Pesticide Residues in Medicinal Plants

16
REVIEW ARTICLE Pesticide Residues in Medicinal Plants and Phytomedicines Va ˆnia G. Zuin and Janete H. Y. Vilegas* Universidade de Sa ˜o Paulo, Instituto de Quı ´mica de Sa ˜o Carlos, Sa ˜o Carlos, SP, Brazil Pesticides, which are mainly applied on crops for the protection of plants against a range of pests, have been found in crude medicinal plants as well as in infusions, decoctions, tinctures and essential oils. This fact has caused concern in various segments of society and scientific investigation has been demanded to assess the health hazards more accurately. The present review covers more than 30 years (1963–1998) of published methods of analysing pesticide residues in medicinal plants, with special emphasis on the rele- vance of these matrices, the legislation, the risks involved in using material containing uncontrolled amounts of residues and the possible effects of technological factors on the proportion of pesticide trans- ferred from the raw material to the end product. Copyright # 2000 John Wiley & Sons, Ltd. Keywords: pesticide residues; chromatographic analysis; medicinal plants; phytopharmaceuticals; toxicology. INTRODUCTION The use of medicinal plants in both crude and prepared forms has increased greatly. The World Health Organiza- tion has estimated that 80% of the global population relies chiefly on traditional medicine for health care and there are reports that about 51% of all drug preparations in industrialized countries derive from plants, acting as sources of therapeutic agents or models for new synthetic compounds, or as raw material for semisynthetic production of highly complex molecules (Farnsworth et al., 1985; Whitaker and Evans, 1987; Bruhn, 1989; Gentry, 1993). According to Pifferi and Vitali (1993), the past two decades have been characterized by a resurgence of interest in the development of new drugs and the re- establishment of old ones from plant sources—not only as part of the ‘green fashion’, or the ‘dangerous appeal’ of alternative phytotherapy—but principally due to the progress made in isolation technology, analytical in- strumentation and computer data processing, which have contributed to the reduction in scepticism about herbal medicines. However, the complexity of these drugs and their inherent biological variation, make it indispensable, though difficult, to evaluate their safety, efficacy and quality (Schilcher, 1987). Owing to the great variability in plant chemical composition that results from factors to which plants are exposed during their growth, storage and the different stages of manipulation, characterization and/ or standardization of phytopharmaceuticals are necessary (Bauer et al., 1993). Standardization of herbal prepara- tions should allow the knowledge of their composition and prevent, or at least make less likely, the consumption of drugs of questionable quality. The latest Pharmaco- poeias, based on recent studies and attempts at standard- ization, prescribe methods, usually chromatographic, for the analysis and quality control of medicinal products of plant origin (Ma et al., 1991; Koupai-Abyazani et al., 1992; Vilegas et al., 1995; Bauer and Tittel, 1996; Matysik, 1996; Gye `resi et al., 1997; Moraes et al., 1997; Raffaelli et al., 1997). Standardized phytopharmaceuticals must have a known content of active or characteristic substances. Exogenous substances must be below specified limits recommended by regulatory agencies (Evans, 1989). Depending on the type of preparation, organoleptic features, moisture and ash content, physical properties and adulterants are checked to confirm identity and determine purity (Parodi et al., 1993; Bauer, 1998). The presence of chemical adulterants (e.g. diazepam, chlor- diazepoxide and caffeine) in herbal products was reported by Lai et al. (1995). The authors point out that the adulterated herbal medicines they analysed (exten- sively consumed in China and other Asian countries) are typically sold as ‘wonder drugs’ without any indication of the contents or manufacturing location. Microbiological contamination and foreign materials are important quality criteria in the testing of medicinal plants. As with any product from agricultural or wild sources, medicinal plants can be contaminated by organic or inorganic substances of natural or synthetic origin, such as insects, microorganisms, e.g. fungi and their mycotoxins (Roy and Chourasia, 1990; Kumar and Roy, 1993; Chourasia, 1995; Efuntoye, 1996; Aziz et al., 1998; Halt, 1998), heavy metals (Wong and Koh, 1986; Wong et al., 1993; Chizzola and Franz, 1996; Sathiyamoorthy et al., 1997; Figura et al., 1998), radioactive materials PHYTOTHERAPY RESEARCH Phytother. Res. 14, 73–88 (2000) Copyright # 2000 John Wiley & Sons, Ltd. * Correspondence to: J. H. Y. Vilegas, Laboratorio de Cromatografia, Instituto de Quı ´mica de Sa ˜o Carlos, Universidade de Sa ˜o Paulo, Caixa Postal 780, 13560-970, Sa ˜o Carlos, SP, Brazil. E-mail: [email protected] Contract/grant sponsor: CAPES. Contract/grant sponsor: CNPq. Contract/grant sponsor: FAPESP. Received 5 May 1999 Revised 23 July 1999 Accepted 13 September 1999

description

Pesticide Residues in Medicinal Plants

Transcript of Pesticide Residues in Medicinal Plants

Page 1: Pesticide Residues in Medicinal Plants

REVIEW ARTICLE

Pesticide Residues in Medicinal Plants andPhytomedicines

Vania G. Zuin and Janete H. Y. Vilegas*Universidade de Sa˜o Paulo, Instituto de Quı´mica de Sa˜o Carlos, Sa˜o Carlos, SP, Brazil

Pesticides, which are mainly applied on crops for the protection of plants against a range of pests, havebeen found in crude medicinal plants as well as in infusions, decoctions, tinctures and essential oils. Thisfact has caused concern in various segments of society and scientific investigation has been demanded toassess the health hazards more accurately. The present review covers more than 30 years (1963–1998) ofpublished methods of analysing pesticide residues in medicinal plants, with special emphasis on the rele-vance of these matrices, the legislation, the risks involved in using material containing uncontrolledamounts of residues and the possible effects of technological factors on the proportion of pesticide trans-ferred from the raw material to the end product. Copyright # 2000 John Wiley & Sons, Ltd.

Keywords:pesticide residues; chromatographic analysis; medicinal plants; phytopharmaceuticals; toxicology.

INTRODUCTION

The use of medicinal plants in both crude and preparedforms has increased greatly. The World Health Organiza-tion has estimated that 80% of the global populationrelies chiefly on traditional medicine for health care andthere are reports that about 51% of all drug preparationsin industrialized countries derive from plants, acting assources of therapeutic agents or models for new syntheticcompounds, or as raw material for semisyntheticproduction of highly complex molecules (Farnsworthetal., 1985; Whitaker and Evans, 1987; Bruhn, 1989;Gentry, 1993).

According to Pifferi and Vitali (1993), the past twodecades have been characterized by a resurgence ofinterest in the development of new drugs and the re-establishment of old ones from plant sources—not onlyas part of the ‘green fashion’, or the ‘dangerous appeal’ ofalternative phytotherapy—but principally due to theprogress made in isolation technology, analytical in-strumentation and computer data processing, which havecontributed to the reduction in scepticism about herbalmedicines.

However, the complexity of these drugs and theirinherent biological variation, make it indispensable,though difficult, to evaluate their safety, efficacy andquality (Schilcher, 1987). Owing to the great variabilityin plant chemical composition that results from factors towhich plants are exposed during their growth, storage andthe different stages of manipulation, characterization and/

or standardization of phytopharmaceuticals are necessary(Baueret al., 1993). Standardization of herbal prepara-tions should allow the knowledge of their compositionand prevent, or at least make less likely, the consumptionof drugs of questionable quality. The latest Pharmaco-poeias, based on recent studies and attempts at standard-ization, prescribe methods, usually chromatographic, forthe analysis and quality control of medicinal products ofplant origin (Ma et al., 1991; Koupai-Abyazaniet al.,1992; Vilegaset al., 1995; Bauer and Tittel, 1996;Matysik, 1996; Gye`resiet al., 1997; Moraeset al., 1997;Raffaelli et al., 1997).

Standardized phytopharmaceuticals must have aknown content of active or characteristic substances.Exogenous substances must be below specified limitsrecommended by regulatory agencies (Evans, 1989).Depending on the type of preparation, organolepticfeatures, moisture and ash content, physical propertiesand adulterants are checked to confirm identity anddetermine purity (Parodiet al., 1993; Bauer, 1998). Thepresence of chemical adulterants (e.g. diazepam, chlor-diazepoxide and caffeine) in herbal products wasreported by Laiet al. (1995). The authors point out thatthe adulterated herbal medicines they analysed (exten-sively consumed in China and other Asian countries) aretypically sold as ‘wonder drugs’ without any indication ofthe contents or manufacturing location.

