Phosgene-free Route to Toluene Diisocyanate (1)

download Phosgene-free Route to Toluene Diisocyanate (1)

of 400

Transcript of Phosgene-free Route to Toluene Diisocyanate (1)

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    1/399

    University of Pennsylvania

    ScholarlyCommons

    Senior Design Reports (CBE)Department of Chemical & Biomolecular

    Engineering

    4-1-2010

    PHOSGENEFREE ROUTE TO TOLUENEDIISOCYANATE

    Nasri Bou-SabaUniversity of Pennsylvania

    Caryl DizonUniversity of Pennsylvania

    Devi KasihUniversity of Pennsylvania

    Bryce StewartUniversity of Pennsylvania

    is paper is posted at ScholarlyCommons.hp://repository.upenn.edu/cbe_sdr/16

    For more information, please contact [email protected].

    http://repository.upenn.edu/http://repository.upenn.edu/cbe_sdrhttp://repository.upenn.edu/cbehttp://repository.upenn.edu/cbehttp://repository.upenn.edu/cbe_sdr/16mailto:[email protected]:[email protected]://repository.upenn.edu/cbe_sdr/16http://repository.upenn.edu/cbehttp://repository.upenn.edu/cbehttp://repository.upenn.edu/cbe_sdrhttp://repository.upenn.edu/
  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    2/399

    PHOSGENEFREE ROUTE TO TOLUENE DIISOCYANATE

    Abstract

    A Gulf Coast production plant was designed for a phosgene-free route manufacture of 2,4-toluene

    diisocyanate (TDI) from toluene diamine (TDA). e process was designed to generate 300 million poundsof TDI per year within the required process specications. Two reactors were to be installed in order toimprove the overall yield of TDI, followed by a series of three distillation columns to ensure highly puremarket competitive product. Safety concerns, the start-up process, and other potential considerations are alsoincluded.

    e results of economic analysis for the base case of the project returned a Net Present Value (NPV) of$20,653,700 with an initial rate of return (IRR) of 18.05% and a return on investment (ROI) of 12.03%.Further analysis on the assumptions made in these calculations may be required before nal project approvalis granted.

    Disciplines

    Biochemical and Biomolecular Engineering

    is working paper is available at ScholarlyCommons:hp://repository.upenn.edu/cbe_sdr/16

    http://repository.upenn.edu/cbe_sdr/16http://repository.upenn.edu/cbe_sdr/16
  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    3/399

    PHOSGENEFREE

    ROUTE

    TO

    TOLUENEDIISOCYANATENasriBouSaba(UniversityofPennsylvania)

    CarylDizon(UniversityofPennsylvania)

    DeviKasih(UniversityofPennsylvania)

    BryceStewart(UniversityofPennsylvania)

    SeniorDesignReport

    April13,2010

    UniversityofPennsylvania

    DepartmentofChemicalandBiomolecularEngineering

    FacultyAdvisor:Prof.LeonardFabiano,Dr.DaeyeonLee

    Reccommendedby: Mr.BruceVrana,DuPontEngineeringTechnology

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    4/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    2

    UniversityofPennsylvania

    SchoolofEngineeringandAppliedScience

    DepartmentofChemical&BiomolecularEngineering

    220South33

    rd

    StreetPhiladelphia,PA19104

    April13,2010

    DearMr.Fabiano,Dr.Lee,andMr.Vrana,

    Enclosed is our proposed process design on PhosgeneFree Route to Toluene

    Diisocyanate (TDI) problem statement provided by Mr. Bruce Vrana of DuPont Engineering

    Technology. Our focus is to design a high yielding process that is both technologically and

    economicallyfeasibleinproducing99.95%pureTDIfromtoluenediamine(TDA).Theprocessis

    made up of two main process blocks the Reactor System and Separation Process and

    achieves the required capacity specified in the problem statement. Included in our

    consideration is todesignanoptimalprocessby recycling reactants,minimizingutility costs,

    andremovingbyproductsinanecofriendlymanner.

    The following report details the process, equipment needs and estimated costs,

    approximatedpowerrequirements,andadetailedeconomicanalysis.AcompleteASPENPlus

    flow sheet is also enclosed for your reference. Due to limited data availability, assumptions

    relevant to theprocess designarealsodiscussedand variousnon and economic sensitivity

    analyseshavealsobeenincluded.

    Finally,wewouldliketothankProfessorLeonardFabiano,Dr.DaeyeonLee,Mr.Bruce

    Vrana,Mr.SteveTieri,andMr.GarySawyerforthegreatassistance.Kindlycontactthedesign

    groupifyouhaveanyquestionsregardinganyaspectofthereport.

    Sincerely,

    _________________________ __________________________

    NasriBouSaba DeviKasih

    _________________________ __________________________

    CarylDizon BryceStewart

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    5/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    3

    TableofContents

    Abstract.....6

    Introduction....7

    ProjectCharter...12

    InnovationMapandTechnologyDevelopmentSummary..14

    MarketandCompetitiveAnalyses...18

    PreliminaryProcessSynthesis.......23

    ProcessFlowDiagramsandMaterialBalances...32

    ProcessDescriptions.....41

    EnergyBalanceandUtilityRequirements.....50

    ProcessEnergyBalance......51

    UtilityRequirements.......57

    CoolingWater..........57

    Steam.........58

    FuelOilandSolidWaste...59

    Electricity.......59

    UnitDescriptions.....60

    UnitSpecificationSheets......75

    EquipmentCostSummary...125

    FixedCapitalInvestmentSummary..128

    OperatingCostandEconomicAnalysis.....132

    EconomicAssumptionsandProjectOperations.....133

    OperatingCostSummary.......134

    VariableCosts......134

    FixedCosts.......137

    CashFlowandProfitabilityAnalysis..........139

    OtherEconomicsUncertainties.....145

    OtherIssuesandConsiderations...147

    EnvironmentalConcerns...148

    PlantSafetyConcerns....149

    PlantStartup....152

    ConclusionandRecommendations..153

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    6/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    4

    Acknowledgements.......157

    ListofFiguresandTables..........159

    Bibliography........162

    Appendix.......167

    Appendix1......168

    Appendix2......187

    Appendix3......189

    Appendix4......191

    Appendix5......193

    Appendix6......196

    Appendix7......216

    Appendix

    8......231

    Appendix9......351

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    7/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    5

    Abstract

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    8/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    6

    Abstract

    AGulfCoastproductionplantwasdesignedforaphosgenefreeroutemanufactureof

    2,4toluene diisocyanate (TDI) from toluene diamine (TDA). The process was designed to

    generate300millionpoundsofTDIperyearwithin the requiredprocess specifications.Two

    reactorsweretobeinstalledinordertoimprovetheoverallyieldofTDI,followedbyaseriesof

    threedistillationcolumnstoensurehighlypuremarketcompetitiveproduct.Safetyconcerns,

    thestartupprocess,andotherpotentialconsiderationsarealsoincluded.

    TheresultsofeconomicanalysisforthebasecaseoftheprojectreturnedaNetPresent

    Value (NPV) of $20,653,700 with an initial rate of return (IRR) of 18.05% and a return on

    investment (ROI)of12.03%. Furtheranalysison theassumptionsmade in these calculations

    mayberequiredbeforefinalprojectapprovalisgranted.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    9/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    7

    Introduction

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    10/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    8

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    11/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    9

    Introduction

    TDI are intermediates in the production of polyurethanes and polycarbonates, which

    havemanyusefulproperties.Polycarbonatesarewidelyused in themanufactureofCDand

    DVD discs, while polyurethanes are used in the production of foams, elastomers, and hard

    polymers. WiththeinputofProfessorFabiano,whohadampleexperienceinTDIprocesses,we

    wereurgedtocreateaprocesstoproduceTDIwithalmost100%purity.

    Thefollowingreportdescribesachemicalprocessforproducingvirtually100%pureTDI

    without introducing thewidelyused component,phosgene. Phosgene isa colorless volatile

    liquidorgasthatisproducedbypassingpurifiedcarbonmonoxideandchlorinegasthrougha

    bedofporousactivatedcarbon. Itisavaluableindustrialreagentandbuildingblockinorganic

    synthesisbut isalsoahighly toxicmaterial. Its leakshave caused several casualties inmany

    industrialprocesses.

    Phosgene was formerly used as a chemical weapon during World War I. At room

    temperature(70F),phosgeneisapoisonousgas.Itsgasmayappearcolorlessorasawhiteto

    paleyellowcloudand itsodormaynotbenoticedbyallpeopleexposed.Althoughphosgene

    wasneverasnotoriousasmustardgas,itisaninsidiouspoisonthathaskilledfarmorepeople.

    AmongthechemicalsusedinWorldWarI,phosgenewasresponsibleforthelargemajorityof

    deaths,about85%ofthe100,000deathscausedbychemicalweapons. Itssymptomsmaybe

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    12/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    10

    slow tobe recognized,asphosgenecanonlybedetectedat0.4ppm,which is four times its

    safetyThresholdLimitValue.1

    Phosgene

    reacts

    violently

    and

    decomposes

    to

    toxic

    compounds

    on

    contact

    with

    moisture, including chlorine, carbon monoxide and carbon tetrachloride. People may be

    exposed tophosgene through skinoreye contact, touchingordrinkingwater,breathingair,

    and eating contaminated food. Inhalation can cause fatal respiratory damage as phosgene

    reactsheavilywithHClthatisreleasedinitsreactionwithwaterinthelungs.Itcanalsocause

    damage to the skin,eyes,nose, throat,and lungs.Today,gaseousphosgenehas increasingly

    beensupplantedbymoreeasilyhandledreagents.This iswhy itwasextremely importantto

    removePhosgeneasareactantinourTDIproductionprocess.1

    Wewerechargedwithcreatinganeconomically feasibleandenvironmentally friendly

    process design for producing 300 million pounds of TDI per year in high yield from toluene

    diamine (TDA). It was our goal to create a design that recycled the majority of unreacted

    startingmaterialsas well asdisposed any wastematerial in aneconomical and ecofriendly

    manner. Wewerealsotominimizetheplantsutilityrequirementsinanefforttoincreaseits

    sustainability.

