Phosphate modified ceria as a Brønsted acidic/redox ...RF(1H SPINAL-64) = 100 kHz, and 128 scans...

9
1 Supplementary Information Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst Nicholas C. Nelson, Zhuoran Wang, Pranjali Naik, J. Sebastián Manzano, Marek Pruski, Igor I. Slowing* US DOE Ames Laboratory, Ames, Iowa 50011, United States Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States Fig. S1 Measured P:Ce mole ratio after trimethylphosphate deposition onto CeO2 followed by calcination versus the nominal P:Ce mole ratio. Fig. S2 STEM image and corresponding EDS elemental maps for CeO 2 -0.1PO x . STEM analysis of CeO 2 - 0.2PO x is expected to be similar. STEM images of CeO 2 have been reported previously. 1 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Transcript of Phosphate modified ceria as a Brønsted acidic/redox ...RF(1H SPINAL-64) = 100 kHz, and 128 scans...

  • 1

    SupplementaryInformation

    PhosphatemodifiedceriaasaBrønstedacidic/redoxmultifunctionalcatalyst

    NicholasC.Nelson,ZhuoranWang,PranjaliNaik,J.SebastiánManzano,MarekPruski,IgorI.Slowing*

    USDOEAmesLaboratory,Ames,Iowa50011,UnitedStatesDepartmentofChemistry,IowaStateUniversity,Ames,Iowa50011,UnitedStates

    Fig.S1MeasuredP:CemoleratioaftertrimethylphosphatedepositionontoCeO2followedbycalcinationversusthenominalP:Cemoleratio.

    Fig.S2STEMimageandcorrespondingEDSelementalmapsforCeO2-0.1POx.STEManalysisofCeO2-0.2POxisexpectedtobesimilar.STEMimagesofCeO2havebeenreportedpreviously.1

    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2017

  • 2

    Fig.S3DRIFTspectraofthematerialswithnopretreatment(i.e.as-synthesized)andnobaselinecorrectioninthe(a)carbonate/phosphateand(b)hydroxylregions.Thebandaround2100cm-1forCeO2hasbeenproposedaseitheranelectrontransitionfromdonorlevelslocatedneartheconductionbandsuchasCe3+oroxygenvacanciesortheforbidden2F5/2à2F7/2electronictransitionofCe3+locatedatsubsurface(orbulk)defectivelatticesites.2-4

    Fig.S4XPSspectrainthe(a)O1sspectralregionforCeO2,CeO2-0.1POx,andCeO2-0.2POx.(b)P2pspectralregionforphosphatefunctionalizedmaterials.

  • 3

    Fig.S531P{1H}CPMASspectraofCeO2-0.1POxandCeO2-0.2POx.Thespectrawereobtainedat9.4TusingvR=18kHz,tCP=2.1ms,vRF(1HCP)=96kHz,vRF(31PCP)=78kHz,vRF(1HSPINAL-64)=96kHzand1024scans.

    Fig.S61HDPMASspectrumofCeO2,obtainedat14.1TusingvR=38kHz,vRF(1H90˚)=83.3kHz,trd=3sand16scans.Theprobebackgroundwassubtracted.

  • 4

    Fig.S71HDPMASHahnechospectraof(a)CeO2-0.1POxand(b)CeO2-0.2POx.Thespectrawereobtainedat9.4TusingvR=18kHz,vRF(1H90˚)=96kHz,trd=7s,64scans/delay,andechodelaysindicatedinthefigure.

    100 80 60 40 20 0 -20 -40 -60 -80 -100

    111222333444555666777888999111012211332144315541665

    echo

    dea

    ly (µ

    s)

    d 1H (ppm)

    100 80 60 40 20 0 -20 -40 -60 -80 -100

    111222333444555666777888999111012211332144315541665

    ech

    o de

    lay

    (µ s

    )

    δ 1H (ppm)

    -40-30-20-1001020304050

    d 1H (ppm)

    -40-30-20-1001020304050

    d 1H (ppm)

    (a)

    (b)

  • 5

    Fig.S8Comparisonbetween31PDPMAS(black)and31PDQ-filteredDPMAS(red)spectraofCeO2-0.2POxmeasuredat9.4T.The31PDPMASspectrumwasobtainedusingvR=18kHz,vRF(31P90˚)=83.3kHz,vRF(1HSPINAL-64)=100kHz,and128scanswithtrd=6s.31PDQ-filteredDPMASspectrumwasobtainedusingvR=18kHz,vRF(31P90˚)=83.3kHz,vRF(1HSPINAL-64)=100kHz,and2048scanswithtrd=5s.

    Fig.S9ExperimentalDQbuild-upcurvesmeasuredat9.4Tfor(a)CeO2-0.1POxand(b)CeO2-0.2POx,usingvR=18kHz,vRF(31P90˚)=83.3kHz,vRF(1HSPINAL-64)=100kHz,and2048scanswithtrd=10sforCeO2-0.1POxandtrd=5sforCeO2-0.2POx.SIMPSONsimulationsoftheDQbuild-upcurvesfor2-spinmodel,without(c)andwith(d)takingintoaccounttheeffectofspin-spinrelaxation(forthemain31PpeakinCeO2-0.2POx,aT2`valueof5.6mswasmeasuredatvR=18kHz).