Microbiological contamination and foreign materialsare important quality criteria in the testing of medicinalplants. As with any product from agricultural or wildsources, medicinal plants can be contaminated by organicor inorganic substances of natural or synthetic origin,such as insects, microorganisms, e.g. fungi and theirmycotoxins (Roy and Chourasia, 1990; Kumar and Roy,1993; Chourasia, 1995; Efuntoye, 1996; Azizet al., 1998;Halt, 1998), heavy metals (Wong and Koh, 1986; Wonget al., 1993; Chizzola and Franz, 1996; Sathiyamoorthyetal., 1997; Figuraet al., 1998), radioactive materials

PHYTOTHERAPY RESEARCHPhytother. Res.14, 73–88 (2000)

Copyright# 2000 John Wiley & Sons, Ltd.

* Correspondence to: J. H. Y. Vilegas, Laboratorio de Cromatografia,Instituto de Quı´mica de Sa˜o Carlos, Universidade de Sa˜o Paulo, Caixa Postal780, 13560-970, Sa˜o Carlos, SP, Brazil.E-mail: [email protected]/grant sponsor: CAPES.Contract/grant sponsor: CNPq.Contract/grant sponsor: FAPESP.

Received 5 May 1999Revised 23 July 1999

Accepted 13 September 1999

Page 2: Pesticide Residues in Medicinal Plants

(SimonandGraham,1996;KaravaevaandMolchanova,1998), fumigation residues (Chaigneau,1983, 1986;ChaigneauandMuraz,1986;Goldberg,1986)andplantprotectionsubstances,i.e. pesticides,the subjectof thepresentreview(Ruminska,1965;DebskaandLutomski,1979;Robinet al., 1979a;DebskaandGnusowski,1980;Nastasaet al., 1981;Mautneret al., 1982).

PESTICIDE RESIDUES IN PLANT MATERIAL

Typesof pesticidesand their toxic effects

Pesticidesare single substancesor mixtures used toeliminate undesirable vegetable and animal life inagriculturalandurbanecosystems.Theycanbeclassifiedaccordingto their chemicalcomposition,function andmodeof actionin organisms.Chemically,thecompoundscanbe divided into threegroups:biological (vegetable,bacterialor fungal),inorganicandorganicpesticides.Thelast group, which is the largest and has pronouncedphysiological activity, is constituted mainly by theorganochlorine,organophosphorus,carbamateand tria-zine compounds(Barlow, 1985).

Theorganochlorinepesticides,e.g.1,1,1-trichloro-2,2-di-(4-chlorophenyl)-ethane (DDT) are an extensivegroup of compoundsthat have been widely used asinsecticides.Owing mainly to their persistencein humanbeings,their usehasbeenrestrictedor evenbannedinmany countries.The toxicity of individual compounds,and hence the potential hazard to animals includinghumanbeings,varieswidely. Aldrin, dieldrin andendrinareconsideredto bethecompoundsthatcommonlycausepoisoning. In the main these insecticides producesymptomssuch as the over-stimulationof the centralnervous system,which may be worsenedby solventeffects.

The organophosphoruspesticides, e.g. parathion,malathion and diazinon, are potent cholinesteraseinhibitorsandcanbevery toxic. CNSsymptomsincluderestlessnessas well as depressionof the respiratoryorcardiovascularsystem.Repeatedexposuremay have acumulative effect although these pesticides are, incontrast to organochlorines,rapidly metabolizedandexcretedandarenot appreciablystoredin body tissues.Among someof the other groupscited, the carbamates(N-substitutedestersof carbamicacid)arecholinesteraseinhibitors. They differ from the organophosphoruspesticidesbecausetheir inhibitory effect is generallylessintenseandmorerapidly reversed.Furthermore,theydonotseemto entertheCNSasreadily,soseverecentraleffectsareuncommon(Reynolds,1989).

LD50 is theamountof a toxicantnecessaryto kill 50%of thetestpopulationwithin a specifiedperiod.It is usedto estimateoral anddermalpesticidetoxicity, in termsofweightof thechemicalperunit bodyweight(mg/kg).Forexample,pesticidessuchas(2,4 dichlorophenoxy)aceticacid (2,4-D), dicamba, parathion and carbofuran areincluded in the highly toxic class(LD50 0–50mg/kg).However, LD50 is not sufficient alone to evaluatetoxicity, becauseit gives information only about theacute toxicity of a compoundin relation to a certainanimalspeciesanddoesnot describepossiblealterationsthat may occur due to prolongedexposure,i.e. chronictoxicity. Chronic toxicity refers to the capacity of a

substanceto causepoisonouseffectsover the long-term,at low-level exposure(Barnardet al., 1997).Data fromanimalor humanexposuretestshaveindicateda numberof examplesof chronic toxicity, including carcinogeni-city causedby compoundssuchas(2,4 dichlorophenox-y)aceticacid (2,4-D, triazines,endrin,linuron, rotenone,captanand maleic hydrazide,teratogenicityby cyana-zine,carbaryl,endrin,rotenone,andbenomyl,mutageni-city by dillate, trifluralin, dimethoate,carbaryl,rotenone,benomylandmaleichydrazide,neurotoxicityby ethyl(p-nitrophenyl)thiobenzenephosphate(EPN)andreproduc-tive effectsby dibromochloropropane(DBCP),dimetho-ate,rotenoneandbenomyl.

Theabusiveanddisorderedemploymentof pesticideshas causeda seriesof problemsof an ecological andpublic healthnature(Suganavam,1996).Someof theseare the appearanceof new pests, extermination ofpollinator insects, bioaccumulationand existence ofresiduesin the atmosphere,lithosphereandhydrosphere(Plimmer, 1996; Zuin et al., 1999). The fate andbehaviour of pesticides in a soil–plant–atmospheresystem, which is mediated by water dynamics, aredeterminedby inherent propertiesof thesechemicals,their formulation type, application technique,climaticconditions,soil characteristicsandplant morphology.Insucha system,pesticideswill undergoa fairly limitednumberof reactionsthroughphysical,physico-chemical,chemicalor biochemicalprocessessuchas adsorption,desorption,ion-exchange,free-radicalreactions,oxida-tion, reduction, hydrolysis, alkylation, dealkylation,decarboxylationandisomerization(Kips, 1985).

Severalstudieshavebeencarriedout in orderto assessand predict the potential contaminationof vegetableproducts.Thesefocuson aspectsincludingthepathwaysof pesticideuptakefrom the soil by plants(Beitz, 1989;Behrendtand Bruggemann,1993; Schroll et al., 1994),the penetrationand photodegradationof pesticidesinplantsurfacesaswell astheir volatilization from foliage(Bentson, 1990; Dorfler et al., 1991; Schreiber andSchonherr,1993;Kubiaketal. 1995;Kirschetal., 1997),the bioconcentrationandkinetic releaseof pesticidesinplant leaves(Bacci et al., 1990; Zongmaoand Haibin,1997), the developmentof mathematicalmodels toestimate the maximum potential pesticide residue inplantmaterialin thefoodchain(Pfleegeretal., 1996)andthe effect of plant protectionresidueson the chemicalreactionsthattakeplacewithin vegetabletissuesandviceversa (Harvey, 1986; Lydon and Duke, 1989), amongothers.

Useof pesticidesin the cultivation of medicinalplants

In practice,the large-scalecultivation of medicinal aswell as food plants, is not possiblewithout pesticides.Becauseof high costs,‘organic’ (pesticide-free)cultiva-tion is only possibleon a small scale—orthe risk ofsevereattackby pestsmustbeaccepted.Thequantityofraw material coming from organic plantationsor fromwild areasis at the moment insufficient to satisfy thedemandof the herbal drug market (Schilcher,1985a;Bisset,1994).Consequently,the ideal situationnot onlyfor medicinal but also for food plant productionis theimplementationof integratedpostmanagementbasedonthe rational useof pesticide-basedtechniques(Ausher,

74 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 3: Pesticide Residues in Medicinal Plants

1997). The application of pesticidesunder controlledconditions can be done by methodsthat allow theireffective, safe and economicuse (Zweig and Aspelin,1983).For example,Kiraly (1996)showedthat fusariumwilt diseasehadbeenonly partially controlledby regularfungicides such as benomyl. However, the use ofintegrated control measures,a pesticide–lime–nitrateregime,stimulatedplantdiseaseresistanceandinhibitedor evenkilled thepathogens.