    The phosgenefree pathway of producing TDI by reacting TDA, oxygen, and carbon

    monoxide in the solvent, 2,2,2trifluoroethanol (TFE), was introduced to us as an attractive

    alternativetothecommonmethodsofproducingTDI.

    1Hazards:Phosgene.CentersforDiseaseControlandPrevention,Sept.2005.Web.28Jan.2010.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    13/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    11

    Theoverallreactionis:

    + 2C=O + O=O +

    Arepresentationofthismechanismispresentedbelow:

    (1)

    (2)

    With further researchwe concluded thatourprocessmost likely includesa twostep

    mechanism. Inthefirststep,TDAreactswithcarbonmonoxide,oxygen,andthesolvent,TFE,

    to produce the intermediate toluene dicarbamate. In the second step, the dicarbamate is

    Catalyst

    Catalyst

    O

    H H

    NH2

    NH2

    NCO

    NCO

    NCO

    NCO

    + +

    2

    2 2

    NH

    O

    O

    O

    NH

    O

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    14/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    12

    degradedtocreatetheTDIproductandthewaterbyproduct. TheTFEsolventisregeneratedin

    thisstepaswell. Itisimportanttonotethattheentirereactionmechanismiscarriedoutinthe

    presenceofN,N(bis(3,5ditertbutylsalicylidene)ethylenediamino)cobalt(II)[Co tBu Salen]

    catalyst.2

    2Hassan,Abbas,EbrahimBagherzadeh, RayfordG.Anthony,GregoryBorsinger,andAzizHassan.SYSTEMAND

    PROCESSFORPRODUCTIONOFTOLUENEDIISOCYANATE

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    15/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    13

    ProjectCharter

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    16/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    14

    ProjectCharter

    ProjectName PhosgeneFreeRoutetoTolueneDiisocyanate

    ProjectChampions NasriBouSaba,CarylDizon,DeviKasih,andBryceStewart

    ProjectLeaders BruceVrana,Dr.DaeyonLee,andMr.LeonardFabiano

    SpecificGoals ToproducehighpurityTDIfromTDAinhighyieldusinganenvironmentallyfriendlyphosgenefreeprocess

    ProjectScope Included:o Productionof300millionpoundsofhighlypure

    TDIfromTDAwithoutusingPhosgene

    o Creationofanenvironmentallyfriendlyprocess

    withhighamountsofrecycleandminimizeduse

    ofutilities

    o Maintaininganeconomicallyfeasibleprocess

    withanacceptableprofitmargin

    Excluded:

    o Separationofthe2,4TDIfrom2,6TDI(80%and

    20%compositionrespectively)

    Deliverables ProcessEfficiencyAnalysiso ProductPurity

    o ProductYield

    o UtilityUsage

    o SafetyData

    EconomicDatatoManagement

    o CostAnalysis

    o Profits

    o ROI

    ProjectTimeline ToproducemarketreadyTDIin12months

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    17/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    15

    InnovationMapand

    Technology

    Development

    Summary

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    18/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    16

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    19/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    InnovationMap

    Figure1:InnovationmapofcommercialTDIproduction

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    20/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    18

    TechnologyDevelopmentSummary

    The traditional route for the manufacture of TDI starts with the nitration of toluene

    using nitric acid to produce dinitrotoluene followed by catalytic hydrogenation to toluene

    diamine.The toluenediamine isdissolved inan inert solventand reactedwithphosgene to

    produce a crude TDI solution. Phosgene is made onsite in a simple, single step process by

    passing purified carbon monoxide and chlorine gas through a bed of highly porous carbon,

    whichactsasacatalyst.Thesubsequentseparationandpurificationoftheproductsofreaction

    fromthepolymericbyproductsthatareformedisamultistepprocess.Thehydrogenchloride

    that isproducedasabyproductofthereaction isrecoveredandsoldeitherdirectlyor inthe

    form of hydrochloric acid (HCl). On the flip side, HCl, which is produced in stoichiometric

    amount as a byproduct, causes corrosion, and thus a stoichiometric amount of NaOH is

    requiredtoneutralizetheHCl.(SerranoFernandezetal,2008)3

    Eventhoughthistechnologyhasbeenthebasisofcommercialisocyanateproductionfor

    many years, numerous attempts have been made to develop even lower cost, non

    phosgenationprocessestoproduce isocyanates.Furthermore,asrestrictionsupontheuseof

    very toxic materials such as phosgene within the chemical industry have become more

    rigorouslyenforced, therehasbeen increasing interest indevelopingalternativemethods to

    phosgeneinthesynthesisofisocyanate.

    Bayerhas

    developed

    agas

    phase

    phosgenation

    (GPP)

    process

    for

    the

    production

    of

    TDI

    from TDA. The main difference from conventional TDI processes is in the use of gasphase

    3SerranoFernandez,FranciscoLuis,BeatrizAlmenaMunoz,AnaPadillaPolo,AranaOrejonAlvarez,CarmenClaver

    Cabrero,SergioCastillonMiranda,PilarSalagreCarnero,andAliAghmiz.OnestepCatalyticProcessforthe

    SynthesisofIsocyanates.REPSOLYPF,S.A.,assignee.Patent7423171.9Sept.2008.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    21/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    19

    reactionofTDAandphosgene,asopposedtothesereactantsbeinghandledasdilutesolutions

    inasolventsuchasorthodichlorobenzene.Thegasphasephosgenationtechnologyresults in

    significantsavingsonsolvents, leadingtooperatingcostsavingsduetoareduction inenergy

    consumption required to process the much smaller volume of solvent during distillative

    recovery.Themuch shorter residence timeofTDAandphosgene in the reactor reduces the

    required phosgene process inventory considerably. Further benefits are significantly greater

    reactor throughput per unit time (spacetime yield) and the ability to downsize key plant

    components.Thesesizereductions, leadtoadditional investmentcostsavings.Thegasphase

    technologyalsoprovidesimprovedreactionselectivity,generatingfewerbyproducts.Thisroute

    avoidstheuseofphosgeneandwasterecoveryproblemsassociatedwithHCl.Processsafetyis

    vastlyimprovedbythereductioninbothphosgeneandsolventinventorieswithintheprocess.

    A furthersafetyenhancement istheabilitytostartupandshutdownthegasphaseprocess

    quickly.

    Themost recentattempt is theEniChemUrethanePyrolysis (NonPhosgene)Process:

    Here,oxidativecarbonylationofmethanolisusedtoproducedimethylcarbonate(DMC).DMC

    is then reacted with TDA to give a urethane intermediate which is then cracked at high

    temperatureandlowpressuretogiveTDI.(Nexant,2008)4

    ExistingprocessesandproductionfacilitiesforproducingtheTDImixture,inparticular,

    aresubject

    to

    various

    constraints

    such

    as

    mass

    flow

    limitations,

    product

    yield,

    plant

    size

    and

    energyconsumption.Accordingly,thereiscontinuinginterestinimprovingthewaythatTDIis

    produced.

    4DevelopmentsinTolueneDiisocyanate(TDI)ProcessTechnology.Rep.Nexant,Inc.,Oct.2008

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    22/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    20

    MarketandCompetitive

    Analyses

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    23/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    21

    Marketand

    Competitive

    Analyses

    TDI is often marketed as 80/20 and 65/35 mixtures of the 2,4 and 2,6 isomers

    respectively.Asoneofthehighlyproduceddiisocyanates,TDIaccountsfor34.1%oftheglobal

    isocyanate market in 2000 (ICIS, 2010)5. The main outlet for TDI is in the manufacture of

    polyurethane(PU)flexiblefoamsusedinfurniture,bedding,andautomotiveandairlineseats.

    This is achieved by the reaction of TDI with a polyol to produce the foam. Meanwhile,

    polycarbonatesareparticularlyvalued for theiropticalclarityand impact resistance,andare

    usedinCDandDVDdiscsamongmanyotherapplications.

    Globally, flexible PU foams constitute by far the largest market for TDI, 88% of the

    global demand (30% for transportation, 20% for furniture, 14% for carpet underlay, 11%

    bedding, 5% packaging, and 8% for other foam uses). Rigid urethane foams come next,

    contributingto4%ofthedemand,followedbyPUadhesivesandsealantswith3%,PUcoatings

    andPUelastomersforanother3%and2%respectively(ICIS,2010).5

    Polyurethanecoatingsareoneofthefastestgrowingsectorsofthepaintsandcoatings

    industry.Despite their relativelyhighcost, theyaresuitable fora rangeofhighperformance

    applications due to their excellent durability, resistance to corrosion and abrasion, and

    flexibility. Markets for PU coatings include automotive refinishing, wood finishes and high

    performance anticorrosion coatings. On the other hand, PU elastomers are noted for their

    toughness,flexibility,strength,abrasionresistance,shockabsorbencyandchemicalresistance.

    5"TolueneDiisocyanate(TDI)CASNo:584849."ICIS.com.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    24/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    22

    Because they are relativelyexpensive compared tomostotherelastomers, theyareused in

    moredemandingapplicationssuchasautomobilebumpercoversandfacias, industrialrollers,

    sportsolesandboots,andmechanicalgoods.

    Today, thenumberofglobalTDIenterprises isover30withmore than40setsofTDI

    productionlines,thetotalproductioncapacityis2.1milliontonsperyearandmainlylocatedin

    Asia, Europe and theUnited States. With most of TDIs output going into the furniture and

    automotive sectors,demand is sensitive toeconomicactivity.With theeconomicdownturn,

    flexiblePU foamsdemandhas fallen in2009bybetween5%and20% intheUSandwestern

    Europe,accordingtoUSbasedconsultantsSRI. Instrongereconomies,thefallhasbeenmore

    limitedupto5%.However,SRIexpectsdemandforflexiblefoamswillreturntogrowat2.4%

    peryearthrough2011and24%peryearupto2013.

