photoelectric effect/photoemission

28
Liberation of electron using a photon photoelectric effect/photoemission Science By The Slice Xiaoshan Xu July 22, 2016

Transcript of photoelectric effect/photoemission

Page 1: photoelectric effect/photoemission

Liberation of electron using a photon

photoelectric effect/photoemission

Science By The Slice

Xiaoshan Xu

July 22, 2016

Page 2: photoelectric effect/photoemission

PHOTOELECTRIC EFFECT

The complete absorption of a photon by a solid with the emission of an

electron. (Handbook of chemistry and physics, David Lide, 87th edition,

Boca Raton, FL : CRC Press, 2006)

e

eee

ee

ee

ee e e

e

e

Light (𝐼, 𝜈 ) Electron (πΈπ‘˜ , 𝐼𝐸)

Metal: Li, Na, K

Page 3: photoelectric effect/photoemission

Photoelectric effect

https://phet.colorado.edu/en/simulation/photoelectric

𝐼: light intensity

𝜈: light frequency

πΈπ‘˜: kinetic energy of

emitted electron

𝐼𝐸: photoelectric

current

Light (𝐼, 𝜈 )

Electron (πΈπ‘˜ , 𝐼𝐸)

Page 4: photoelectric effect/photoemission

Properties of the photoelectric effect

𝐼𝐸 ∝ 𝐼 (The intensity of light is

proportional to the induced photo

electric current.)

There is an threshold for the light

frequency to generate photocurrent.

The maximum kinetic energy

increases with the light frequencyhttp://hyperphysics.phy-astr.gsu.edu/hbase/mod2.html

Na

Page 5: photoelectric effect/photoemission

Quantization of light: photon

β€’ The energy of the light propagates in discrete wave packets (photons):

𝐸𝑝 = β„Žπœˆ, β„Ž is the Plank constant

β€’ Conservation of energy:

πΈπ‘˜π‘šπ‘Žπ‘₯ = 𝐸𝑝 βˆ’ πœ™ = β„Žπœˆ βˆ’ πœ™

Vacuum level

Metal

πœ™:π‘€π‘œπ‘Ÿπ‘˜ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

ee

ee

e

e

e

e

e

Light (𝐼, 𝜈 )

Page 6: photoelectric effect/photoemission

Measurement of Plank constant

Robert Millikan

β„Ž = 6.6 Γ— 10βˆ’34 Js

http://hyperphysics.phy-astr.gsu.edu/hbase/mod2.html

πΈπ‘˜π‘šπ‘Žπ‘₯ = 𝐸𝑝 βˆ’ πœ™ = β„Žπœˆ βˆ’ πœ™

Page 7: photoelectric effect/photoemission

Work functions of metals (eV)Ag 4.26 – 4.74 Al 4.06 – 4.26 As 3.75

Au 5.1 – 5.47 B ~4.45 Ba 2.52 – 2.7

Be 4.98 Bi 4.31 C ~5

Ca 2.87 Cd 4.08 Ce 2.9

Co 5 Cr 4.5 Cs 2.1

Cu 4.53 – 5.10 Eu 2.5 Fe: 4.67 – 4.81

Ga 4.32 Gd 2.90 Hf 3.9

Hg 4.475 In 4.09 Ir 5.00 – 5.67

K 2.29 La 3.5 Li 2.9

Lu ~3.3 Mg 3.66 Mn 4.1

Mo 4.36 – 4.95 Na 2.36 Nb 3.95 – 4.87

Nd 3.2 Ni 5.04 – 5.35 Os 5.93

Pb 4.25 Pd 5.22 – 5.6 Pt 5.12 – 5.93

Rb 2.261 Re 4.72 Rh 4.98

Ru 4.71 Sb 4.55 – 4.7 Sc 3.5

Se 5.9 Si 4.60 – 4.85 Sm 2.7

Sn 4.42 Sr ~2.59 Ta 4.00 – 4.80

Tb 3.00 Te 4.95 Th 3.4

Ti 4.33 Tl ~3.84 U 3.63 – 3.90

V 4.3 W 4.32 – 5.22 Y 3.1

Yb 2.60 [13] Zn 3.63 – 4.9 Zr 4.05

Visible light:

1.6-3.1 eV

Page 8: photoelectric effect/photoemission

Light: Wave and particle

β€’ Klein–Gordon equation (Relativistic)

βˆ’β„2πœ•2

πœ•π‘‘2πœ“ = βˆ’β„2𝑐2𝛻2 +π‘š2𝑐4 πœ“ = 𝐸2

m=0 for photon:

βˆ’β„2πœ•2

πœ•π‘‘2πœ“ = βˆ’β„2𝑐2𝛻2πœ“ = 𝐸2

πœ“ = Ae𝑖(2πœ‹πœ†π‘₯βˆ’πœ”π‘‘)

, 𝐸 = β„πœ” = β„Žπœˆ

πœ” ≑ 2πœ‹πœˆ, ℏ β‰‘β„Ž

2πœ‹

Page 9: photoelectric effect/photoemission

Light Induced Quantum Transitions

β€’ Transition matrix

𝐻12 = πœ“1 𝐸0π‘’βˆ’π‘–πœ”π‘‘ πœ“2

= πœ“10 𝐸0 πœ“2

0 π‘’βˆ’π‘–(𝐸2βˆ’πΈ1

β„βˆ’πœ”)𝑑

Transition probability

𝑃 𝑑 ∝ ΰΆ±0

𝑑

𝐻12𝑑𝑑

2

∝ ࢱ0

𝑑

π‘’βˆ’π‘–

𝐸2βˆ’πΈ1ℏ

βˆ’πœ” 𝑑𝑑𝑑

2

∝ πœ“10 𝐸0 πœ“2

0 2𝛿(𝐸2 βˆ’ 𝐸1

β„βˆ’ πœ”)

Light eβˆ’π‘–πœ”π‘‘

πœ“1 = πœ“10π‘’βˆ’π‘–

𝐸1ℏ𝑑

πœ“2 = πœ“20π‘’βˆ’π‘–

𝐸2ℏ𝑑

Page 10: photoelectric effect/photoemission

Application of photoelectric effect

β€’ Photoelectric cell for light sensing

β€’ Photomultiplier tube for single-photon

detection

Page 11: photoelectric effect/photoemission

Excitation in an insulator (semiconductor)

Vacuum level

Metal

πœ™:π‘€π‘œπ‘Ÿπ‘˜ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›

ee

e

e

e

e

ee

e

Light (𝐼, 𝜈 )

Vacuum level

Insulator

𝐸𝑔: π‘π‘Žπ‘›π‘‘ π‘”π‘Žπ‘

ee

ee

e

e

e

e

e

Light (𝐼, 𝜈 )

π‘‰π‘Žπ‘™π‘’π‘›π‘π‘’ π‘π‘Žπ‘›π‘‘

πΆπ‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘œπ‘› π‘π‘Žπ‘›π‘‘ Si

Si

Si

Si

Si

Si

Si

Si

Si

e e e e

e e

e e e e

e e

e

e

e

e

e

e

e

e

e e

ee

Page 12: photoelectric effect/photoemission

Light induced electron-hole pair

Photovotaic effect

ee

ee

e e

ee e e

e

hh

h h

hh

h

hh h

h+++

---

π‘₯

π‘‰π‘‘π‘Ÿπ‘œπ‘

Electric potential

Depletion zone

h

ee

h

+-

Photodetector: charge coupled device (CCD)

Gate

SiO2

p-Si

𝑉𝐺

e

h

Page 13: photoelectric effect/photoemission

PHOTOEMISSION

e

eee

ee

ee

ee e e

e

e

Light (𝐼, 𝜈 ) Electron (πΈπ‘˜ , 𝐼𝐸)