Pesticidesor evengrowth regulatorsmay interferetolarger or smaller extents with secondarycompoundbiosynthesisin higherplants,altering the percentageofthe active compounds (Vomel and Mautner, 1982;Czarnecki and Zalecki, 1990; Omer et al., 1997).Reichling and collaborators (Reichling et al., 1977;Vomel et al., 1977; Reichling, 1979a,1979b) investi-gatedthe influenceof five herbicideson flower produc-tion and on the composition of the essentialoils ofMatricaria chamomillaL.. When treatedwith variousherbicides,this plant suffered alterationsin the totalcontentof essentialoils aswell asin theproportionof themain compounds (bisabololoxide B, bisabolol andbisabolonoxide).Schilcher (1977) also confirmed thatthe growth of Matricaria chamomilla L. and thecompositionof theessentialoils werestronglyinfluencedby the type of herbicideand the amountand period ofapplication, which can probably be explained by amechanismof action basedon the inhibition of nucleicacid synthesis.

Contrasting results were obtained by Pank andcollaborators (Pank and Neczypor, 1978; Pank andEnnet,1980,1988;Panket al., 1978,1979,1980,1981,1982,1983,1984,1986,1987a,1987b),who testedmorethan 60 herbicides in a long-term study in order todevelopchemical killing methodsto control weedsinseveralmedicinal plant fields. The authorsconcludedthat,althoughthe utilization of thoseherbicideshadledto a considerablereduction in weed cover and aconsequentdiminutionof manualwork neededfor weedcontrol, the useof chemicalsdid not result in any yieldreduction or morphological variation and did notinfluencethe productionof essentialoils, including therespectiveactiveprinciples.

Theeffectof herbicidesonthequalitativepropertiesofmedicinalplants(MelissaofficinalisL., SalviaofficinalisL. and Menthax piperita (L.) Huds. cv. Perpeta) wasinvestigatedby Vaverkovaet al. (1995a,1995b,1997).The treatmentof medicinalplantswith herbicides,e.g.terbacil and linuron, did not influencethe essentialoilcontentof the treatedplants,comparedwith thosenottreated.Similarly, the application of a herbicide for-mulationdid not causedetectablechangesin therelativeproportion of main and secondarycomponentsof theessentialoils.

In the sameway, the influenceof a wide rangeofherbicidesand growth regulatorson the growth andessentialoil contentof sageandpeppermintwasevaluatedby El-Keltawi andCroteau(1986a,1986b,1987).Exceptfor oil yieldreductionin thecaseof severestunting(e.g.bymalazide application), no direct relationship betweentissuegrowthandessentialoil formationin thesespecieswasobserved.Theresultsobtainedby Maas(1979)withthe applicationof herbicidesin AnethumgraveolensL.,Thymus vulgaris L., Matricaria chamomilla L. andOcimumbasilicum L. demonstratedthat the effects ofherbicideresiduesontheproductionof activecompounds

by medicinal plants cannot be defined for non-homo-geneousgenetic herbal material, since the response,tolerance and breakdown rate of pesticidesmay bedifferent for each plant. Recently,emphasishas beengiven to genetictransformation,in particularto increasethe productionof secondarymetabolitesandto generatemedicinal plants resistant to herbicides,diseasesandpests.Accordingto Bajaj (1998),biotechnologicaldevel-opmentshavefar-reachingimplicationsfor the improve-mentof medicinalherbs.

It has to be noted that besidesdirect contamination,which would be the resultof pesticideapplicationto theplants of interest, medicinal plants may also besusceptible to indirect contamination. Pluta (1989)attributedthe considerablepesticidecontentin most ofthe studiedherbalraw materialto global contaminationof theenvironment.In somecasesthis maybecausedbyaccidentalcontamination,e.g. hygienic intervention inforests, a very common procedure in developingcountriesto eliminatepestsandrestraintropicaldiseasessuchasmalaria.However,Lorussoet al. (1985)considerthat global environmentcontaminationcanonly explainthe presenceof organochlorinecompoundsin medicinalplants and not that of organophosphoruscompounds,owing to their relatively fast degradation.Thus, theorganophosphorusresidues,as well as other pesticideclasses, come from the continuous use of suchcompounds at some stage of phytopharmaceuticalproduction.

According to Bisset (1994) pesticide residuesarealways found in both foodstuffs and medicinal plants,whetherthe living plantsare treatedwith pesticidesornot, sincetheseenvironmentalcompoundshavespreadmoreor lessworld-wide.In fact, thereis a largenumberof publicationson such residuesin food (Dorea et al.1996;Lancaset al., 1996)andcuriously—although theproblemsof pesticideresiduesin medicinal plantsanddrugpreparationsarenot entirelydifferent from thoseofvegetablefood (Schilcher,1985b)—thereis still littleinformationavailableregardingmedicinalplants(BagchiandPuri, 1985).

While theuseof pesticidesfor drugandfood plantsisregulatedin many countries, legislation is lacking orlargely ignoredin severaldevelopingcountries.Unlikeindustrializedcountriesthat haveestablishedan exten-sivebodyof law to protectthepublic from occupational,environmentalandconsumerhazards,manydevelopingcountrieshavenotyetdoneso.Thedisparitiesin nationalregulation and other factors controlling hazardousproductsrequirethe recognitionof internationalregula-tion for pesticideresiduelimits for all the public andprivate entities that intervene or are involved in thedistribution and utilization of medicinal plant products(Finkelman,1996).

SETTING MAXIMUM PESTICIDE RESIDUELIMITS FOR HERBAL DRUGS

The WHO (WHO, 1992) has made a series ofrecommendations,on thebasisof nationalconsultations,to promotethe establishmentof an internationallist ofpesticides suitable or unsuitable for utilization oncultivated medicinal plants.The WHO has also estab-lishedmaximumresiduelimit (MRL) for thesebiocides

PESTICIDERESIDUES 75

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 4: Pesticide Residues in Medicinal Plants

Table 1. Main analytical methodsfor determination of pesticideresiduesin medicinal plants and phytopharmaceuticalsResidue range

Pesticidea Matrixb Sample preparationc Determinationd (mg/kg)e Reference

OC Infusions of Tilia cordata Mill. LLE followed by CC (Florisil/anhydrous Na2SO4)

GC-ECD 0.0029±0.369 Lino andSilveira, 1997b

OC Dry and powdered Tilia cordataMill., Melissa of®cinalis L., Malvasylvestris L., Citrus aurantium L.,Matricaria chamomilla L., Cassiaangustifolia Vahl, Cassia senna L.and Cassia obavata Colladon

Maceration (acetonitrile, n-hexane or H2O), Ultra-Turrax orultrasonication homogenization,centrifugation followed by CC(C18, Florisil or Florisil/anhydrous Na2SO4)

GC-ECD 0.02±0.5 Lino andSilveira, 1997a

OC Commercial bags of mint, vervain,lime tree, tea and camomile

Infusion, SPE (C8) followed byCF3COOH, CCl3COOH treatmentor Cl2 oxidation

GC-MS 1 Molto et al.,1994

OC Commercial infusion bags oflinden, camomile and black tea

Grinding (plant material plussandplus anhydrous Na2SO4),heating (hexane:acetone), LLEfollowed by CC (Florisil/anhydrous Na2SO4)

GC-ECD 0.0001±0.321 Ferna ndez etal., 1993

OC Commercial samples of Frangulaecortex, Quercus cortex,Calendulae¯os, Crataegi fol. c. ¯or.,Malvae ¯os., Tiliae ¯os.,Matricariae ¯os., Sambuci ¯os.,Verbasci ¯os., Betulae folium,Farfarae folium, Fragariae folium,Melissae folium, Menthaepiperitaefolium, Uvae ursi folium,Myrtilli folium, Rosmarini folium,Rubi fruticosi folium, Rubi idaeifolium, Salviae folium, Carvifructus, Crataegi fructus, Foeniculifructus, Rosae pseudofructus,Absinthii herba, Cardui benedictiherba, Equiseti herba, Millefoliiherba, Thymi herba, Urticae herba,Violae tricolor. herba, Althaeaeradix, Liquiritiae radix, Taraxaciradix c. herba and Valerianae radix