    Currently, there are five major producers of TDI serving the global demand, namely

    BASF,Bayer, Lyondell,MitsuiChemicals,andDowChemicals.The currentUSTDIproduction

    levelsexpressedintermsofcapacitydataforseveralproducersaretabulatedbelow.

    Company Capacity(MMlbsperyear)

    BASF 350

    Bayer 400

    Dow 220

    Total 970

    Figure2:

    Major

    producers

    TDI

    production

    capacity

    5

    Thedemand forTDI is stillon the increase today.Regionally,Asia contributes to the

    fastestgrowthataround8%peryear. ThisismainlyduetoaboominChinasautomobileand

    constructionsectors,whichaccountsforthreequartersofTDIconsumption.Automotivesales

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    25/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    23

    inChinapassed the10millionvehiclesperyear level in2009with salesupby38% in2009

    compared to the previous year, according to the China Association of Automobile

    Manufacturers.Moreover,variousproducersinChinaarealsoexpandingtheircapacity.Bayer

    MaterialScience is constructing a 250,000 metric tons TDI plant in Shanghai, while Gansu

    Yinguang Chemical Industry Group Co., Ltd. and Hebei Cangzhou Dahua Co., Ltd. also have

    expansion plans that are scheduled to come on stream in 2010. If these projects can be

    completedonschedule,thedemandforTDIinChinaisexpectedtobearound700,000tonsin

    2010.6

    Growth intheUS itself ismuch lowerthantheworldaverageandhasbeenadversely

    impactedbytheslowdownintheeconomy.FlexiblePUfoamsaccountfor88%ofTDIdemand

    in theUSwith transportation, furniture,carpetandbeddingmarketsbeing themainoutlets.

    The ailing US transportation industry accounts for nearly 22% of total PU consumption,

    accordingtotheAmericanChemistryCouncil.Thedemand,imports,andexportsgraphforTDI

    intheUSisprovidedinthegraphbelow:

    6AnalysisandForecastofChinaTDIMarket20092010.ReportLinker.Web.15Mar.2010.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    26/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    24

    Figure3:TDIdemandinUSAshowsamoderateincreasingtrendabove7

    Even

    with

    the

    overall

    recent

    decreasing

    demand

    trend,

    the

    TDI

    installed

    capacity

    is

    barelysufficienttomeetcurrentUSdomesticdemandandexportvolumes.Neartermdemand

    increases will have to be addressed by an increase in imported material or decreasing the

    amountexported.Asthereisnoapparentreliefinsightforenergyandfeedstockcostpressure,

    pricing will likely remain at the current historical high level of US$1.901.96 per pound,

    accordingto ICIS.Thus,pricing theTDI toUS$1.50perpoundas inourprojectwill lookvery

    promising,especially supportedby theacceleratedgrowth inautomotiveand transportation

    industries.

    7DevelopmentsinTolueneDiisocyanate(TDI)ProcessTechnology.Rep.Nexant,Inc.,Oct.2008

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    27/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    25

    PreliminaryProcess

    Synthesis

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    28/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    26

    Preliminaryprocess

    synthesis

    Rawmaterialsandproductspecifications

    Thephosgenefreeroutemanufactureof300millionpoundsofTDIperyear isanovel

    processsuchthat informationregardingthekinetics,theeffectivenessandtheroleofvarious

    typesofcatalyst,solvent,andpromoterareverylimited.Therefore,theTDIsynthesisislargely

    basedon theUSpatent inventedbyFernandezetal,2007.For thisprocess,a reactant feed

    consistingofTDA,oxygenandcarbonmonoxideispassedoverafixedbedofSchiffBaseType

    LigandCatalyst,CotBuSalen.Anorganicsolvent,2,2,2trifluoroethanol(TFE)andapromoter,

    sodiumiodide(NaI),arealsochargedthroughoutthereactionprocesstoensuretheTDIoverall

    yieldof64%isachieved,asspecifiedinthepatent.

    The amount required for each of the raw materials and the process enhancers are

    derivedfromthelaboratoryscaleratiowithseveralamendmentsforoptimizationmodeledby

    Aspen.Therequiredratiosoftherawmaterialsaretabulatedbelow.

    Table1:TherequiredratioofrawmaterialsperpoundofTDIproduced.

    RawMaterial: Unit: Required

    Ratio:

    Toluenediamine lb 0.73 lbperlbofTolueneDiisocyanate

    Carbonmonoxide lb 3.07 lbperlbofTolueneDiisocyanate

    Oxygen lb 0.18 lbperlbofTolueneDiisocyanate

    TherequiredamountofTFEandNaIarefixedfortheentireprocesssincetheyarenot

    consumed.AsmodeledbyASPEN,therespectiveamountofTFEandNaIneededare1,115,835

    poundsand2,730poundsforatotalof314millionpoundsofTDIperyear.The5%excessofTDI

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    29/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    27

    production works as a buffer considering possible polymeric formation throughout the

    synthesis. In addition, the ratio of the carbon monoxide to oxygen in the vapor phase is

    controlledto49:1toavoidexplosionrisk.

    To improvetheoverallyieldofTDIproductionand inturnreducetheproductioncost,

    twomajorreactorsystemoptionsareproposed.

    Option1:

    A single3looppass reactor isassembled to improve theoverallTDIproductionyield

    from64%(Fernandez,etal)to97.2%(Aspen).Theimprovedyieldisexpectedtobemaintained

    astheoperationreachessteadystate.Theprocessflowsheetforthisscenarioispresentedin

    Figure4.

    Option2:

    Two reactorsareassembled such that thevaporproductof the first reactor ismixed

    withtherecyclestreamcomingfromtheseparationsystem.ThefocusistouseupasmuchTDA

    andany intermediateproductsobtained from the first reactor. Thisprocess ispresented in

    Figure5.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    30/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    28

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    31/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    Figure4:Option1 Singlethreelooppassreactordetailedprocessflowsheet

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    32/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    Figure5:Option2 Tworeactorsystemdetailedprocessflowsheet

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    33/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    31

    Thechoiceofthereactorsystemismadebasedontwomainconsiderations:

    1. PossiblecostsavingsofTFE

    BasedonthediscussionwithShaunJulian,anAccountManagerinoils,greases,

    waxesandchemicalsdepartmentatHalocarbonProductsCorporation, it is foundthat

    the required amount of TFE in this project accounts for approximately 25% of the

    currentTFEglobaldemandof5millionpounds. Inaddition, thecurrentcostofTFE is

    approximately $12 per kilogram or $5.45 per pound. Thus, the TDI manufacture is

    enormouslysensitivetoTFErequirement.

    ComparingtheamountofTFEofwhichthetwooptionswillconsumeusingthe

    ASPEN flow sheet, option 1 will save 22,000 millions of TFE, which is equivalent to

    $120,008.

    2. Reactorsize

    The reactor system inoption1 isa considerablymorecomplexassembly than

    thatinoption2whichonlyconsistsoftwoindividualpackedbedreactors.Thefollowing

    isthefigureofreactorsystemconfigurationinoption1.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    34/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    32

    Figure6:Threelooppassreactorsystem

    AsshowninFigure6thereactorsysteminoption1consistsofaholdingvessel,a

    packed bed reactor, a cooler, and a pump. In addition, there is a big tradeoff in

    loweringthereactorsresidencetimesincethevolumerequiredisinverselyrelated.Size

    optimization by changing the volumetric flow rate passing through the reactor also

    involvesalargeuncertaintyintheeffectivenessoftheactualreactionstakeplace.Thisis

    due to the unavailability of the reaction kinetics data. Furthermore, the net work

    requiredbythepumpwillbeconsiderablyincreasedandthusincreasingtheelectricity

    consumption.

    Fixed bed reactor

    Cooler

    Pump

    Holdingvessel

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    35/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    33

    Assuming a base case of per pass residence time of 20 minutes of halffull

    reactor8,a3looppassreactorwillcost$55,109,461,withavesseldiameterandlength

    of135ftand67ftrespectively.Ontheotherhand,thereactorsysteminoption2costs

    $19,041,059.23with thesecond reactoronlyonethirdof thesizeof the firstreactor.

    Finally, there is no internal utility requirement involved. Appendix 1H contains the

    detailedcalculationsonthereactorcosting.

    Thesummaryoftheincrementalpossiblesavingofoption2istabulated.

    Table2:Summaryofincrementalcostsavingofreactorsysteminoption2

    TFE

    saving

    Reactor

    price

    saving

    Utility

    requirement

    Total

    saving

    Option2 ($120,008.15) $36,068,401.73 None $35,948,393.58

    Considering the profitability of the two potential designs described, option 2 is

    significantlybeneficialfrombusinessperspective.Furthermore, installingtwosmallerreactors

    aremorefeasiblethanbuildingoneconsiderablybiggerreactor.

    Separationprocessandheatintegration

    FollowingtheproductionofTDI,itiscrucialtoisolatetheproductaspureaspossibleto

    be accepted in the market. The competitive minimum purity requirement in the market is

    99.5%. (ICIS) To achieve successful separation, 3 distillation columns are proposed. The

    separationtrainswiththedetailsofisolatedcomponentsarepresentedinFigure7.

    8The US patent OneStep Catalytic Process for the Synthesis of Isocyanates describes areaction time ranges from 3 minutes to 3 hours. Due to the lack of relevant reactionkinetics data, the reaction time base case assumption is one hour.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    36/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    34

    Figure7:Distillationseparationcomplex

    Finally,tominimizetheutilityrequirementandcost,andthusincreaseprofitability,heat

    integrationprocesswouldalsobeconductedthoroughly.

