Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016....

18
Phase separation of exotic superfluids in a chain of high spin ultracold atoms Edina Szirmai International Workshop on Cold Gases in Quantum Information June 30 - July 1, 2015, Bilbao In collaboration with: G. Barcza J. Sólyom Ö. Legeza

Transcript of Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016....

Page 1: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Phase separation of exotic superfluids in a chain ofhigh spin ultracold atoms

Edina Szirmai

International Workshopon Cold Gases in Quantum Information

June 30 - July 1, 2015, Bilbao

In collaboration with:

G. BarczaJ. SólyomÖ. Legeza

Page 2: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Homogeneous vs. inhomogeneous pairing

Bardeen, Cooper, Schrieffer (1957)

BCS pairing

k

k'

k

k'

2 species of fermionic particles.

QCOM = 0→ homogeneous op.

Spin singlet S = 0.

Particles close to the Fermi surface.

Fulde, Ferrell (1964), Larkin, Ovchinnikov (1964)

FFLO pairing

k1

22

2

1k'

k

k'

2 species offermionic particles.

QCOM 6= 0→inhomogeneous op.

Spin singlet S = 0.

Particles close to theFermi surface.

Experimental studies withultracold atomic systems:

Zwierlein, et al. (2006);Partridge, et al. (2006);Schunck, et al. (2007);Liao, et al. (2010);

and more...

Small Zeeman fieldno effect on the BCS pairs

1st order phase transition.

Intermediate Zeeman fielddepairing state

2nd order phase transition.

Large enough Zeeman field

ferromagnetic normal state

Page 3: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Homogeneous vs. inhomogeneous pairing

Bardeen, Cooper, Schrieffer (1957)

BCS pairing

k

k'

k

k'

2 species of fermionic particles.

QCOM = 0→ homogeneous op.

Spin singlet S = 0.

Particles close to the Fermi surface.

Effect of applied/generated magnetic field:

Small Zeeman fieldno effect on the BCS pairs

1st orderphase

transition.

Large enough Zeeman field

ferromagnetic normal stateChandrasekhar (1962), Clogston (1962)

Fulde, Ferrell (1964), Larkin, Ovchinnikov (1964)

FFLO pairing

k1

22

2

1k'

k

k'

2 species offermionic particles.

QCOM 6= 0→inhomogeneous op.

Spin singlet S = 0.

Particles close to theFermi surface.

Experimental studies withultracold atomic systems:

Zwierlein, et al. (2006);Partridge, et al. (2006);Schunck, et al. (2007);Liao, et al. (2010);

and more...

Small Zeeman fieldno effect on the BCS pairs

1st order phase transition.

Intermediate Zeeman fielddepairing state

2nd order phase transition.

Large enough Zeeman field

ferromagnetic normal state

Page 4: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Homogeneous vs. inhomogeneous pairing

Fulde, Ferrell (1964), Larkin, Ovchinnikov (1964)

FFLO pairing

k1

22

2

1k'

k

k'

2 species offermionic particles.

QCOM 6= 0→inhomogeneous op.

Spin singlet S = 0.

Particles close to theFermi surface.

Experimental studies withultracold atomic systems:

Zwierlein, et al. (2006);Partridge, et al. (2006);Schunck, et al. (2007);Liao, et al. (2010);

and more...

Small Zeeman fieldno effect on the BCS pairs

1st order phase transition.

Intermediate Zeeman fielddepairing state

2nd order phase transition.

Large enough Zeeman field

ferromagnetic normal state

Page 5: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Homogeneous vs. inhomogeneous pairing

Fulde, Ferrell (1964), Larkin, Ovchinnikov (1964)

FFLO pairing

k1

22

2

1k'

k

k'

2 species offermionic particles.

QCOM 6= 0→inhomogeneous op.

Spin singlet S = 0.

Particles close to theFermi surface.

Experimental studies withultracold atomic systems:

Zwierlein, et al. (2006);Partridge, et al. (2006);Schunck, et al. (2007);Liao, et al. (2010);

and more...

Small Zeeman fieldno effect on the BCS pairs

1st order phase transition.

Intermediate Zeeman fielddepairing state

2nd order phase transition.

Large enough Zeeman field

ferromagnetic normal state

Page 6: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Homogeneous vs. inhomogeneous pairing

Fulde, Ferrell (1964), Larkin, Ovchinnikov (1964)

FFLO pairing

k1

22

2

1k'

k

k'

2 species offermionic particles.

QCOM 6= 0→inhomogeneous op.

Spin singlet S = 0.

Particles close to theFermi surface.

Experimental studies withultracold atomic systems:

Zwierlein, et al. (2006);Partridge, et al. (2006);Schunck, et al. (2007);Liao, et al. (2010);

and more...

Small Zeeman fieldno effect on the BCS pairs

1st order phase transition.

Intermediate Zeeman fielddepairing state

2nd order phase transition.

Large enough Zeeman field

ferromagnetic normal state

Page 7: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Simulation of orbital degree of freedom with fermionicultracold atoms1D systems – confinement induced resonance

Chain of two-orbital Yb-173 atoms[E. Sz. PRB (2013), and in preparation]

Spin polarized 4-component fermionic chain[Barcza, E. Sz., Solyom, Legeza, PRA (2012), EPJ ST (2015), and in preparation]

Summary

Page 8: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Simulation of orbital degree of freedom with fermionicultracold atoms

Spin-F atoms in an optical lattice.