Soxhlet (hexane/Si gel/anhydrous Na2SO4), CC (celite)and LLE

GC-ECD 0.001±1.051 Benecke andOrtwein, 1992

OC `KuÈ mmelfruÈ chte' aceration and agitation(acetone), LLE and CC (Florisil/Na2SO4)

GC-ECD 0.05±0.54 Gabrio et al.,1990

OC `BirkenblaÈ tter', `Heidekraut',`BrombeerblaÈ tter',`Heidelbeerkraut', `Ginsterkraut',`Johanniskraut', `Brennesselkraut',`Rainfarnkraut', `Schafgarbenkraut'and `Ackerschachtelhalmkraut'

Soxhlet (hexane/Si gel/anhydrous Na2SO4), CC (celite)and LLE

GC-ECD 0.008±77.99 Benecke et al.,1989

OC Commercial pre-packed medicinalplant mixtures

Maceration (H2O:acetone andcelite), LLE followed by CC(basic alumina) or CC (celite)and H2SO4

GC-ECD 0.012±0.330 Alamanni et al.,1988

OC Tinctures SPE (C18) GC-ECD 0.010±0.500 GuÈ beli andClerc, 1988

OC Commercial pre-packed mixturesof `Camomilla', `Tiglio', `RosaCanina', `Verbena', `Liquirizia',`Finocchio', `Arancio ®ore', `Arancioscorza', `Melissa', `Valeriana',`Luppolo', `Menta Anice', `Timo',`Senna', `Boldo', `Carciofo Anice',`Alburno', `Brughiera Lavanda',`Salvia', `Eucalipto Liquirizia',`Gramigna', `Guajaco', `Issopo',`Parietaria', `Menta piperita',`Salsapariglia', `Anice Stellato,`Anice verde' and `Carvi'

Maceration (H2O:acetone andcelite), LLE followed by CC(basic alumina) or CC (celite)and H2SO4

GC-ECD 0.11±0.51 Alamanni et al.,1987b

OC Commercial samples of `Uvaursina', `Boldo', `Senna',`Camomilla', `Biancospino',`Rabarbaro', `Frangula', `Passi¯ora',`Fiori d'arancio' and `The'

Maceration (H2O:acetone andcelite), LLE followed by CC(basic alumina) or CC (celite)and sulphuric acid

GC-ECD 0.010±0.095 Alamanni et al.,1987a

76 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 5: Pesticide Residues in Medicinal Plants

Table 1. ContinuedResidue range

Pesticidea Matrixb Sample preparationc Determinationd (mg/kg)e Reference

OC Flores Chamomillae, FloresMalvae, Flores Crataegi, FoliaCrataegi cum Floribus, FructusAnisi tot., Herba Hyperici, HerbaMillefolii, Herba Thymi, HerbaUrticae, Semen Lini, Folia Menthaepip., Folia Melissae, Flores Tiliaeand Herba Equiseti

Powdered plant material: Plantplus sand or celite mixture oncolumn glass (petroleum etheror acetonitrile) followed by CC(deactivated Si gel/anhydrousNa2SO4) Infusions: LLE and CC(deactivated Si gel/anhydrousNa2SO4)

GC-ECD < 0.001±0.950 Ali, 1987

OC Dried and powdered samples ofFlores Chamomillae and RadixValerianae

Soxhlet (hexane/Si gel/anhydrous Na2SO4), CC (celite)and LLE

GC-ECD andGC-MS

0.013±9.164 Benecke et al.,1986a

OC Dried and powdered Flor. Verbasci,Flor. Chamomillae, Fruct. Foeniculi,Fruct. Carvi, Fol. Salviae, Fol.Melissae, Fol. Menthae pip., Fol.Thymi, Herba Millefolii, Rad.Althaeae and Rad. Valerianae

Soxhlet (hexane/Si gel/anhydrous Na2SO4), CC (celite)and LLE

GC-ECD 0.10±0.5 Benecke et al.,1986b

OC Ginseng Radix, Angelicae Radixand Cnidii Rhizoma

Maceration (acetone:H2O)followed by CC (Biobeads SX3and Si gel)

GC-ECD andTLC

0.004±1.18 Kwon et al.,1986

OC Infusions of Herba Equiseti, FloresHibisci, Flores Chamomillae, FoliaSennae, Fructus Carvi, FoliaBetulae, Folia Menthae pip.,Fructus Foeniculi, Fructus Anisi andFructus Sennae

LLE and CC (deactivated silicagel/anhydrous Na2SO4)

GC-ECD 0.001±0.600 Ali, 1985

OC Dried Flores chamomillae Maceration (hexane), CC (celite)followed by chemicaltransformation

GC-ECD 0.01±0.5 Benecke et al.,1985

OC Cassia senna L. and Cassiaangustifolia Vahl.

Comparison between severalmethods e.g. ultrasonicationand CC

GC-ECD 0.001±1.86 Stahl and Rau,1984

OC Herba Equiseti, Semen Lini, FloresHibisci, Flores Chamomillae, FoliaSennae, Fructus Carvi, FoliaBetulae, Folia Menthae piperitae,Fructus Foeniculi, Fructus Anisi andFructus Sennae

Plant plus sand mixture oncolumn glass and CC(deactivated Si gel/anhydrousNa2SO4) or maceration withagitation (n-hexane), LLE andCC (deactivated silica gel/anhydrous Na2SO4)

GC-ECD 0.01±3.0 Ali, 1983b

OC Powdered Equiseti herba, Linisemen, Hibisci ¯os, Chamomillae¯os, Betulae folium, Foeniculifructus and Anisi fructus

Plant plus sand on columnglass and CC (deactivated Sigel/anhydrous Na2SO4) ormaceration with agitation (n-hexane), LLE and CC(deactivated Si gel/anhydrousNa2SO4)

GC-ECD 0.02±3.00 Ali, 1983a

OC Camomile ¯owers (Matricariachamomilla L.)

Maceration (NaCl 2% solutionfollowed by benzene),centrifugation followed by CC(Florisil)

GC-ECD-FID 0.008±0.017 Molinari et al.,1981

OC Dried material and infusions ofFlosaurantii, Fol. Verbenae odorateand Fol. Menthae pip. Electiss.

Maceration, LLE and CC(Florisil)

GC-ECD 0.001±0.668 Schlumpf andStettler, 1981

OC Powdered Flores Chamomillae,Folia Sennae and Fructus Phaseoli

Plant plus quartz sand mixtureon column glass (petroleumether) followed by CC(deactivated Sigel/anhydrousNa2SO4)

GC-ECD 0.002±0.47 Fehr and Ali,1980

OC Dried and powdered Tiliaplatyphyllos Scop., Anthemisnobilis L., Malva of®cinalis L.,Citrus aurantium L. var. amara,Crataegus oxyacantha L., Lippiacitriodora H. B., Matricariachamomilla L., Melissa of®cinalisL., Mentha piperita L., Salviaof®cinalis L. and Ribes nigrum L.

Maceration(acetonitrile:petroleum ether),LLE followed by CC (BiobeadsSX3)

GC-ECD 0.004±0.20 Robin et al.,1979b

PESTICIDERESIDUES 77

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 6: Pesticide Residues in Medicinal Plants

Table 1. ContinuedResidue range

Pesticidea Matrixb Sample preparationc Determinationd (mg/kg)e Reference

OC Dried and powdered Anthemisnobilis L., Citrus aurantium L. var.amara, Malva of®cinalis L.,Crataegus oxyacantha L., Lippiacitriodora H. B., Melissa of®cinalisL., Matricaria chamomilla L.,Mentha piperita L., Ribes nigrumL., Salvia of®cinalis L. and Tiliaplatyphyllos Scop.