    TFE, TDI, H20, O2,CO

    H2O

    TDATDCARB

    NaI

    TDI, H2O

    TDI

    O2, CO, TFE

    2

    3

    1

    Product mix

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    37/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    35

    ProcessFlowDiagramand

    MaterialBalances

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    38/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    36

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    39/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    ProcessBlockDiagrams:

    Recycle

    Figure8:

    Process

    Block

    Diagram

    Section2:

    Separations

    Section1:

    Reactors

    D101TOPTORECYCLE

    D101TOPTOR102

    R100LIQUIDTOSEPARATIONS

    D100BOTTOMSTOR102

    TDA

    O2

    CO

    TFE

    O2MAKEUP

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    40/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    41/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    Figure9: ProcessFlowDiagram

    Figure10: Reactorsystemsection

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    42/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    43/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    44/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    45/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    TemperatureF 36.51 36.51 74.96 140.00 140.00 101.75

    Pressurepsia 653.00 653.00 653.00 648.00 2.01 6.00

    VaporFrac 0.00 0.00 0.00 0.00 0.00 0.00

    MoleFlowlbmol/hr 9504.23 2661.18 2750.53 0.90 227.98 456.91

    MassFlowlb/hr 930507.88 260542.21 283360.47 230.49 39662.81 8273.58

    MassFlowlb/hr

    TDA 0.00 0.00 5146.06 51.98 1.03 0.00

    O2 129.93 36.38 36.38 0.00 0.00 0.00

    CO 7786.08 2180.10 2180.10 0.00 0.00 0.00TDI 0.00 0.00 0.70 0.01 39656.97 47.18

    WATER 0.16 0.05 0.05 0.00 4.81 8226.39

    TDCARB 0.00 0.00 17671.51 178.50 0.00 0.00

    SOLVENT 922591.71 258325.68 258325.68 0.00 0.00 0.01

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    46/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    47/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    45

    ProcessDescription

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    48/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    46

    ProcessDescription

    BlockFlowDiagram

    Figure12.BlockflowdiagramfortheTDIproduction

    OverallProcessDescription

    The block flow diagram given by Figure 12 illustrates the flows to and from the key

    sections of the phosgenefree TDI production process. The conversion from TDA to TDI is

    accomplished through a twostep catalytic reaction carried out between 120C and 180C

    (248F356F)and5100bar(72.5psia 1450psia).Therearetworeactors intheprocess,

    whichworktomaximizehourlyyield.Thereactors inthisprocessareallowedtooperatenon

    adiabatically with the feeds entering into the reactor at 120C (248F), the bottom of the

    optimaltemperaturerange,andthereisatemperatureincreaseto139.3C(282.8F)inthefirst

    reactorandatemperatureincreaseto137.5C(279.5F)inthesecondreactor.Thefirststepin

    Decompositionof

    intermediatesto

    TDI

    TDARecycle

    CarbamatesRecycle

    TDI

    TDA

    O2

    Catalytic

    oxycarbonylation

    (Formationof

    carbamate

    intermediates)

    Separation

    process

    CO

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    49/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    50/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    48

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    51/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    FlowSheetDiagram

    Figure13DetailedASPENPlusflowsheetofTDIproduction

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    52/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    50

    DetailedProcessDescription

    Figure13isamorecomprehensiveprocessflowsheetthatgivesadetailedviewofthe

    equipmentandflowstreamsinvolvedintheTDIproductionprocess.Thereareeffectivelytwo

    majorsectionsoftheprocessthereactionsectionandtheseparationsection.Throughoutthe

    reaction section, all the streams and equipment are maintained at a high pressure,

    approximately653psia (45bar).Theseparationprocesssection ismaintainedat lowpressure,

    with a slight pressure drop gradient over the threecolumn distillation chain from 12psia to

    9psia(0.83to0.62bar).Thestreamconnectingthereactionsectiontotheseparationsectionis

    decompressedby

    avalve,

    and

    the

    streams

    that

    gets

    recycled

    back

    from

    the

    separation

    section

    tothereactionsectioniscompressedbyapump. Thevalvesafelyseparatesthehighpressure

    halfoftheprocess fromthe lowpressurehalfand itactsasasafeguardtomakesurethat if

    somethinggoeswronginthehighpressurehalfitcanbeisolatedfromthelowpressurehalf. In

    addition this allows all of the high pressure piping to be separated from the low pressure

    piping.

    TheflowsheetinFigure13showsanopenloopsystem,butismeanttomodelaclosed

    loopsystem. Therearetworecyclestreamsleavingthesecondreactorsystemwhich,inreality

    wouldcombinetoformthetotalrecycletothefirstreactor. Thesestreamsareseparatedinto

    vapor (PSEUDVAP) and liquid (PSEUDLIQ). These streams consist of the combination of the

    exits from the second reactor system and any reactant materials recovered from the

    separationsprocessesandnotfedintothesecondreactor. Thoughitisnotexplicitlyillustrated

    inthe flowsheet,PSEUDOVAP ismixedwiththeO2andCOstreamsandthenbubbled intoR

    100. PSEUDOLIQwillbemixedwiththeTDAandSOLVENTstreamsbeforeenteringR100asa

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    53/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    54/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    52

    mixedwithapartofthecompressedsolventrecyclestream(S119),whichis28.0%ofthetotal

    solventrecyclestream. Thiscombinedstream(S121)isheatedto248FandfedtoR102.The

    othersplitfromstreamS118calledS126 iscombinedwithtwootherreactorstreamstobe

    recycledtoR100asPSEUDLIQ. Thegivensplitfractionsoftherecyclestreamswerecalculated

    basedontheamountofTFEneededtodissolvetheO2andCOinthevaporeffluentandonthe

    cost and yieldoptimal reactor size of the second reactor. The second reactor is also

    maintainedat 45 bar and increases to a temperature of 279.5F. Both the liquid and vapor

    effluent streams (S124 and S125) from R102 are mixed with the recycle streams from

    separationsthataresubsequentlyfedR100inthefollowingmanner.S125ismixedwithpart

    oftheR100 liquideffluent(S126)andeventuallyfedbacktoR100asPSEUDLIQ. PSEUDLIQ

    willbemixedwiththeTDAandSOLVENTfeedliquidsandfedintothereactorasasingleliquid

    feed. S124 is mixed with part of the R100 vapor effluent, S127, and refed to R100 as

    PSEUDVAP. PSEUDVAPwillbemixedwiththeO2andCOgas feedspriortobeing fed tothe

    reactor

    as

    a

    single

    vapor

    feed

    which

    will

    be

    bubbled

    into

    the

    system.

    Both reactors have an effective product yield of 64% (82% conversion from TDA to

    carbamates, 78% conversion from carbamates to TDI). This particular reactor system design

    waschosenover thenumberofconsideredalternativesbecause it is themostcosteffective

    withregardtoyieldandequipmentcost.Thestreamsfedintothefirstreactoraretabulatedfor

    referenceinTable3.CO,O2,TDAandSOLVENTaresuppliedasfreshfeedsormakeupstreams

    basedonconsumptionorlossofthereactantselsewhereintheprocess.

    Withtheexceptionofthevaporphase inthetworeactors,alloftheCOandO2 inthe

    systemmustbedissolved intotheTFE,because inthegasphase it isnecessarytomaintaina

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    55/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    53

    19:1ratioofCOtoO2toremainoutsideoftheexplosionriskrange.Inordertomaintainsafe

    gaseousconcentrations,thereactorsareinitiallychargedwithaCOandO2mixturesignificantly

    greaterthantheprescribed19:1ratio.Duringregularoperation,COandO2arebubbled into

    thereactorsolutionatonlyalittleovera2:1ratio(2.39:1),therespectivestoichiometricratio

    for the reaction.Because the gasesareaddedjustatorbelow their saturationpoint in the

    solvent,theinitialcompositionofthegasphaseinthereactordoesnotdecreasesignificantly.

    However, as a preventative measure, it is still necessary to include a control feedback

    mechanismthatmonitorsthecomponentconcentrationsinthevaporphaseofthereactorand

    controlstheCOandO2feedratesinresponse.

    SeparationProcess

    Wewillberunningasomewhattraditionalseparationsprocessbyusingdistillationto

    separateourfinalproduct,TDI,fromthebyproductsandanyleftoverreactants. Toaccomplish

    thedesiredseparations,theprocessrequired3distillationcolumns. Theonlystreamentering

    theseparationsfromthereactorssectionisthebottomsliquidfromthefirstreactor.

    The stream connecting the reaction to the separation section, S104, must be

    decompressedfrom45barto0.345bar(653psiato5psia),sinceallthreedistillationcolumnsare

    operatingatvery lowpressures.D100separatestheTDA,carbamates,NaIandsludgeoutas

    theheavycomponentsinthebottomsproduct(S106)atarateof90.2lbmol/hr.Thisstreamis

    thenrecompressedto653psiaandasidestream istakenouttoremovesludgebeforebeing

    recycledbacktothereactionsection.Theflowsheetshowsasplitterwithanoutgoingsludge

    streamatasplit fractionof1%tomodeltheestimatedsludge removalnecessary toprevent

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    56/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    54

    buildup.Asmentionedearlier,itisnecessaryforD100tobecoatedinHastelloyC276because

    of the volume of NaI that will be flowing through it. The distillate (S109) from D100 is

    compressedfrom2psiato12psiaandheatedfrom35Fto120FbeforeenteringD101forthe

    next separation step.TheD101distillate (S117) containsalmostall (99.99%)of the solvent

    thatenterstheseparationsystem.Thisstreamiscompressedandrecycledbacktothereaction

    system.Thebottoms(S112)arefedstraight intothethirddistillationcolumn,D102.S112is

    almostpurelyTDIandwastewater.Wastewatercomesoutasdistillate(WASTEWTR)atabout

    99.4% purity, with a negligible amount of TDI and trace amounts of TDA and solvent. This

    wastewater stream will be stored and shipped to a treatment center to be disposed of as

    outlinedinEPAregulationsdiscussedintheOtherConsiderationssectionofthisreport. The

    bottomsproductofD102is99.9%pureTDIat352.2Fand2.01psia.Thisfinalproductiscooled

    to140Fandsenttostorage.