Metal and insulators

Page 14: photoelectric effect/photoemission

Photoemission

Binding energy: 𝐸𝐡 = β„Žπœˆ βˆ’ πΈπ‘˜Binding energy of valence electron

< 100 eV ultraviolet light

Binding energy of core electron:

> keV x-ray

K, n=1

L, n=2M, n=3N, n=4Valence

Vacuum

https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy

Page 15: photoelectric effect/photoemission

Ultraviolet photoelectron spectroscopy (UPS)

http://en.wikipedia.org/wiki/File:ARPESgeneral.png

Fix photon energy

Measure kinetic energy

β€’ Surface sensitive due to small kinetic energy

β€’ Must be in UHV (typically <10-9 Torr)

Page 16: photoelectric effect/photoemission

X-ray photoelectron spectroscopy (XPS)

J. Phys.: Condens. Matter 27 (2015) 175004 .

h-LuFeO3

Page 17: photoelectric effect/photoemission

Auger effect (Secondary photoemission)

β€’ 1st , x-ray excites electron to

conduction band and

generate a core hole

β€’ 2nd , electron recombine

with the hole; the emitted

energy expels another

electronK, n=1

L, n=2M, n=3N, n=4Valence

Vacuum

K, n=1

L, n=2M, n=3N, n=4Valence

Vacuum

X-ray absorption Electron-hole recombination and

emission of another electron

Page 18: photoelectric effect/photoemission

ABSORPTION SPECTROSCOPY

πœ“1 = πœ“10π‘’βˆ’π‘–

𝐸1ℏ𝑑

πœ“2 = πœ“20π‘’βˆ’π‘–

𝐸2ℏ𝑑 𝑃 𝑑 ∝ πœ“1

0 𝐸0 πœ“20

2𝛿(𝐸2 βˆ’ 𝐸1

β„βˆ’ πœ”)

Page 19: photoelectric effect/photoemission

Optical absorption spectroscopy

1.2 1.4 1.6 1.8 2.0 2.20

100

200

300

400

500

600

700

(

cm-1

)

Energy (eV)

300 K

4 K

6A

1g

4T

1g

6A

1g

4T

2g

PHYSICAL REVIEW B 79, 134425 2009

BiFeO3

Page 20: photoelectric effect/photoemission

t2g

eg

Fe3+ 3d5

Spin Parity

Initial 5/2 Even

Final 3/2 Even6A1g

4T1g

Color of BiFeO3 comes from the absorption

Page 21: photoelectric effect/photoemission

X-ray absorption spectroscopy (XAS)

Transmission

Incident x-ray

Secondary

photoemission

(surface sensitive,

a few nm)Fluorescence

e

β€’ Transmission is normally

difficult to measure,

especially for thin films

β€’ Fluorescence spectra is

often distorted by self

absorption

β€’ Photoemission is often

used for its surface

sensitivity, especially for

thin films.

Page 22: photoelectric effect/photoemission

XAS using synchrotron x-ray

β€’ Unlike XPS, UPS, the x-ray

energy is canned, which

requires synchrotron source

β€’ UHV is also necessary

X-ray

e

XAS at Canadian Light Source

Page 23: photoelectric effect/photoemission

Electronic structures by XAS

LuFeO3

hexagonal

orthorhombic

Page 24: photoelectric effect/photoemission

hexagonal

orthorhombic

Page 25: photoelectric effect/photoemission

X-ray magnetic circular dichroism (XMCD)

Stohr, Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics, Springer, 2006.

Page 26: photoelectric effect/photoemission

Photoemission electron microscopy (PEEM)

Fe magnetic domains

Magnetic domains

Page 27: photoelectric effect/photoemission

hexagonal

orthorhombic

hexagonal

orthorhombic

Structural

domains

Page 28: photoelectric effect/photoemission

Thank you for your attention !