Maceration(acetonitrile:petroleum ether),LLE followed by CC (BiobeadsSX3)

GC-ECD 0.004±0.20 Robin et al.,1978

OC Powdered Fol. Menthae piperitaeand Flos. Chamomillae

Maceration (petroleum ether)followed by CC (charcoal/celite/anhydrous Na2SO4/alumina oracid alumina)

TLC and GC-ECD

0.01±0.5 Henneberg andLutomski, 1972

OC Dried and powdered CortexChinae, Cortex Frangulae, CortexQuercus, Flores Arnicae, FloresCalendulae, Flores Chamomillae,Flores Sambuci, Flores Tiliae, FoliaBetulae, Folia Digitalis, FoliaHamamelidis, Folia Hederae, FoliaMelissae, Folia Menthae and FoliaRosmarini

Maceration with/withoutagitation or heating (n-heptane),H2SO4 treatment, CC(anhydrous Na2SO4/Si gel/H2SO4) and LLE

TLC 0.05±6.30 Luckner andLuckner, 1972

OC andOP

Angelicae gigantis Radix,Atractylodis Rhizoma alba andCurcumae Rhizoma

Maceration (acetonitrile:H2O)and H2SO4 treatment

GC-FID 0.25±12.5 Yoon et al.,1998

OC andOP

Camomile SFE (CO2) GC-ECD, GC-FPD and GC-MS

0.2±0.6 Carisano andRovinda, 1995

OC andOP

Plant material and hydro alcoholicextracts (Crataegus and Senna)

SFE (CO2) GC-NPD andGC-ECD

Erdelmeier,1993

OC andOP

Commercial samples of `MentaPiperita', `Fiori d'arancio', `Lavanda®ori', `Salvia foglie', `Tiglio ®ori',`Rosmarino foglie', `Verbenaodorosa foglie', `Anice semi', `Timovolgare', `Eufrasia', Meliloto',`Melissa sommitaÁ ', `Finocchio semi'and mixture of herbs

Maceration (H2O:acetone andcelite), LLE followed by CC(Florisil)OP and CC (celite orbasic alumina) with/withoutH2SO4 treatmentOC

GC-FPD andGC-ECD

0.01±5.93 Muccio et al.,1981

OC andOP

Matricaria chamomilla L. ofdifferent origins

Maceration (methanol), LLE, CC(Alumina, Fuller's earth andFlorisil)

GC-ECD andGC-NPD

0.019±5.68 Reichling et al.,1979

OC andOP

`Mauve', `Menthe', `Oranger',`Thym', `Millefeuilles', `Romarin',`Sauge', `Serpolet', `Tilleul' and`Verveine'

Maceration (ethylacetate:dichloromethane), LLEand CC (Florisil)

GC-FPD andGC-ECD

0.002±1.42 Illes et al., 1976

OC andOP

Infusion and oil of Mentha piperitaL.

Infusion: LLE, CC (Florisil) Oil:direct injection after dilution

GC-NPD andGC-ECD

0.0005±8.0 Friedrich andBuÈ ter, 1975

OC andOP

Fresh and dried Mentha piperita L. Blending (celite and acetone),LLE and CC (Florisil)

GC-NPD andGC-ECD

0.05±50 Friedrich andBuÈ ter, 1974b

OC andOP

Peppermint hay and oil Hay: Maceration (n-hexane:isopropyl alcohol or HClconc.), LLE followed by H2SO4

treatment and sulphonation orCC (celite/anhydrous Na2SO4)Oil: charcoal treatment andsulphonation, LLE and CC(celite) or only CC (charcoal/attasol-Dicalite)

SP and GC-MCD

0.01±61 Starr et al.,1963

OP Fresh and dry Mentha sp.,Majorana hortensis L. andMatricaria chamomilla L.

Maceration (acetone), LLEfollowed by SPE (Florisil)

HPLC-UV andGC-MS

0.024±0.23 Ahmed et al.,1998

OP Dry ¯owers, fresh ¯owers andleaves of chrysanthemums

Blending (acetone), ®ltration(through GC-NPD celite layer),coagulation and LLE

GC-NPD 0.036±2.00 Wu and Fan,1992

78 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 7: Pesticide Residues in Medicinal Plants

Table 1. ContinuedResidue range

Pesticidea Matrixb Sample preparationc Determinationd (mg/kg)e Reference

OP Humulus lupulus L., Artemisiavulgaris L., Erica cinerea L., Melissaof®cinalis L., Mentha piperita L.,Laurus nobilis L., Salvia of®cinalisL., Cinnamomum zeylanicum Nees,Malva sylvestris L., Peumus boldusMolina, Rosa gallica L.,Sarothamnus scoparius Koch,Citrus aurantium L., var. amaraLink., Citrus aurantium L., var.dulcis Pers., Crataegus oxyacanthaL., Tilia sylvestris Desf., Lippiacitriodora H.B. and K.

Maceration(acetonitrile:petroleum ether)with agitation, LLE and CC(micro-styragel 100 AÊ )

HPLC-UV 0.04±5 Atindehou etal., 1981

UC Dried M. of®cinalis L., M. piperita L.and E. angustifolia Moench

Ultra Turrax homogenization(acetone:H2O), LLE followed byCC(Florisil/anhydrous Na2SO4)

GC-NPD andGC-MS

0.02±0.051 Tekel et al.,1998a

UR Roots of Echinacea angustifoliaMoench

Maceration (acetone), LLEfollowed by (Florisil/anhydrousNa2SO4)

GC-NPD andTLC

0.02±0.40 Tekel et al.,1998b

UC Melissa of®cinalis L. Maceration (acetone), LLEfollowed by (Florisil/anhydrousNa2SO4)

TLC 0.005±0.01 Tekel et al.,1994

CB Calendula of®cinalis L. Maceration, LLE andsubsequent CC or derivatizationfollowed by distillation

GC-NPD andGC-ECD

0.05±2.55 Pank and Ennet,1988

TR Dried and powdered`Eibischwurzel', `SalbeiblaÈ tter',`SpitzwegerichblaÈ tter',`FenchelfruÈ chte', `Angelikawurzel',`KorianderfruÈ chte',`KuÈ mmelfruÈ chte',`PfefferminzblaÈ tter',`ThymianblaÈ tter'and`Schafgarbenkraut'

Maceration with agitation,centrifugation or Soxhlet(chloroform), CC (alumina) andLLE

GC-NPD 0.02±10 Gabrio andEnnet, 1982

TR Thymus vulgaris L. Maceration with agitation(chloroform) and CC (alumina)

GC-NPD 0.01±0.66 Pank et al., 1982

TR Plantago lanceolata L. Maceration (methanol), LLE andCC (alumina)

TLC and GC-NPD

0.05±2 Pank and Ennet,1980

TR Matricaria chamomilla L., Menthapiperita L., Salvia of®cinalis L.,Achillea millefolium L. and Thymusvulgaris L.

Maceration (methanol), LLE andCC (basic alumina)

TLC 0.02±0.05 Reifenstein andPank, 1975

CD Peppermint leaves (dried andfresh) and marsh-mallow leaves(fresh)

Blending (acetone), hydrolysisfollowed by steam distillation,LLE, diazotization and couplingreaction

SP 0.17±0.44 Debska et al.,1979

OC, OPand PY

Lippia citriodora, Mentha aquatic xMentha spicata andChamaemelumnobile

Maceration and blending(acetone oracetonitrile) followedby CC (Ultra styragelOP or SigelOC, PY)

GC-ECD andGC-NPD

0.05±1.5 Nunes et al.,1997

OC, OP,TR andPY

Mallow and tea Maceration (petroleumether:acetone) and CC (Florisil/Si gel/anhydrous Na2SO4)

GC-ECD andGC-NPD

0.02±0.08 Cioni andBartolucci, 1994

OC, OPand PY

Dried Livesticum of®cinali K. andTanacetum balsamita L.

Maceration (acetone) orinfusion followed by LLE andCC `sandwich' (combination ofanhydrous Na2SO4/Si gel/celite/charcoal)

HPLC-UV, SP 0.006±0.180 Miellet, 1982

OP, PY,PH andBZ

Peppermint and monarda oil(Mentha piperita L. and Monarda®stulosa L.)

Direct injection or LLEBZ GC-ECD,GC-NPD andHPLC-UV

0.01±24.83 Be langer, 1989

TR, BTand UR

Melissa of®cinalis L. Maceration with agitation(chloroform) and CC(alumina)TR; Maceration(methanol), derivatization andCC (Florisil)BT; Soxhlet(ethylether), derivatizationfollowed by distillation andLLEUR

GC-NPD,GC-FPD and CT

0.02±33.8 Pank et al.,1987b

PESTICIDERESIDUES 79

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 8: Pesticide Residues in Medicinal Plants

in cultivated or wild medicinal plants as well asappropriatemethodologiesfor their analysis.

