Phase-Field theory and modeling of dislocations in … › presentations › pdf ›...

25
Phase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski 1 , M. Ortiz 1 , A.M. Cuitiño 2 1 California Institute of Technology, Pasadena, CA 2 Rutgers University, Piscataway, NJ

Transcript of Phase-Field theory and modeling of dislocations in … › presentations › pdf ›...

Page 1: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Phase-Field theory and modeling of dislocations in

ductile single crystals

M. Koslowski 1, M. Ortiz 1 , A.M. Cuitiño 2

1 California Institute of Technology, Pasadena, CA2 Rutgers University, Piscataway, NJ

Page 2: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

MotivationThe aim of this study is to develop a

phase-field theory of dislocation dynamics, strain hardening andhysteresis in ductile single crystals.

This representation enables to identify individual dislocation lines and arbitrary dislocation geometries, including tracking intricate topological transitions such as loop nucleation, pinching and the formation of Orowan loops.

This theory permits the coupling between slip systems, consideration of obstacles of varying strength and anisotropy and thermal effects.

Rate effects are observed at finite temperatures.

Ortiz,1999

Page 3: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Overview

(Ortiz, 1999)

Effective Dislocation Energy • Core Energy

• Dislocation Interaction

• Irreversible Obstacle Interaction

Macroscopic Averages >∝< ξγ >∇∝< ξρ

Equilibrium configurations

• Closed form solution at zero temperature.

• Metropolis Monte Carlo algorithm and mean field approximation at finite temperatures.

Page 4: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Effective Energy

∫∫∫ −+= iiekl

eijijkl dStdSxdcuE δδφββ )(

2][ 3

SS

1

Elastic interaction Core energy External field

where withpij

eijjiu ββ +=,

)(Sm Djipij δδβ =

Slip Surface

S

Displacement jump across Sm

Page 5: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Elastic interaction

xdcE ekl

eijijkl

3int

21∫= ββ

( ) pklj

pmnijmnlki

ekl cG βββ −∗−=

,,Elastic distortion:

kdkkKbE 22

21

2

2int ˆ),(

4)2(1][ ζµπ

ζ ∫=

with bxxxx /),(),( 2121 δζ =

22

21

22

22

21

21

21 11),(

kk

k

kk

kkkK+

++−

Page 6: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

External Field

∑= −

+=Ndis

n n

n

xxCxs

1)( τ

applied

shear stress forest dislocations∫=S

ext dSbsE ζ

∫=S

iiext dStE δ

ii bxxxx ),(),( 2121 ζδ =

ii bxxtxxs ),(),( 2121 =

with:

Page 7: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Core Energy

ZS→:ξ

δ0 b/2 b-b/2-b-3b/2

φ(δ)

( )( )jjiiijZbbC ξδξδδφ

ξ−−=

∈ 21min)(

ijij dC δµ

2=

22

4inf)( ξζµζφξ

−=∈ db

Z Ortiz and Phillips, 1999

∫=S

core dSE )(ζφ

Page 8: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Phase-Field Energy

[ ]( ) ∫

−+−=

∈kdsbKb

dbE

Y

2*2222

2ˆˆˆ

4ˆˆ

221inf ζζµξζµπ

ξζ

Minimization with respect to ζ gives:

2/1

ˆ

2/1ˆˆ

KdKds

bd

++

+=

ξµ

ζ

core regularization factor

02

*222

2 2/1

ˆˆˆ2/14)2(

1][ EkdKdsbkd

KdKbE +

+−

+= ∫∫

ξξµπ

ξ

elastic energy

Page 9: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Phase-Field Energy

ζξ

d

δPeierls

( )kd

KsdE

d

2

2

2

20 1ˆ

221

+= ∫ µπ

ξϕζζ ∗+= d0

211)(ˆ

dd Kk

+=ϕ

dxb

Peierls)1(2tan

21 ν

πδ −

−= −

Elastic energy

Core regularization

Core regularization factor

Page 10: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Irreversible Process and Kinetics

Irreversible dislocation-obstacle interaction may be built into a variational framework, we introduce the incremental work function:

xdxfEEW nnnnnn 2111 )(][][]|[ ∫ −+−= +++ ξξξξξξ

incremental work dissipated at the obstacles

πµ4

2bf ∝Primary and forest dislocations react to form a jog:

]|[inf 1

1

nn

XW

n

ξξξ

+

∈+

∑=

−+=N

iidi

P xxfbxf1

)()( ϕτ

Updated phase-field follows from:

Short range obstacles:

Page 11: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Irreversible Process and Kinetics