    Afinalnoteregardingtheseparationsofourprocessisablackboxdesign,notpictured

    inthefigure,whichwillcontainawhitefilmevaporator. Thewhitefilmevaporatorwillbeused

    todisposeoftheheavypolymericsludgematerialproducedinthefirstdistillationcolumnasa

    resultofprocessingTDIatsuchhightemperatures. Weassumeda lossofabout46%ofour

    productduetothispolymericsludgewaste. Inresponse,webuilt ina5%overproductionof

    TDItoaccountforthisunavoidableloss.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    57/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    55

    EnergyBalanceandUtility

    Requirements

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    58/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    56

    EnergyBalance

    Oneofthemajorconcernsinthisprocesswastheamountofheatingandcoolingwhich

    isneeded,primarilyinthethreedistillationcolumns. Whileitisknownthatdistillationisboth

    energyintensiveandanenergeticallyinefficientprocess,itwasstilldeemedthebestseparation

    methodtoisolatethepureTDI.

    Oneareawhereenergywasmanaged tobe savedwasbyoperating the two reactors

    nonadiabatically. Each reactor system was modeled in aspen, and the nonadiabatic

    temperature risewas found for theentering compositionofeach reactor. According to the

    patent, the reactionwilloccurbetween212Fand392F,and ithasanoptimal temperature

    rangebetween248Fand356F. Becausetheeffectofoperatinginanonoptimaltemperature

    rangeisunknown,thefeedstreamstothereactorwerekeptat248F,andtheexittemperature

    afteranonadiabaticreactionwasfoundtobe282.7Fforthefirstreactorand279.5Fforthe

    secondreactor. Sincebothofthesetemperatureswerestillintheoptimaltemperaturerange

    forthereaction,itwaschosentooperatethereactorsnonadiabaticallyandnotspendenergy

    tomaintainaconstanttemperature inthereactor. Thefirstreactorwouldhaverequiredthe

    removalofover44MBtuperhourtomaintainitat248F,andthesecondreactorwouldhave

    requiredtheremovalofover8.8MBtuperhourtomaintain itat248F. Thisdecisionsaved

    roughly$150,000incoolingwater.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    59/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    57

    Asseen inTable6,therewerestill5streamsthatneededtobeheatedand3streams

    thatneededtobecooled. Table7showsthateachofthethreedistillationcolumnshadbotha

    condenseranda reboiler that require largeamountsofenergy. StreamS121 requires20.6

    MBtuperhourtoheatthestreamfrom75Fto248Ftopreheatthe liquidstreamgoing into

    thesecondreactor.StreamS110requires173.4MBtuperhrtoheatthestreamfrom35Fto

    120 F to preheat the liquid stream entering the second distillation column. Stream S129

    requires 78.5 MBtu per hour toheat the stream from119 F to 248 F topreheat the liquid

    recyclestream. StreamS131requires1.0MBtuperhourtoheatthestreamfrom106Fto248

    Ftopreheatthevaporstreamenteringthesecondreactor.StreamS130requires1.9MBtuper

    hourtoheatthestreamfrom209Fto248Ftopreheatthevaporrecyclestream.StreamS108

    requirestheremovalof28,000Btuperhourtocoolthestreamfrom521Fto140Ftocoolthe

    sludgestreamtobelowtheOSHAtemperature limitforpersonalprotection.Similarly,stream

    S114requirestheremovalof3.2MBtuperhourtocoolthestreamfrom352Fto140Ftocool

    theTDI stream tobelow theOSHA temperature limit forpersonalprotection. StreamS101

    requirestheremovalof49.5MBtuperhourtocoolthestreamfrom283Fto100Ftocoolthe

    vaporstreamexitingthereactortoallowittobeflashedandseparatethevaporcomponentsin

    Table6:

    Streams

    in

    reactor

    block

    that

    need

    to

    be

    heated

    or

    cooled

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    60/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    58

    thestream,whicharesenttothesecondreactor,fromtheliquidcomponentswhicharethen

    recycledbacktothefirstreactor.

    Thecondenseronthefirstdistillationcolumnrequirestheremovalof729.9MBtuper

    houranditneedstocoolthestreamfrom203.1Fto35Faswellascondensethestream.The

    reboileronthefirstdistillationcolumnrequires625.5MBtuperhourand itheatsthestream

    from465.8Fto517.8Fbeforevaporizingthestream. Thecondenserontheseconddistillation

    columnrequirestheremovalof351.8MBtuperhourtocoolthestreamfrom93.2Fto34.1F

    andthencondensethestream. Thereboilerontheseconddistillationcolumnrequires182.9

    MBtuperhourtoheatthestreamfrom181.9Fto200.7Fandthenvaporizethestream. The

    thirddistillationcolumnhasmuchmoremoderateenergyrequirementsbecauseithasamuch

    lowerflowrate. Thecondenseronthecolumnonlyrequirestheremovalof8.6MBtuperhour

    tocool the stream from114.5F to101.7Fand thencondense it. The reboileron the third

    distillationcolumnrequires10.2MBtuperhourtoheatthestreamfrom264.4Fto352.2Fand

    thenvaporizethestream. Thiscomestoatotalheatingrequirementof1,094MBtuperhour

    andatotalcoolingrequirementof1,143.1MBtuperhour.

    Becausethisisanexcessivelyhighenergyrequirement,itisvitalthatcrossstreamheat

    exchangebeusedasmuchaspossibletominimizetheutilitiesneedsoftheprocess. First,the

    Table7:Streamsinseparationblockthatneedtobeheatedorcooled

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    61/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    59

    streamsthatmustbeheatedbutarehotterthananyofthestreamsthatneedtobecooledare

    ruledoutforcrossstreamheatexchange. Bythisprocess,S106(thereboileroutstreamfrom

    the firstdistillation column)was ruledout. Similarly,any streams thatneedcoolingbutare

    colder than the streams that need heating cannot be used for cross stream heat exchange.

    Initially there are no values that match this description. After pairing up the stream two

    separateheatexchangernetworksweresetupasshownbyTable8.

    Thefirstnetwork,HX1,involves5streams;thecondenserofthefirstdistillationcolumn

    isthehotstream forall fourheatexchangers inthenetwork,and it ispairedwith4streams

    thatneedheating,S131,S129,S121,andS110. OriginallyS129wasplacedfirstintheorder,

    because ithasthehighest initialtemperature,butthennoenergywasavailableforstreamS

    131becausethehotstreamwouldleavethefirstheatexchangercoolerthanS131. Becauseof

    this,S131andS129werechanged in theorder so that themostenergycouldbe removed

    frombothstreams. There is661,000BtuperhourexchangedoverHX11,38.9MBtuper

    hourexchangedoverHX12,4.6MBtuperhourexchangedoverHX13,and34.4MBtuper

    hour exchanged over HX 1 4. This means that 78.6 MBtu per hour is removed from the

    condenser of the first distillation column. After the heat exchange, S131s temperature is

    201F and it still needs

    322,000Btuperhourtobe

    reach 248 F. S129 is at

    199Fanditstillneeds39.6

    MBtu per hour to be

    heatedto248F.S122isat

    Table8:Energysavedperstream.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    62/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    60

    120Fandstillneeds16MBtuperhourtobeheatedto248F,andS110isat96Fandrequires

    138.9MBtuperhourtobeheatedto120F. Thehotstreamwas loweredto37F,and itstill

    required651.3MBtuperhourtoberemovedforittogetdownto35Fandthencondensethe

    stream.

    The second network, HX 2, involves three streams; the stream in the reboiler of the

    seconddistillationcolumnisthecoldstreamforbothheatexchangers,anditispairedwithS

    114andS101whicharebothhotstreamsthatneedcooling. S101isplacedfirstbecauseitis

    notashotasS114. 32.5MBtuperhour isexchangedoverHX21,and2.3MBtuperhour

    over HX 2 2. This means that 34.8 MBtu per hour is put into the reboiler of the second

    distillationcolumn. Aftertheheatexchangers,S101isat184Fanditstillneeds17MBtuper

    hourtoberemovedforittogetto100F,andS114isat206Fanditstillneedstoremove0.9

    MBtuperhourtogetto140F. Thecoldstreamisraisedto204Fwhichishigherthanitsfinal

    temperatureshouldbe,butitstillneeds148.1MBtuperhourtovaporize.

    Some streams, such as S108,

    were left out of the heat exchanger

    networkbecause theenergy that they

    would contribute to the network is so

    littlethatthetemperaturechangeduetopressuredropovertheexchangerwouldmorethan

    offsetthecontributionofthestream. Theremainingstreamsthatwerenot includedintothe

    networkdidnothaveasuitablepartner. Thetotalenergysavingsshown inTable9 of113.4

    MBtuperhour inbothcoolingandheatingrepresents10.4%oftheheatingrequirementand

    Table9:Totalenergysavingsand%energysavedTotal Heat/Cool

    Req. (Btu/hr)

    Total Heat/Cool

    Savings (Btu/hr)

    Savings

    (% )

    1,093,907, 399 113, 387, 268 10.37%

    1, 143, 063, 006 113, 387, 268 9.92%

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    63/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    61

    9.9%ofthecoolingrequirement. Thismeans$240,000issavedincoolingwaterand$3million

    insteamcosts.

    Other techniques to help lower the utility cost in the distillation columns are also

    considered. Oneideaistousetwoparalleldistillationcolumnsinplaceofthefirstdistillation

    column(becausethatisthecolumnwheremostoftheutilitycostis). Thisalternative,however,

    doesnotsaveanyenergy. It is in fact increasesthecoolingdutyby75%and it increasesthe

    heatingdutyby88%. TheseresultscanbeseeninTable10.

    Table10:Possibleheatdutysavingssummarybyusingtwoparalleldistillationcolumnsinplace

    ofD100

    CondenserHeat

    Duty(Btu/hr)

    ReboilerHeat

    Duty(Btu/hr)

    Column

    Diameter

    Reflux

    Ratio

    D11 638,667,560 586,347,970 9.97 4.95D12 1,277,335,120 1,172,695,940 9.97 4.95

    D1 729,892,881 625,253,709 9.57 2.4

    Difference 547,442,239 547,442,231

    %Difference 175% 188%

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    64/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    62

    UtilitiesRequirements

    Coolingwater

    Cooling water is required for all 6 streams that require cooling even after the heat

    exchangersystemasseeninTable11. Thecondenseronthefirstdistillationcolumnrequires

    morethan20,000,000,000gallonsofcoolingwaterperyear,whichcosts$1.65millionperyear.