The MRL is calculatedafter safety tests in humanbeings,which indicatetoxicologically acceptablelevelsaccordingto themostreliableassaysavailableat thetime(FAO/OMS,1994).Owingto thespecificrequirementsofpharmaceuticalpreparations,MRL determinationcannotbe basedsolely on the CodexAlimentarius,WHO/FAOrecommendations,which are designedto cover onlyfoodstuffs. The toxicological evaluation of pesticideresiduesin herbal drugs must take into account theintakeof materialby a patient(e.g.routeof administra-tion, dose and duration of treatment),and the hugedifferences in patterns of consumption within thepopulation,as well as the sensitivity of groupssuchasbabies,children,pregnantwomen,old andvery ill peopletowardsthesebiocide compounds(Krstulovic and Lee,1997).

Manyproblemsmayoccurin establishingthetolerable

contaminantlimits in productssuchasphytopharmaceu-ticals (Maclntosh et al., 1996). Besides consideringbioaccumulation,bioreactivityandsynergicinteractionsin the toxicological assessmentof a specific pesticide,Hapke (1982) also mentionedthat a highestnon-toxicdose, obtainedby experimentsin animals, cannot bedirectly convertedto a correspondingdosefor humans.The non-observableeffect level (NOEL), which isdefined as the highest dose (mg pesticide/kg bodyweight/day)that producesno observabletoxic effectsinthe most sensitive species, is derived from chronictoxicity testsandis usedto settheacceptabledaily intake(ADI) for humans:

ADI � NOELx �Safetyfactor �1=100 to 1=2000�� �1�TheADI, describedasthedaily intakeof achemicalovera lifetime that causesno appreciablerisks to humanhealthaccordingto our presenttoxicologicalknowledge,includesa variablesafety factor, e.g. 1/100, applied in

Table 1. ContinuedResidue range

Pesticidea Matrixb Sample preparationc Determinationd (mg/kg)e Reference

BT, UR,BD andTR

Mentha piperita L. Maceration (methanol),derivatization and CC(Florisil)BT; heating (soda),distillation, derivatization andCC (Alox V)UR; maceration(methanolUR or acetoneBD),LLEUR and CC (e.g. Florisil)UR,

BD; maceration with agitation(chloroform) and CC(alumina)TR

GC-FPD, GC-MCD, GC-ECDand GC-NPD

0.01±0.70 Pank et al., 1986

TR, URand BD

Carum carvi L. Maceration with agitation(Chloroform) and CC(alumina)TR; Soxhlet (ethylether), derivatization followedby distillation and LLEUR;maceration (methanolUR,acetoneBD), LLEBD and CC(Florisil)UR, BD

GC-NPD, CTand GC-ECD

0.01±0.05 Pank et al., 1984

UR, BPand BD

Achillea millefolium L. Maceration (methanolUR, BP oracetoneBD), LLE and CC(e.g.Florisil)UR, BP, BD

GC-ECD 0.01±0.66 Pank et al., 1983

BP andUR

Salvia of®cinalis L. Maceration (methanol) andCCBP; Soxhlet (ethyl ether),derivatisation followed bydistillation and LLEUR

GC-ECD andCT

0.018±0.678 Pank et al., 1981

CB, URand BP

Valeriana of®cinalis L. Maceration (ethanolCB,methanolBP), LLECB andsubsequent CCCB, BP; Soxhlet(ethyl ether), derivatizationfollowed by distillation andLLEUR

TLC, CT andGC-ECD

0.005±1.00 Pank et al., 1980

CB, BD,PX andDT

Matricaria chamomilla L. Maceration (methanol), LLE andCC (Florisil or Alumina/Fuller'searth)

GC-ECD andGC-NPD

<0.5±1.9 VoÈ mel et al.,1977

a OC, organochlorines; OP, organophosphorus; PY, pyrethroids; TR, triazines; CB, carbamates; UR, ureas; UC, uraciles; CD,carboxanilides; PH, phthalimides; BZ, benzimidazoles; BT, benzothiadiazoles; BD, benzamides; BP, bridged diphenyls; PX, phe-noxys; DT, dinitroanilines.b To avoid incorrect denomination, the terminology used for some plant materials was maintained as in the language of theoriginal paper cited.c LLE, liquid-liquid extraction; SFE, supercritical ¯uid extraction; SPE, solid phase extraction; CC, column adsorption chromato-graphy.d GC-ECD, gas chromatography ± electron capture detector; GC-NPD, gas chromatography ± nitrogen-phosphorus detector;GC-FPD, gas chromatography ± ¯ame photometric detector; GC-FID, gas chromatography ± ¯ame ionization detector; GC-MS,gas chromatography ± mass-spectrometry detector; GC-MCD, gas chromatography ± microcoulometric detector; HPLC-UV,high-pressure liquid chromatography ± ultraviolet detector; SP, spectrophotometry; CT, colorimetry; TLC, thin layer chromato-graphy.e Pesticide range (mg pesticide/kg matrix) studied (forti®ed samples) or determined (commercial herbal drug materials).

80 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 9: Pesticide Residues in Medicinal Plants

uncomplicatedcaseswhereall therequiredtoxicologicaldata are available.According to the WHO (1992), theratio betweenmedicinal plant material and food con-sumptionshouldnot exceed1% of the permissibletotalintake of pesticidesfor humanbeings.For example,itwould not be admissible if 30–50% of the ADI forpesticide residues,primarily derived from food anddrinking water,were to be accountedby the additionalconsumptionof vegetabledrugs.

Theestablishmentof residuelimits asregulatoryactionlevels should be recognizedas a referencepoint forprosecution or other legal action. McLean (1996)proposedthattheMRL doesnotdefinepreciselyaspecificlevelwhichrepresentsahealthhazard,andtheoccasionalconsumptionof a commodityexceedingthe MRL for apesticidedoesnot representdangerto humanhealth.

SomePharmacopoeias,e.g. the Brazilian Pharmaco-poeia,neitherdefinetheMRL nor recommendanalyticaltests for pesticides. However, the fact that thesecontaminantsare not included in the Pharmacopoeiadoesnotmeanthattheyshouldbetolerated(Farmacope´iaBrasileira,1996). The EuropeanPharmacopoeia(Phar-macope´e Europeenne,1997) fixes limits for a seriesofpesticides,which fall in the range of mg pesticide/kgplantmaterial(ppm),andforbidstheapplicationof somecompoundssuchasethyleneoxide.However,if thelimitof a specific pesticide does not appear in the ECdirectives it might be calculatedusing the followingformula:

MRL� ADI x WMDI x �100x �safetyfactor�� �2�

whereMRL is themaximumresiduelimits (mg/kg),ADIis the acceptabledaily intake (mg compound/kgbodyweight),valueof FAO/WHO,W is thebodyweight(kg),andMDI themeandaily intakeof drug (kg).

Somelimits higher than thosefixed by the EuropeanPharmacopoeiacanbetoleratedin exceptionalcases,e.g.when a plant requires a special managementforcultivation. Determinationtests for pesticide residuescanbe partially or totally eliminatedwhenthe completetreatmenthistoryof a lot is knownandconductedwithincontrolledandpreciseprocedures.

Whenthedrugis usedto prepareextracts,tincturesorother phytopharmaceutical formulations in which themanipulationmay influencethe pesticideconcentrationin the final product, the MRL is calculatedusing theexpression:

MRL� ADI x W x EMDI x �100x �safetyfactor�� �3�

whereE is the extractioncoefficientof pesticide,whichdependson the methodof preparationand needsto beexperimentallydetermined.

Equation(3) aswell asthecalculationof E valuesweredescribedby Ennetet al. (1978) and later discussedinanotherpublication(Ennet,1989).Likewise,Schilcheretal. (1987) pointed out that the evaluationof a certainpesticidemustberelatedto thefinal drugpreparationandnot to the initial raw plant material.Theseauthorsalsodetailed analytical methodsfor pesticideresiduesanddescribedtheir principalproblems,whicharemainly dueto the extensiveuse of wild-growing herbs that maycontainseveralunknowncompoundsamongthe largernumberof commercializedbiocides(about400).

