Page 34: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

37

Depth of Focus (DOF)

depth of focus(DOF)

Page 35: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

38

Depth of Focus (DOF)on focusoff focus

trade-off between resolution and DOF

off focuslarge NA (光圈)

Page 36: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Light Sources

39

Mercury (Hg) arc lamp g-line 436 nm, h-line 405 nm, i-line 365 nm

sin6.0~n

R

Page 37: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Light Sources

40

Mercury (Hg) arc lamp g-line 436 nm, h-line 405 nm, i-line 365 nm

yellow light in cleanroom

Page 38: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Light Sources

41

Deep UV (DUV) excimer lasers: KrF (248 nm), ArF (193 nm)

Extreme UV (EUV) Tin (Sn) plasma lasers, 13.5 nm

X-ray 0.01 ~ 10 nm

Electron beam (E-beam)

...

sin6.0~n

R

Page 39: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Optics for EUV

42

at EUV ( = 13.5 nm):glass is not transparentmetal is not reflectiveeven air is absorptive

quartz glass metals

air

Page 40: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Optics for EUV

43

reflective masks

multilayer mirrors(Mo/Si)

Page 41: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Optics

44

UV (365 nm) EUV (13.5 nm)

optical loss > 95%

everything in the vacuum!

Page 42: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Equipment

45

UV (365 nm)resolution ~ 2 mprice ~ 200,000 RMB

EUV (13.5 nm)resolution ~ 10 nmprice ~ 100,000,000 $$$

Page 43: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

X-ray Lithography

46

wavelength 0.01~10 nm

Page 44: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Electron Beam (Ebeam) Lithography

47

similar to a scanning electron microscope (SEM)

wavelength

V

23.1)nm(

wave-particle duality

momentum

h

Example:for V = 30 kV, = 0.007 nm

Page 45: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

The resolution is limited by secondary electrons higher V -> lower resolution

resolution ~ 10 nm

No mask for electron, only direct writing! slow process

Only for research purposes now

Electron Beam (Ebeam) Lithography

48

proximity effect

Video

Page 46: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

NanoPhotonics

49

Page 47: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Optical Cloak

50J. Valentine, et al., Nature Mater. 8, 568 (2008)

Page 48: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Metalens

51

40 m 300 nm

M. Khorasaninejad, et al., Science 352, 1190 (2016)

Page 49: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Top Down vs. Bottom Up

52

Page 50: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Bottom Up Approaches

53

nanowire growth block copolymer assembly

quantum dot anodized alumina

Page 51: Photolithography 光刻 Part I: Optics

Xing Sheng, EE@Tsinghua

Nano Structures in Nature

54E. Armstrong and C. O'Dwyer, J. Mater. Chem. C 3, 6109 (2015)