    Thecondenserontheseconddistillationcolumnrequires11.1billiongallonsofcoolingwater

    peryear,whichcomesoutto$891,156peryear. Thecondenseronthethirddistillationcolumn

    requires273milliongallonsofcoolingwaterperyear,whichcomesoutto$21,858peryear.

    The cooler C100 still requires 541 million gallons per year of cooling water which will cost

    $43,259yearly. ThecoolerC102requires28.5milliongallonsperyearofcoolingwaterwhich

    willcost$2,277yearly. Thelastcooler,C101,onlyrequires883,000gallonsperyearofcooling

    waterwhichwillcost$71ayear.

    Table11:Utilitycostofcoolingwater

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    65/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    63

    Steam

    Thebottomofthefirstdistillationcolumnissohotthatsteamcannotbeusedtoheatit

    up;insteadafiredreboilermustbeused. Forthisfiredreboiler,fueloilwasusedastheutility.

    Theseconddistillationcolumnalsobenefitsifitusesafiredreboilerratherthansteam. Steam

    isusedfortheheatersandthethirddistillationcolumnreboilerasseeninTable12. Thethird

    distillationcolumncanthoughuseasteamreboiler, itwillrequire70.3millionpoundsof low

    pressure steamperyearwhichwill cost$224,799everyyear. TheheaterH100needs1.11

    billionpoundsof lowpressuresteamperyear,costing$3.5millionperyear.H101needs175

    millionpoundsof lowpressuresteamperyearwhichwillcost$558,794ayear. H102needs

    434millionpoundsof lowpressuresteamperyearwhichwillcost$1.4millionayear.H103

    requires3.53millionpoundsof lowpressure steamperyearwhichwillcost$11,279ayear.

    Finally H104 requires 20.4 million pounds of low pressure steam per year which will cost

    $65,356yearly.

    Table12:Utilitycostofsteam.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    66/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    64

    FuelOilandSolidWaste

    The first distillation

    columns fired reboiler will

    use 2.81 billion gallons per

    year of fuel oil which will

    cost $4.5 million, and the

    second distillation columns

    fired reboiler will use 987

    million gallons per year of

    fueloilwhichwill cost$1.6

    million. 1.83millionpounds

    ofsolidwasteareproduced

    each year by this process

    whichmeansthattherewill

    beayearlycostof$195,558todumpthewasteinalandfill. Thehandlingandtransportation

    costisincludedasapercentageofthetotalfixedcost.ThesevaluesareshowninTable13and

    Table14.

    Electricity

    Table14:Utilitycostoflandfill.

    Table13:

    Utility

    cost

    of

    fuel

    oil.

    Utilitytype Landfill

    Materialhandled Sludge

    Solidwaste

    Amount(lb/hr) 230

    Amount(lb/year) 1,825,465

    Utilitycost

    Unitprice:

    Landfill($/drylb) $0.10

    Adjustedlandfillcost(CEindexfor2010=532.7) $0.11

    Costperyear($/year) $194,558

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    67/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    65

    Finally, we also need to supply electricity through the use of electric motors

    accompanyingeverypumpwehaveplacedthroughouttheTDIproductionprocess.Thedetails

    canbefoundinTable29inAppendix4.

    EquipmentListandUnit

    Descriptions

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    68/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    69/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    67

    bytheNaIpromoter. Thereactorisapproximately thesizeofthefirstandhasadiameterof

    21.85ftandalengthof87.39ft. Itsbaremodulecostis$4,056,812.

    CoolerC100:

    C100isafixedheadshellandtubecoolerusedtocoolthevaporfromthefirstreactor

    systemwhichwillbe fed to the flashdrum. Themain reason for thiscooler is to lower the

    temperature of the vapor from the first reactor so that the quantity of the product, TDI,

    vaporized inthereactorcanberecoveredandsenttoseparations.Thecooler ismadeoutof

    carbonsteelshellwithainchHastelloyCcoatingtopreventcorrosionbytheNaIpromoter.

    Thetubesare20ft in length,andtheareaavailableforheattransfer is3913.27ft2. Thehot

    vaporstreamentersat184Fand leavesat100F. Thecoolingstreamingentersat90Fand

    leavesat120F. Thepressuredrop through the cooler is5psi,and the coolerheatduty is

    17,075,650.7Btu/hr. Thebaremodulecostofthiscooleris$88,092.

    Flash

    drum

    F

    100:

    F100isaverticaltwophaseflashdrumwhichisusedtoseparatethesolventandgases

    fromtherestofthematerialinthevaporstreamfromthefirstreactor. Thesolventandgases

    aresenttobefurtherreactedinthesecondreactorsystemwhiletheliquidbottoms(TDA,TDI,

    Water and remaining CO, O2, TDCARB, and SOVENT) are sent back to R100 as part of

    PSEDUOUT. Theflashdrumismadeoutofcarbonsteel. Thevesselhasanestimatedresidence

    timeathalf fullof5minutesandavolumeof4957.21 ft3. Thediameter is14.67 ftand the

    lengthis29.34ft. Thevesseloperatesatatemperatureof99.91Fandapressureof644.67psi.

    Thebaremodulecostoftheflashdrumis$203,926.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    70/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    68

    SplitterSP100:

    SP100isasplitterusedtosplitS103into0.3S120whichwillbesenttoR102and0.7

    S127whichwillsentbacktoR100aspartofPSEUDOUT.

    StreamMixerM100:

    M100 isused tomodel thecombinationof streamsS116,S119,S120,O2MAKEUP,

    andS121whichwillbesenttothesecondreactor.

    HeaterH101:

    H101isafixedheadshellandtubeheaterusedtoheatthefeedtoR102. Theheateris

    madeoutofcarbonsteelshellwithainchHastelloyCcoatingtopreventcorrosionbytheNaI

    promoter. Thetubesare20ftinlength,andtheareaavailableforheattransferis1329.88ft2.

    Thepressuredropthroughthecooleris5psi,andtheheaterheatdutyis15,958,528.41Btu/hr.

    Thebaremodulecostofthisheateris$135,554.

    MixerM101:

    M101 isusedtomodelthecombinationofstreamsS124,S125,S126,S127,S128,

    ANDS129whichwillbemixedtoformthePSEUDLIQstream. Thisstreamwouldbefedtothe

    firstreactor.

    HeaterH102:

    H102isafixedheadshellandtubeheaterusedtoheatthePSEUDLIQstreamwhichwill

    berecycledtoR100. Theheater ismadeoutofcarbonsteelshellwitha inchHastelloyC

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    71/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    69

    coatingtopreventcorrosionbytheNaIpromoter. Thetubesare20ftinlength,andthearea

    availableforheattransferis3300.01ft2. Thepressuredropthroughthecooleris5psi,andthe

    heaterheatdutyis39,600,089.7Btu/hr. Thebaremodulecostofthisheateris$214,773.

    ValveV100:

    V100 is a diaphragm valve which is used as a safety measure to separate the high

    reaction and low separation pressures in the process. Steam S104, from the first reactor

    system, enters the valve at 652.67 psia, and stream S105 leaves the valve at 5 psia. The

    pressuredropacrossthevalveis647.67psi. Thebaremodulecostofthisheateris$301,962.

    DistillationColumnD100:

    D100 is a 20 stage carbon steel distillation column with a Hastelloy C coating to

    prevent corrosionby theNaIpromoter. Thecolumnhas19KochFlexitray trayswitha tray

    spacingof2ft,andithasaheightof52ft(assuminga10ftforthesumpand4ftforthespace

    above the top tray). The column has a diameter of 9.7 ft. There is an estimated 0.15 psi

    pressuredropperstage,andthetopstageisat11psi. Tohelpdecreasethenecessarysizeof

    the column, it ispacked from stage219withKochFlexipacwithadimensionof500Y. The

    columnhasarefluxratioof2.4. Thedistillateisremovedatatemperatureof34.98F,andthe

    bottomsisremovedat465.75F. Thebaremodulecostofthiscolumnis$1,219,952.

    PumpP100:

    P100 is a centrifugal pump which is used to pump the bottoms from D100 to the

    secondreactorsystem. ItismadeofcastironandhasainchHastelloyCcoatingtoprevent

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    72/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    70

    corrosionbytheNaIpromoter. Thepumphasavolumetricflowrateof280.408cuft/hranda

    pressurechangeof648.1psiwhilegeneratingaheadof13624.774inches. Thepumpmotoris

    assumed to be explosionproof with a shaft rotation of 3600 rotations per minute. The

    electricity requirementtorun thepump is12.3198KW,and thepumpefficiency is0.8. This

    pumphasabaremodulecostof$57,306.

    SplitterSP101:

    SP101 isasplitterusedtosplitS107 into0.99S116whichwillbesenttoR102and

    0.01S108whichisthesludgefromD100whichwillbesenttostorage.

    CoolerC101:

    C101isafixedheadshellandtubecoolerusedtocoolthesludgebottomsfromD101

    which will be sent to storage. The cooler is made out of carbon steel shell with a inch

    HastelloyCcoatingtopreventcorrosionbytheNaIpromoter. Thetubesare20 ft in length,

    and the area available for heat transfer is6.61 ft2. The hot sludge stream, S108 entersat

    521.1Fand leavesat140F. Thecoolingstreamingentersat90Fand leavesat120F. The

    pressuredropthroughthecooler is5psi,andthecoolerheatduty is 27,856.499Btu/hr. The

    baremodulecostofthiscooleris$53,159.

    PumpP101:

    P101isacentrifugalpumpwhichisusedtopumpthetopsfromD100tobefedtoD

    101. ItismadeofcastironandhasainchHastelloyCcoatingtopreventcorrosionbytheNaI

    promoter. Thepumphasavolumetricflowrateof9784.44cuft/hrandapressurechangeof10

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    73/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    74/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    72

    PumpP104:

    P104 isacentrifugalpumpwhich isused topump the tops fromD101 tobe fed to

    bothreactors. Itismadeofcastiron. Thepumphasavolumetricflowrateof9155.70cuft/hr

    andapressurechangeof648psiwhilegeneratingaheadof11017.68inches. Thepumpmotor

    is assumed to be explosionproof with a shaft rotation of 3600 rotations per minute. The

    electricity requirementtorun thepump is402.196KW,and thepumpefficiency is0.8. This

    pumphasabaremodulecostof$251,744.