METHODS FOR THE DETERMINATION OFPESTICIDE RESIDUES IN HERBAL DRUGS

General considerations

As previouslymentionedby BagchiandPuri (1985),inpractice the huge numberof medicinal plants and theimmensequantityof pesticidecompoundsutilized makethe whole phenomenonmultifactorial, and the develop-ment of a completeanalytical method for a range ofpesticides(multiresidue analysis) rather difficult. Thepublished methodsare not essentiallydifferent fromthose proposed for foodstuffs, such as vegetables(Cetinkaya,1988; Torres and Luque de Castro,1996;Zongmao and Wang, 1996; Lehotay and Valverde-Garcia, 1997), tea (Cetinkaya and Thiemann, 1985;PetersenandJensen,1986;Buchholz,1988;Wan,1989,1990;Silva andThiemann,1991)spices(Sullivan,1980)or beverages(Brennecke,1989, 1991; Mortimer et al.,1995), so it is very common to find researchgroupsworking with both matrices(Mestreset al., 1974,1975;Lorussoet al., 1984;Tekel andHatrik, 1996;Muccio etal., 1997).Nevertheless,Gabrioetal. (1988)stressedthatthe analytical methods establishedfor pesticides infoodstuffscannotbe appliedunconditionallyto medic-inal plantsandtheir products.As phytopharmaceuticalssometimescontaintotally dissimilarconstituents,speci-fic methodsfor each one must be developedin thesecases.

Generally the methodology of pesticide residueanalysisincludesthreemain stages:extraction(usuallyfollowed by a clean-up procedure), separation anddetection of pesticides,with special attention to thecorrectidentificationandconfirmationof the compound(Molinari et al., 1981; Wagler, 1988). The mainanalytical methodsreported between1963 and 1998,concernedwith thedeterminationof pesticideresiduesinmedicinalplantsandpreparationsmadefrom them,areshownin Table 1. This table neither includesPharma-copoeialmethods,nor is intendedto beexhaustive.

As seen in Table 1, the majority of the paperspublishedduring 1963–1998areof Europeanorigin, asa consequenceof the long tradition of usingphytophar-maceuticalsin that continent.A considerablenumberofthesestudiescomefrom Germany,particularlyfrom theformer GermanDemocraticRepublic(DDR), andfocuson organochlorine pesticide analysis, although thedetermination of two or more different classes ofpesticides,aswell asotherpollutantslike polychlorinatedbiphenyls (PCBs), was common. PCBs include 209possibleindividual compoundsvarying in the numberandpositionof chlorinesubstitutions(1–10atoms)onthephenylgroups,e.g.aroclors.

Over severaldecadesof research,Schilcher(1983a)found organochlorine compounds to be the maininsecticidespresent in most medicinal plant samplesstudied.Possibleexplanationsfor this fact,aswell asforthe great number of publications concerningorgano-chlorinedeterminations,maybetheir widespreaduseformany years,during cultivation and/or after harvestingandstorage,their continuing—althoughforbidden—useuntil now and their long biological half-life. Theorganophosphoruscompoundswere seldom found inherbaldrugsanddrugpreparations,owing to their lowerpersistenceandbioaccumulationcomparedwith organo-

PESTICIDERESIDUES 81

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 10: Pesticide Residues in Medicinal Plants

chlorines,andalsobecauseof their high toxicity, whichmakessuchcompoundsnot very popularin the cultiva-tion of medicinal plants. Except in somecases,otherclassese.g. carbamateswere determinedin only smallquantitiesin herbdrugmaterial.

Thestudyof severalpollutantsandrelatedproblemsinherbaldrugsby thesameresearchgroupis verycommon.Beneckeandcollaborators(Beneckeet al., 1985,1986a,1986b,1987,1988,1989; Beneckeand Ortwein, 1992)establishedmethodsfor the determinationof organo-chlorinepesticidesandPCB. It is well known that PCBcan easily interfere in the analysis of DDT-typecompoundsand vice versa, owing to their structuralresemblanceand,consequently,similar chromatographicproperties.Theidentificationof PCBresiduesin samplesof FlosChamomillae1 couldbeachievedby theretentionbehaviourin gaschromatographyanalysisusingdifferentcolumns,by GC-MSor throughchemicaltransformation(KOH or CrO2 treatment)to avoid interferencein theanalysisof DDT compoundsandPCBin thismatrix.Thedeterminationof PCBandorganochlorinepesticideswasperformedlikewiseby Gabrioetal. (1990)andAlamanniet al. (1987a,1987b,1988),who alsofoundthepresenceof pathogenicmicroorganismsin vegetabledrugs. Ali(Ali, 1983a,1983b,1983c,1985, 1987; Fehr and Ali,1980),apartfrom determiningpesticides,alsoobservedother critical impurities such as heavy metals e.g.thallium, leadandcadmiumin 11 widely usedmedicinalplants from 20 countries.As well as the problem ofpesticide application in medicinal plant cultivation,especially for Folia MenthaePiperitae, Friedrich andcollaborators(FriedrichandButer,1974a,1974b,1974c,1975;FriedrichandSchneider,1976)investigatedtheuseof fumigation agentsin SennaeFructus Angustifoliaeduringstorage.

Official methods(WHO, 1992;Pharmacope´e Europe-enne, 1997) do not differ significantly from thoseobtainedby thepresentbibliographicalresearch.Accord-ing to the former, if the pesticideto which the plantmaterialhasbeenexposedis a knowncompoundor canbe identified by suitable means, a well-establishedmethodfor the determinationof this particularpesticideresidue,or evenof a specificclassof suchcompounds,shouldbeemployed.However,whentheplantmaterialisof unknownprovenanceandseveralgroupsof pesticidesmaybepresent,it mightbenecessaryto usemethodsthatmeasuretotal organic chlorine, phosphorus,arsenicorlead for, respectively,chlorinatedhydrocarbons,phos-phateandpesticidescontainingarsenicor lead.

Since GC and/or HPLC were consideredabsolutelyessentialfor analyticalwork with pesticideresiduesbySchilcher et al. (1987) and Gabrio et al. (1988), thenecessaryinvestigationscould not be carried out in asimple laboratory. One of the commonestand leastexpensiveseparationtechniques,thin layer chromato-graphy, is only suitable for disproportionatelylargesamples,andmoreoverit is only applicablefor averyfewpesticides,with higherMRL values,soin practiceTLC isexcluded.As has been cited (Bisset, 1994), reputableherbal drug wholesalersexamine their products forresiduesin appropriatelaboratories.

Samplepreparation methods

The methodsmost frequently describedin referencesfoundbetween1963and1998includemacerationof themedicinalplantswith an appropriateextractionsolvent(usually acetone), a clean-up step (mostly columnchromatographywith Florisil) andananalyticalchroma-tographicseparationtechnique(essentiallyGC) coupledwith a selectiveand sensitivedetector(mostly electroncapturedetector).Someaccountsof colorimetric, bio-logical andbiochemicalassayswerealsofound(Panketal., 1980,1981,1984,1987b;Miellet, 1982;BagchiandPuri, 1985).

The analysis of pesticides and their degradationproductsin medicinal plants, particularly multiresiduedeterminations,hasbeenconsideredproblematic.This isdue to the matrices,which are mostly dried plants inpowderedform, the large diversity of compoundswithpolarity closeto thoseof the pesticidesand also to thesensitivityto solvolysisandoxidationof somepesticideslike organophosphoruscompounds(Pharmeuropa,1993;Nuneset al., 1997). It is important to rememberthatsometimesa method suitable for one genus may beinappropriatefor another(e.g. plants containingmuci-lage), which demandsadditional adaptiveprocedures.Actually, the identification and quantificationof pesti-cides in herbal drugs is difficult, even when highresolutionor high performancechromatographicmeth-odscoupledwith spectroscopictechniquesareused,asasample pretreatment is required to reduce matrixinterferencesbefore the final determinations(Molto etal., 1994).More recently,techniquessuchasSFEhavebeenproposedto minimisethe stepsof sampleprepara-tion (Erdelmeier,1993;CarisanoandRovida,1995).