Electronic ground state and metastable excited state.

Charge neutral atoms→ SU(N=2F+1) symmetric interaction.

S (g)01

gg

pl. F=1/2:

P (e)3 0

eg ge_g+gge

S=0 S=0 S=1S=0

[Gorshkov, et al. (2010); Scazza, et al. (2014); Cappellini, et al. (2014); Zhang, et al. (2014)]

Page 9: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Simulation of orbital degree of freedom with fermionicultracold atoms

Spin-orbit coupled system

Eg. transition metals: Kugel-Kohmskii model

Various mixtures of light and heavy particles, impurity modelsheavy fermion systems

Periodic Anderson model, Kondo lattice model

One orbit systems

SU(N) Hubbard and

Heisenberg models

Source: jila.colorado.edu

Page 10: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

One-dimensional systems

a3D87Sr 173Yb

ag 96.2 aB 199.4 aBae 176 aB 306.7 aBa+

ge 169 aB 219.5 aB

a−ge 68 aB 3300 aB

Confinement induced resonance:

Coupling constant in a1D optical lattice:

g =2h̄2

m1

a2⊥

a3D

1− c a3Da⊥

,

Tuning of the confining potential(a⊥ =

√h̄/mω⊥).

2-orbital system→ 4 resonances.Typical confining:

ω⊥ ≈ 100 kHz→ aYb⊥ ≈ 680 aB .

ω⊥ to be changed up to 0.5-1 MHz.

Page 11: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Low energy behavior of Yb-173 atoms: F=5/2, SU(6)

Field theoretical RG treatment, and bosonizationAsymptotic behavior of the correlation functions→ dominant order

Phase diagram as a function of population and the confining potential:

Competing orders:

OADW ∼ |r |−∆κ−−∆κ

+

OpFFLO ∼ |r |−∆σ−−∆σ

+

OSDW ∼ |r |−∆κ−−∆κ

+−∆σ ′− −∆σ ′

+

E. Szirmai, PRB (2013), and in preparation

Page 12: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Low energy behavior of Yb-173 atoms: F=5/2, SU(6)

Field theoretical RG treatment, and bosonizationAsymptotic behavior of the correlation functions→ dominant order

Phase diagram as a function of population and the confining potential:

Competing orders:

OADW ∼ |r |−∆κ−−∆κ

+

OpFFLO ∼ |r |−∆σ−−∆σ

+

OSDW ∼ |r |−∆κ−−∆κ

+−∆σ ′− −∆σ ′

+

E. Szirmai, PRB (2013), and in preparation

Page 13: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Phase separation - preliminary results

Phase separation:presence of heavy and light particles + strong repulsive interaction.

Close to each resonances.

Properties of the segregatedphase depend on the populationsand a⊥.

1st order transition with divergentcompressibility.√

1±ggec√

κgκe = 0.

E. Szirmai, PRB (2013), and in preparation

Page 14: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Polarized 4-component fermions on a 1D chain

1 orbital state→ 1 scattering length – tuned to the attractiveregime by transverse confinement.

Spin imbalance: nonzero total magnetization Sztot .

Phase diagram predicted by weak coupling analysis:

Barcza, E. Sz., Solyom, Legeza, PRA (2012), EPJ ST (2015), and in preparation

Page 15: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Polarized 4-component fermions on a 1D chain

1 orbital state→ 1 scattering length – tuned to the attractiveregime by transverse confinement.

Spin imbalance: nonzero total magnetization Sztot .

Phase diagram predicted by weak coupling analysis:

Barcza, E. Sz., Solyom, Legeza, PRA (2012), EPJ ST (2015), and in preparation

Page 16: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Polarized 4-component system – DMRG analysis

Density distribution along the chain:

0 10 20 30 40 500

0.1

0.2

0.3

0.4

i

S3/2

S1/2

P2,2

Q

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

i

S3/2

T3/2

Q

Density-density correlations→ static structure factor

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

k/π

χ n(k)

06121524293947

0 0.2 0.4 0.6 0.8 10

2

4

6

8

k/π

0612151821 m̃

x10-1

Barcza, E. Sz., Solyom, Legeza, PRA (2012), EPJ ST (2015), and in preparation

Page 17: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Polarized 4-component system – DMRG analysis

Density distribution along the chain:

0 10 20 30 40 500

0.1

0.2

0.3

0.4

i

S3/2

S1/2

P2,2

Q

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

i

S3/2

T3/2

Q

Density-density correlations→ static structure factor

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

k/π

χ n(k)

06121524293947

0 0.2 0.4 0.6 0.8 10

2

4

6

8

k/π

0612151821 m̃

x10-1

Barcza, E. Sz., Solyom, Legeza, PRA (2012), EPJ ST (2015), and in preparation

Page 18: Phase separation of exotic superfluids in a chain of high spin …eszirmai/bilbao2015.pdf · 2016. 1. 4. · Phase separation of exotic superfluids in a chain of high spin ultracold

Summary

High spin fermionic chains where the interactions are tuned viachanging the transverse confinement.Two-orbital Yb-173 isotopes:

The system can be driven into an orbital-FFLO state.Phase separation is expected close to the resonances.

Spin polarized 4-component fermions:Formation of SU(4) quartets in a ferromagnetic background.Phase separation of the composite (spin neutral) particles and thespin carrier particles for strong enough attractive interaction.