    SplitterSP102:

    SP102 isasplitterusedtosplitS118 into0.28S119whichwillbesenttoR102and

    0.72S126whichwillsentbacktoR100aspartofPSEUDOUT.

    DistillationColumnD102:

    D100isa19stagecarbonsteeldistillation. Thecolumnhas11KochFlexitraytrayswith

    atrayspacingof2ft,andithasaheightof36ft(assuminga10ftforthesumpand4ftforthe

    spaceabovethetoptray). Thecolumnhasadiameterof4.19ft. Thereisanestimated0.15psi

    pressuredropperstage,andthetopstage isat1psi. Tohelpdecreasethenecessarysizeof

    thecolumn,itispackedfromstage27withKochFlexipacwithadimensionof2X. Thecolumn

    has a reflux ratio of 3.2. The distillate is removed at a temperature of 101.71F, and the

    bottomsisremovedat352.20F. Thebaremodulecostofthiscolumnis$385,015.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    75/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    73

    PumpP102:

    P102isacentrifugalpumpwhichisusedtopumptheTDIbottomsproductfromD102

    tostorage. Itismadeofcastiron. Thepumphasavolumetricflowrateof604.575cuft/hrand

    a pressure change of 5 psi while generating a head of 131.70 inches. The pump motor is

    assumed to be explosionproof with a shaft rotation of 3600 rotations per minute. The

    electricity requirement to run thepump is .32930KW,and thepumpefficiency is0.5. This

    pumphasabaremodulecostof$21,050.

    CoolerC102:

    C102isafixedheadshellandtubecoolerusedtocooltheTDIbottomsproductfromD

    102whichwillbesenttostorage. Thecoolerismadeoutofcarbonsteelshell. Thetubesare

    20ftinlength,andtheareaavailableforheattransferis135.39ft2. ThehotTDIstream,S113

    entersat206Fandleavesat140F. Thecoolingstreamingentersat90Fandleavesat120F.

    The

    pressure

    drop

    through

    the

    cooler

    is

    5

    psi,

    and

    the

    cooler

    heat

    duty

    is

    898,760.8

    Btu/hr.

    Thebaremodulecostofthiscooleris$24,791.

    PumpP103:

    P103isacentrifugalpumpwhichisusedtopumpthewastewatertopproductfromD

    102tostorage. Itismadeofcastiron. Thepumphasavolumetricflowrateof135.091cuft/hr

    andapressurechangeof5psiwhilegeneratingaheadof141.07 inches. Thepumpmotor is

    assumed to be explosionproof with a shaft rotation of 3600 rotations per minute. The

    electricity requirement to run thepump is .12390KW,and thepumpefficiency is0.3. This

    pumphasabaremodulecostof$25,404.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    76/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    77/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    75

    TFEStorageTankST104:

    ST104 isacarbonsteelstorage tankused tohold theTFE solvent. This tankholds3

    hoursworthofTFEatatemperatureof248Fandapressureof639.67psia. Thevolumeofthe

    vesselis54,571cuft,andithasapurchasecostof$197,296.

    WasteWaterStorageTankST105:

    ST105isacarbonsteelstoragetankusedtoholdtheWASTEWATER. Thistankholds

    1weeksworthofWASTEWATERata temperatureof101.7Fandapressureof6psia. The

    volumeofthevesselis22,696cuft,andithasapurchasecostof$104,902.

    Sludge/SolidWasteStorageTankST106:

    ST106isacarbonsteelrailstoragetankusedtoholdtheSLUDGEfromthebottomsof

    D100. Thistankholds1weeksworthofSLUDGEatatemperatureof168Fandapressureof

    648psia. Thevolumeofthevesselis395cuft,andithasapurchasecostof$5,679.

    TDIProductStorageTankST107:

    ST107 isacarbonsteelrailcarstorageusedtoholdtheTDIproduct. Thistankholds

    1weeks worth of TDI product at a temperature of 140F and a pressure of 2.01 psia. The

    volumeofthevesselis90,520cuft,andithasapurchasecostof$284,026.

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    78/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    79/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    80/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    81/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    82/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    83/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    81

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    84/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    85/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    86/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    87/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    88/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    89/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    90/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    88

    Identification:

    Item HorizontalRefluxAccumulatorTank Date: 4/4/2010

    ItemNo. D100ACCUMULATOR

    No.Required 1

    Function: ToaccumulateexcesstopsfromD100tobefedtofedtorefluxpump

    Operation: Continuous

    Materials

    handled: Reflux

    Stream

    StreamID: S109

    Quantity(lb/hr): 978444.3

    Composition:

    TDA 1.029994

    O2 129.9303

    CO 7786.079

    TDI 39704.15

    WATER 8231.36

    TDCARB 3.647230

    SOLVENT 922591.7

    Temperature(0

    F): 34.981

    Pressure(psi): 2psi

    DesignData:

    Material: CarbonSteel

    Pressure: 2psi

    MolarRefluxRatio: 2.4

    Height: 12.0848262248967ft

    VaporFraction: 0

    HoldupTime: 5min

    Comments:

    Reflux

    Accumulator

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    91/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    92/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    90

    Identification:

    Item DistillationReboiler Date: 4/4/2010

    ItemNo. D100REBOILER

    No.Required 1

    Function: Toreheatthebottomsofthecolumnwhichwillbereintroducedtothecolumnasvapor

    Operation: Continuous

    Materials

    handled:

    D100REBOILER

    StreamID: S106

    Quantity(lb/hr): 23048.75

    Composition:

    TDA 5198.043

    O2 1.47E46

    CO 3.62E47

    TDI 0.702195

    WATER 2.27E

    22

    TDCARB 17850.01

    SOLVENT 7.82E18

    InletTemperature(F) 465.75

    OutletTemperature( 517.842

    DesignData:

    MaterialofConstruction: CarbonSteelwith1/4inchHastelloycoating

    HeatDuty: 625534412Btu/hr

    Utilities: 13.9psiSteam

    Type: Kettle

    Comments:

    Reboiler

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    93/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    94/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    92

    Identification: ItemPump Date: 4/4/2010

    ItemNo. D101REFLUXPUMP

    No.Requi 1

    Function: TopumpthetopsofD101toberefedabovethetoptray

    OperationContinuous

    Materialshandled:

    STREAM

    StreamID: S117

    Quantity(lb/hr): 930507.9

    Composition:

    TDA 6.64E44

    O2 129.9303

    CO 7786.079

    TDI 1.45E30

    WATER 0.162563

    TDCARB 0.0

    SOLVENT 922591.7

    Temperature(0

    F): 34.092

    Pressure(psi): 5

    DesignData:

    Type: Centrifugal

    VolumetricFlowRate: 18768.5864395356cuft/hr

    PressureChange : 0.0922660000000004psi

    ElectricityRequired: 6.63296KW

    Efficiency: 0.825443

    Comments:

    Pump&Motor

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    95/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    96/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    94

    Identification:

    Item HorizontalRefluxAccumulatorTank Date: 4/4/2010

    ItemNo. D101ACCUMULATOR

    No.Required 1

    Function: Toaccumulate excesstopsfromD101tobefedtofedtorefluxpump

    Operation: Continuous

    Materialshandled: Reflux

    Stream

    StreamID: S117

    Quantity(lb/hr): 930507.9

    Composition:

    TDA 6.64E44

    O2 129.9303

    CO 7786.079

    TDI 1.45E30

    WATER 0.162563

    TDCARB 0.0

    SOLVENT 922591.7

    Temperature(0

    F): 34.092

    Pressure(psi): 5psi

    DesignData:

    Material: CarbonSteel

    Pressure: 5psi

    MolarRefluxRatio: 1.05

    Height: 9.98566090073922ft

    VaporFraction: 0

    HoldupTime: 5min

    Comments:

    RefluxAccumulator

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    97/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    95

    Identification: ItemCondenser Date: 4/4/2010

    ItemNo. D101CONDENSER

    No.Required 1

    Function: TocondensethetopsofD101

    OperationContinuous

    Materialshandled:

    D101Condenser

    StreamID: S117

    Quantity(lb/hr): 930507.9

    Composition:

    TDA 6.64E44

    O2 129.9303

    CO 7786.079

    TDI 1.45E30

    WATER 0.162563

    TDCARB 0.0

    SOLVENT 922591.7

    Inlettemperatur(F 34.092

    OutletTemperature 34.1

    DesignData:

    MaterialofConstruction: StainlessSteel

    HeatDuty: 351768841btu/hr

    Utilities: CoolingWater

    Type: Total

    Comments:

    Condenser

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    98/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    99/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    97

    Identification: ItemPump Date: 4/4/2010

    ItemNo. D102REBOILERPUMP

    No.Requi 1

    Function: TopumpthebottomsofD102toberefedunderneaththebottomtray

    OperationContinuous

    Materialshandled:

    STREAM

    StreamID: S113

    Quantity(lb/hr): 39662.81

    Composition:

    TDA 1.029915

    O2 0

    CO 0

    TDI 39656.97

    WATER 4.808312

    TDCARB 0

    SOLVENT 6.57E12

    Temperature(0

    F): 352.2

    Pressure(psi): 2.0077

    DesignData:

    Type: Centrifugal

    VolumetricFlowRate: 604.616027439024cuft/hr

    Pressure Change: 0.092266psi

    ElectricityRequired: 6.63296KW

    Efficiency: 0.498037

    Comments:

    Pump&Motor

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    100/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    101/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    99

    Identification:

    Item RADFRACDistillationColumn Date: 4/4/2010

    ItemNo. D102

    No.Required 1

    Function: ToseparateWaterandTDI

    Operation: Continuous

    Materials

    handled:

    InletFeed TopOut BottomOut

    StreamID: S112 S115 S113

    Quantity(LB/HR): 47936.39 8273.57811 39662.8114

    Composition:

    TDA 1.029994 0.0 1.02991481

    O2 8.18E26 0.0 0

    CO 1.06E26 0.0 0

    TDI 39704.15 47.1787663 39656.9732

    WATER 8231.198 8226.38949 4.80831193TDCARB 0.0 0.0 0.0

    SOLVENT 0.009778 0.00977767 6.57E12

    Temperature(0

    F): Top=101.71,Bot.=352.20

    DesignData:

    Material: CarbonSteel

    Stages: 12

    Pressure: 1psia

    Pressure dropperstage: .15psi

    Diameter: 4.19ftHeight: 36ft

    TraySpacing: 2ft

    TrayType: KochFlexitray

    Comments:

    Distillation

    column

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    102/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    103/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    104/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    105/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    103

    Identification:

    Item VerticalFlashDrum Date: [Date]

    ItemNo. F100

    No.Required 1

    Function: Toseparatethegasesand solventtobesenttoR102 andliquidbottoms tobesentbacktoR100

    Operation: Continuous

    Materials

    handled:

    InletStream TopStream BottomStream

    StreamID: S102 S103 S128

    Quantity(lb/hr): 292971.018 84460.84 208510.2

    Composition:

    TDA 1.17130117 5.19E08 1.171301

    O2 993.537324 672.3039 321.2334

    CO 103246.652 81428.69 21817.96

    TDI 34.1342455 0.000107 34.13414

    WATER 417.048468 0.228977 416.8195

    TDCARB 0.00768696 7.69E13 0.007687

    SOLVENT 188278.467 2359.616 185918.9

    Temperature(0

    F): 99.91

    Pressure(psi): 644.67

    Design

    Data:

    Material: CarbonSteel with1/4"HastelloyCoating

    VaporFraction: 0.525

    HalfFullResidenceTime: 5min

    Diameter: 14.67ft

    Length: 29.34ft

    ShellThickness: 0.75in

    Comments:

    Flash

    Drum

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    106/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    104

    Identification:

    Item HEATER Date: 4/4/2010

    ItemNo. H100

    No.Required 1

    Function: TopreheatthetopliquidofD100tobefedtoD101

    Operation: Continuous

    Materials

    handled:

    InletStream OutletStream

    StreamID: S110 S111

    Quantity(lb/hr): 9.7844+05 9.7844+05

    Composition:

    TDA 1.03 1.03

    O2 129.9303 129.9303

    CO 7786.079 7786.079

    TDI 3.9704+04 3.9704+04

    WATER 8231.36 8231.36

    TDCARB 3.647230 3.647230

    SOLVENT 9.2259+05 9.2259+05

    Temperature(0

    F): 120

    Pressure(psi): 7

    Design

    Data:

    Type KettleVaporizer

    MaterialofConstruction: CarbonSteel

    PressureDrop 5 psi

    HeatDuty Btu/hr

    UtilityFluid Low

    Pressure

    Steam

    UtilityRequred 140077 lb/hr

    Comments:

    Toavoidboiling,assumeheatfluxof12000Btu/hr^2ft^2

    Heater

    138931683.9

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    107/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    108/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    109/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    110/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    111/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    112/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    113/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    114/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    115/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    116/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    117/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    118/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    116

    Identification: Item Pump Date: 4/4/2010

    ItemNo. P101

    No.Required 1

    Function: TopumpthetopsofD100tobefedtoD101

    Operation: Continuous

    Materialshandled:

    InletStream OutletStream

    StreamID: S109 S110

    Quantity(lb/hr): 978444.271 978444.3

    Composition:

    TDA 1.0 1.0

    O2 129.9 129.9

    CO 7786.1 7786.1

    TDI 39704.152 39704.15

    WATER 8231.36036 8231.36

    TDCARB 0.0 0.0

    SOLVENT 922591.719 922591.7

    Temperature(0

    F): 35.0177

    Pressure(psi): 12

    DesignData:

    Type: Centrifugal

    VolumetricFlowRate: 9784.44365cuft/hr

    PressureChange: 10psi

    ElectricityRequired: 7.8426kW

    Efficiency: 0.8

    Comments:

    Pump&Motor

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    119/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    120/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    121/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    122/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    120

    Identification: Item HorizontalReactor Date: 4/4/2010

    ItemNo. R100&R101

    No.Required 1

    Function: Toreactthethestartingmaterialstocreatetheproducts

    Operation: Continuous

    Materialshandled:

    CombinesInletStream OutletStream

    StreamID: TDA,O2,CO,SOLVENT,&PSUEDO RX1MID

    Quantity(lb/hr): 1.2945+06 1.2945+06

    Composition:

    TDA 28890.5137 5200.244

    O2 7328.4448 1123.468

    CO 121898 1.1103+05

    TDI 10287 3.9739+04

    WATER 1661.7135 8648.409

    TDCARB 8567.4708 1.7850+04

    SOLVENT 1115795.34 9.2259+05

    Temperature(0

    F): 282.765

    Pressure(psi): 652.67

    DesignData:

    ResidenceTimeatHalfFull: 60min

    MaterialofConstruction: CarbonSteelwithHastelloycoating

    Type: FixedBedAutoclave Reactor

    RXN1HeatofReaction: ()150773.43btu/lbmol

    RXN2Heat

    of

    Reaction: (

    )12384.795

    btu/lbmol

    Volume:

    Comments:

    Thegaseswillbebubbledupthroughtheliquidcausingthoroughmixing.

    AlthoughASPENshowsR100&R101astwoseparatevessels,theywillbe

    onesinglevessel.

    145609.0ft^3

    Reactor

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    123/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    121

    Identification: Item HorizontalReactor Date: 4/4/2010

    ItemNo. R102&R103

    No.Requi 1

    Function: Toreactthethestartingmaterialstocreatetheproducts

    Operation: Continuous

    Materialshandled:

    InletStream OutletStream

    StreamID: B4RX2 RX2MID

    Quantity(lb/hr): 309882.677 309882.7

    Composition:

    TDA 5146.0623 926.2912

    O2 1422.02726 316.7826

    CO 26608.7099 24673.74

    TDI 0.69520548 10252.94

    WATER 0.11421085 1244.617

    TDCARB 17671.5052 8567.389

    SOLVENT 259033.563 263900.9

    Temperature(0

    F): 282.765

    Pressure(psi): 652.67

    DesignData:

    MaterialofConstructi on: CarbonSteelwithhastelloycoating

    Type: FixedBedAutoclave Reactor

    Comments:

    Thegaseswillbebubbledupthroughtheliquidcausingthoroughmixing.

    AlthoughASPENshowsR102&R103astwoseparatevessels,theywillbe

    onesinglevessel.

    Reactor

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    124/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    125/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    126/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    124

    Identification: ItemVerticalStorageTank Date: 4/4/2010

    ItemNo. ST102

    No.Required 1

    Function: TostoreCO

    OperationContinuous

    Materialshandled:

    Flow

    StreamID:

    Quantity(lb/hr): 12798.09

    Composition:

    CO 12798.09

    Temperature(0

    F): 248

    Pressure(psi): 652.67

    DesignData:

    Material:

    HoldingAmount:

    Volume:

    Diameter: 189.916ft

    Length: 31.653ft

    TimePeriod:

    Type Open

    Comments:

    StorageTank

    896650ft^3

    168hours

    1week

    CarbonSteel

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    127/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    125

    Identification: ItemVerticalStorageTank Date: 4/4/2010

    ItemNo. ST103

    No.Required 1

    Function: TostoreO2

    OperationContinuous

    Materialshandled:

    Flow

    StreamID:

    Quantity(lb/hr): 7310.222

    Composition:

    O2 7310.222

    Temperature(0

    F): 248

    Pressure(psi): 653

    DesignData:

    Material:

    HoldingAmount:

    Volume:

    Diameter: 150.308ft

    Length: 25.051ft

    TimePeriod:

    Type Open

    Comments:

    StorageTank

    CarbonSteel

    1week

    444514ft^3

    168hours

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    128/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    126

    Identification: ItemVerticalStorageTank Date: 4/4/2010

    ItemNo. ST104

    No.Requi 1

    Function: TostoreTFEsolvent

    OperationContinuous

    Materialshandled:

    Flow

    StreamID:

    Quantity(lb/hr): 1.12E+06

    Composition:

    TFEsolvent 1.12E+06

    Temperature(0

    F): 248

    Pressure(psi): 639.67

    DesignData:

    Material:

    HoldingAmount:

    Volume:

    Diameter: 74.704ft

    Length: 12.451ft

    TimePeriod:

    Type Open

    Comments:

    StorageTank

    54571ft^3

    3hrs

    1week

    CarbonSteel

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    129/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    127

    Identification: ItemVerticalStorageTank Date: 4/4/2010

    ItemNo. ST105

    No.Required 1

    Function: TostoreWASTEWATER

    OperationContinuous

    Materialshandled:

    Flow

    StreamID:

    Quantity(lb/hr): 8273.578

    Composition:

    WASTEWATER 8273.578

    Temperature(0

    F): 101.7

    Pressure(psi): 6

    DesignData:

    Material:

    HoldingAmount:

    Volume:

    Diameter: 55.762ft

    Length: 9.294ft

    TimePeriod:

    Type Open

    Comments:

    StorageTank

    22696ft^3

    168hrs

    1week

    CarbonSteel

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    130/399

  • 7/26/2019 Phosgene-free Route to Toluene Diisocyanate (1)

    131/399

    PhosgeneFree Route to Toluene Diisocyanate BouSaba, Dizon, Kasih, Stewart

    129

    Identification: ItemVerticalStorageTank Date: 4/4/2010

    ItemNo. ST107

    No.Required 1

    Function: TostoreTDI

    OperationContinuous

    Materialshandled:

    Flow

    StreamID:

    Quantity(lb/hr): 39662.81

    Composition:

    TDI 39662.81

    Temperature(0

    F): 140

    Pressure(psi)