( ) xdxgxdxf nnn

fg

nn

n

21121 )(sup)(1∫∫ −=− ++

+

+

ζζζζ

Kuhn-Tucker optimality conditions:ζ

τg g

−++ −=− iini

ni λλξξ 1

01 ≤−+i

ni fg 01 ≤−− +

ini fg

0≥+iλ 0≥−

( ) 01 =− ++ii

ni fg λ ( ) 01 =+ −+

iini fg λ

∑=

++

Ω=

N

i

ni

n gb1

11 1τEquilibrium condition:

Page 12: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Energy minimizing phase-field

sKb ˆˆ2

=ηµ][inf ηηW

Y∈Unconstrained minimization problem:

CsG +∗=η0=sif

with( ) ( ) )1/(

12

2)( 22

21

22

212

2 νπµπµ −++

== ∫⋅

xxxx

bkd

Ke

bxG

xik

( ) CsGPXd +∗∗=ϕζPX

ϕd

Page 13: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Closed-form solution

Dislocation loops

1

1

11 +

=

++ +−= ∑ nN

j

njij

ni CgGη

)( jiij xxGG −=

( )db

Gii1

212

2 µπνν −−

=

Page 14: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Macroscopic averages

ξγξγ 01

== ∑=

N

iilN

bSlip bl 310≈

216

01101mbl

≈=ρξρρ ∇= b0Dislocation density

21712 11010m

c −≈Obstacle concentration η=c

obsFf

0ττ =Shear stress µτ 420 1010 −− −≈= cF obs

Page 15: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Monotonic loading

00.0/ 0 =ττ

60.0/ 0 =ττ

Stress-strain curve.

20.0/ 0 =ττ

80.0/ 0 =ττ

Evolution of dislocation density with strain.

40.0/ 0 =ττ

99.0/ 0 =ττ

Evolution of dislocation density with shear stress.

Page 16: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Fading memory

a

c d

b

e fThree dimensional view of the evolution of the phase-field, showing the the switching of the cusps.

Stress-strain curve.

Page 17: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Stress-strain curve.

a

Cyclic loading

b c

d e f

g h iEvolution of dislocation density with strain.

Page 18: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Cyclic loading

Page 19: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Poisson ratio effects

b

-50 0 50-1

-0.5

0

0.5

1τ/τ0

γ/γo

ν = 0.0ν = 0.3ν = 0.5

-50 0 500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45ρ/ρ0

γ/γo

ν = 0.0ν = 0.3ν = 0.5

Stress-strain curve Dislocation density vs.strain

0.0=ν 3.0=ν 5.0=ν

Stress-strain curve. Evolution of dislocation density with strain.

Page 20: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Obstacle density

210−=bρ410−=bρ

610−=bρ 810−=bρ

Page 21: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Temperature effects

• Incremental work function

∑=

+++ −+−=Nobs

i

nnobsi

nnnn FEEW1

111 ][][]|[ ξξξξξξ

incremental work dissipated at the obstacles

• Metropolis Monte Carlo algorithm with hysteresis.

• Dislocation interaction is calculated in Fourier transformed space.

Pa10106.5 ⋅=µ mb 10105.2 −⋅=

Page 22: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Temperature Effects

-6 -4 -2 0 2 4 6-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

γ/γ0

ρ/ρ0

T = 0 KT = 300 KT = 600 K

-6 -4 -2 0 2 4 60

0.2

0.4

0.6

0.8

1

γ/γ0

ρ/ρ0

T = 0 KT = 300 KT = 600 K

Evolution of dislocation density with strain.

Stress-strain curve.

Page 23: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Mean field approximation

[ ]nnnnnnnn bw γγτγτγτγγ −++−=∆ ++++ 10113

1 ),(

)(2

21

20

31

1+

++ −

+=n

nnn b ττβ

τγγ

Page 24: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Mean field approximation

=

kTUAr

n

exp0ττ

(Kocks, Argon, Ashby, 1975)

Flow stress vs. temperature Deformation rate vs. flow stress

Page 25: Phase-Field theory and modeling of dislocations in … › presentations › pdf › MP0102.pdfPhase-Field theory and modeling of dislocations in ductile single crystals M. Koslowski1,

Conclusions

• The phase-field representation furnishes a simple and effective means of tracking the motion of large numbers of dislocations within discrete slip planes through random arrays of obstacles (forest dislocations, defects) under the action of an applied shear stress.

• The theory predicts a range of behaviors which are in qualitative agreement with observation, Bauschinger effect, formation of Orowan loops.

• Softening and yield stress dependence on the temperature are observed.

• Rate effects are observed at finite temperature.