    222 444 666 888 1110 1332 τDQ (µs) =" 222 444 666 888 1110 1332 τDQ (µs) ="

    (a) (b)

    (c) (d)

  • 6

    Fig.S10DeconvolutedNH3-TPDprofilesfor(a)CeO2,(b)CeO2-0.1POx,(c)CeO2-0.2POx,whichcorrespondtoNH3integratedvaluesof0.61,0.57,0.68mmolg-1,respectively.Thedeconvolutedpeakswithmaximaaround110°Cand160°C(thetwolowesttemperaturedeconvolutedpeaks)werecommontoallthreematerials.ThisindicatesthatthetypeofadsorbedNH3speciesisthesameforallthreematerialsandthelowdesorptiontemperaturesuggeststheyaremultilayerand/orphysisorbedspecies.Thesepeaksweresubtractedtodeterminethetotalnumberofacidsites.Aftercorrectingforphysisorption,theacidsitedensityforCeO2was2.0μmolm-2.ThisvalueagreeswellwithpriorstudiesusingNH3adsorptionmicrocalorimetry(1.9±0.3μmolm-2).5-8ThesimilaritybetweenthecorrectedCeO2acidsitedensitytotheliteraturevaluesforceriasuggestthiscorrectionmethodisagoodapproximationtothetrueacidsitedensity.Themethodwasextendedtothephosphatefunctionalizedmaterialssincethelowtemperaturedeconvolutedpeaksarecommontoallmaterials.Aftercorrectingforphysisorbed/multilayerNH3theintegratedvaluesforCeO2,CeO2-0.1POx,andCeO2-0.2POxwere0.44,0.41,0.44mmolg-1,respectively.

  • 7

    Fig.S11RecyclingexperimentsusingCeO2-0.2POxcatalystforthehydrolysisofpropyleneoxide.Conditions:~40mgcatalyst,T=60°C,D2O(1mL),propyleneoxide=~2.4mmol,t=1h.Thecatalyst:substrateratiowasmaintainedat16.7mgmmol-1.

    Fig.S12PXRDpatternsofthecatalystsusedforeugenolhydrogenolysisreaction.

    TableS1Physicochemicalpropertiesofcatalystsforeugenolhydrogenolysis.

    Sample BETSurfaceArea(m2g-1)aCeO2Crystallite

    Size(nm)bPdDispersion

    (%)cPdLoading(wt.

    %)dPd/CeO2 121 7 64 1.0

    Pd/CeO2-0.1POx 111 9 7 1.0Pd/CeO2-0.2POx 112 10 9 1.1

    aSurfaceareascalculatedusingBETapproximation.bObtainedfromPXRDdatausingScherrerequation.cCalculatedfromH2chemisorptiondata.dLoadingsobtainedfromICPanalysis.

  • 8

    Fig.S13ProductdistributionforthehydrogenolysisofeugenoloverPd/CeO2,Pd/CeO2-0.1POx,andPd/CeO2-0.2POx.Theerrorbarsrepresentthestandarddeviationfromthreeseparatereactions.Conditions:T=100°C,t=4h,PH2=10bar,Pd:Eugenol=5mol.%,25mLH2O.

    TableS2Productdistributionforthehydrogenolysisofeugenoloverthethreecatalysts.a

    Reaction

    Allylhydrogenation Allyl+aromatichydrogenationAllyl+aromatic+methoxyhydrogenation/lysis

    Product

    Catalyst

    4-propyl-2-methoxyphenolYield(%)

    4-propyl-2-methoxycyclohexanolYield(%)

    4-propylcyclohexanolYield(%)

    Pd/CeO2 16±1 59±4 25±3Pd/CeO2-0.1POx 9.1±2.5 36±3 55±4Pd/CeO2-0.2POx 37±5 27±3 36±3aErrorbarsrepresentthestandarddeviationfromthreeseparatereactions.Conditions:T=100°C,t=4h,PH2=10bar,Pd:Eugenol=5mol.%,25mLH2O.

  • 9

    Fig.S14CyclohexanolyieldforthehydrogenolysisofguaiacoloverPd/CeO2,Pd/CeO2-0.1POx,andPd/CeO2-0.2POx.Conditions:T=100°C,t=4h,PH2=10bar,Pd:Guaiacol=5mol.%,25mLH2O.

    Table S3 Conversion and selectivity data for guaiacol hydrogenolysis over the three catalysts. Reaction

    Aromatichydrogenation Aromatic+methoxyhydrogenation/lysis

    Reactant Products

    Catalyst

    Conversion

    2-methoxycyclohexanolYield

    CyclohexanolYield(%)Pd/CeO2 84 59 25

    Pd/CeO2-0.1POx 97 46 50Pd/CeO2-0.2POx 89 53 36

    REFERENCES

    1. N.C.Nelson,J.S.Manzano,A.D.Sadow,S.H.OverburyandI.I.Slowing,ACSCatal.,2015,5,2051-2061.2. C.Binet,M.DaturiandJ.-C.Lavalley,Catal.Today,1999,50,207-225.3. C.Binet,A.BadriandJ.-C.Lavalley,J.Phys.Chem.,1994,98,6392-6398.4. F.Bozon-VerdurazandA.Bensalem,J.Chem.Soc.,FaradayTrans.,1994,90,653-657.5. D.Stošić,S.Bennici,V.RakićandA.Auroux,Catal.Today,2012,192,160-168.6. M.G.Cutrufello,I.Ferino,R.Monaci,E.RombiandV.Solinas,Top.Catal.,2002,19,225-240.7. B.Bonnetot,V.Rakic,T.Yuzhakova,C.GuimonandA.Auroux,Chem.Mater.,2008,20,1585-1596.8. X.Ge,S.Hu,Q.SunandJ.Shen,J.Nat.GasChem.,2003,12,119-122.