Changesto pesticidelevelsduring preparation ofphytopharmaceuticals

Like LutomskiandDebska(1974),Pluta(1988a,1988b,1989,1990)alsostudiedvegetabledrugsfor contamina-tion by pesticidesin Poland. During 1980–1984,thecompoundsmostfrequentlyfoundin herbalraw materialas well as in granulatedproductsand vegetableblendswere p,p'-DDT and its metabolitesp,p'-1,1,-dichloro-2,2-di-(4-chlorophenyl)-ethane(p,p'-DDD) andp,p'-1,1,-dichloro-2,2-di-(4-chlorophenyl)-ethylene (p,p'-DDE)(>0.1–> 10ppm). Changesin the concentrationlevelsof organochlorinecompoundsin raw materials weredirectly reflectedin thelevelsof thesecompoundsin finalphytopharmaceuticals,and this was strongly noticeablein the caseof herbblends.A probablereasonlies in thecomposition of the preparationsas well as in thetechnologicalprocess,i.e. the productionmode.It wasfound that the quantity of compoundstransferredfromraw materialto the final preparationdependsmainly onthe type and quantity of the solvent, the temperature,the duration of heating and the properties of plantmaterials, i.e. chemical composition and degree ofcomminution.The highesttransfer(passage)of organo-chlorine compoundsto a correspondingphytopharma-ceuticalwereobservedwith alcoholextracts,whereasinthe caseof aqueousextractsthe extractedamountsweremuch lower. In the case of tinctures the transferamountedto approximately90%,for dry extractsnearlyto 60%,for infusionsto about25%andfor decoctionsto

1 The terminology used for plant material is maintained as in the originalreference, sinceseveralpublicationsincludedonly popularand/orcommercialnames,without botanical correct designation(seealsofinal comments).

82 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 11: Pesticide Residues in Medicinal Plants

only 14%.Nonetheless,theauthorwarnsthatdespitethediminutionof danger,wheninfusionsanddecoctionsarepreparedwith a poor solvent for halogenderivatives,even low concentrationscan be hazardousfor humanorganisms weakened by disease and with reducedimmunity.

ZongmaoandXuefen(1990),whoconsidertheresiduelevel in the final preparationmoreimportantthanin theplant material,showedthat thepesticideresiduesin rawmaterial pass into the infusion at a concentrationdependingmainlyonthewatersolubility of thepesticide.Somepesticides,suchasDDT, dicofol andpyrethroids,areextractedonly in small amountsduring the infusionprocesswhile others,e.g.dimethoateandmalathion,canbe extractedto more than 50%. Wan et al. (1991) alsomentionthe dependenceof the pesticideextractionrateon watersolubility anddescribedthewholeprocessasareversibleequilibrium betweenadsorptionand dissolu-tion. The influenceof chemicaldegradationduring theinfusiondoesnot seemto be important.

Residuelossesof a hexachlorocyclohexane(a-HCH),b-HCH, g-HCH, hexachlorobenzene(HCB), heptachlorand its epoxide,p,p'-DDE, p,p'-DDD, o,p'-DDT, p,p'-DDT, a-endosulfan,b-endosulfan,endosulfansulphate,aldrin, dieldrin andendrin,whenTilia cordataMill. wassubmitted to three different infusion processes,werestudiedby Lino andSilveira(1997b).Accordingto theseauthors,besideswatersolubility andfugacity influence,the infusion procedurewas a determining factor inpesticideloss, not only due to the different forms ofcontactbutalsobecausechemicaldegradationtookplacewhenpesticidesweresubmittedto the effect of boiling.Thiswasalsoconfirmedby ZongmaoandHaibin (1988).

The behaviour of residual organophosphoruspesti-cidesin infusionsof someleaveswasexaminedduringleachingor cookingby Nagayama(1996)andtherateofdecreasewas closely related to the octanol–waterpartition coefficient, Kow, according to the regressionformula log Lr = 2.25ÿ 0.312� log Kow, whereLr is thetranslocatedpesticideconcentrationin thefinal beverage(%). A similar investigationwascarriedoutby Zimmerliand Blaser (1982). The transferof organochlorineandorganophosphoricacid ester insecticides from driedFolium melissae,Flos aurantii, Folium verbenaeodor-atae, Flos chamomillae and Folium menthae to theinfusionwas,within certainlimits, nearlyindependentofthepesticidecontentof theherb,thetypeof plantanditscontentof essentialoils. Thus,the transferratio, Y (%),describedby Y= 100� (5.62� Lÿ0.42� 1)ÿ1, whereL iswatersolubility andhasastronginfluenceonthevalueofY. The Y valuesfound for two naturally contaminatedsamplesshoweda satisfactoryagreementbetweenthecalculatedandmeasuredvalues.

Somephytopharmaceuticals may havea larger pesti-cidecontentthantheiroriginal rawmaterial,which is thecasefor lipophilic compoundsin essentialoils.Starretal.(1963) showed that the quantity of residue found inpeppermintoil dependspartly on the severity of thedistillation,i.e. theamountof steamused.Sincethisplantcontains approximately 0.5% oil when mature, oilresidues200-fold thosefound in the plant could occurasa resultof severedistillation.DDT residuesin mint oilcould thusbe asgreatas2300ppm (mg/kg) if completetransferoccurredduringdistillation.

The pesticide tolerance limits (according to thePharmacopoeiasor other official regulations) were

occasionallyexceededin someof thesamplesdescribedin Table1. BeneckeandOrtwein(1992)statedthatonly9% of drugsanalysedfrom 1986to 1989containedmorethan0.5mg/kg of HCH andDDT, which wasthe MRLstipulatedby the Pharmacopoeia of the former DDR. Inan extensivestudy basedon 2654 samples,Schilcher(1982) showedthat a considerableproportion did notconformto regulationsgoverningmaximumpermissibleamounts. However, it should not be forgotten thatpreparationsfrom medicinal plants normally containonly 1/5th to 1/3rd of pesticideresiduespresentin thecrudedrugandtheADI valuesareveryseldomexceeded(Schilcher,1983b;SchilcherandHabenicht,1998).

Lino and Silveira (1996) reported the use of con-taminatedphytopharmaceuticalsasoneof thesignificantsourcesof humanexposureto organochlorinepesticides.This route of intake, together with others, has beenclaimed as responsiblefor more than 10% of totalpesticideingestion.However,such pesticideintake byhumanbeingsdoesnotseemto representaproblemwhentheconsumptionin phytopharmaceuticals is considerablylower thanthat from food sources.

Voitcu etal. (1995),analysingpesticidesin 12samplesof medicinal plants and four pharmaceuticalproductsfrom Rumaniandrug factories, warned of the conse-quencesof the existenceof even small amounts ofpesticide residue.These small quantities of pesticideresiduehavetheir own biologicaleffectsandcanchangethe therapeuticeffect. Thus, the presenceof pesticidescan theoretically influencethe quality of treatmentbyphytopharmaceuticals.

Removalof pesticidesfrom medicinal plants

Alternative methodologiesto reducepesticidelevels inmedicinal plants have been reported in the literature(Allorde andPlumel,1984).Decontaminationof naturaldrugsfrom organochlorineinsecticideswasproposedbyStahlandRau(1984).DDT andHCH in CassiasennaL.and Cassia angustifolia Vahl. leaves and pods wereremovedby supercriticalfluid extractionusing CO2 at100bar.Theactivecompounds,i.e. thesennosides,werenot extractedandremainedin thedrug,from which theycouldbeeasilyobtainedby furtherextractionwith water.

Insteadof using pesticidesor fumigants during thestorageof medicinalplantsandprepareddrugs,Gerardetal. (1990)suggestedan alternativeprocedureto preventpestattacks.With the help of a Carvex-double-chamber(apparatusthat pressurizesCO2 up to 40 barsat roomtemperaturefor 1.2h),CO2 wassuccessfullyusedto treatraw materialandprepareddrugsin theoriginal package.Theobviousadvantagesof thismethodarethatCO2 doesnot leave residuesbehind, is toxicologically harmless,highly efficient, simple to use,completelysecurein itsmanagementandofficially testedandauthorized.

FINAL COMMENTS

The relatively small numberof paperspublishedon thesubjectof pesticidedeterminationin medicinalplantsandtheir final preparationsshould be mentioned. Somereasons,aspreviouslycited,maybedueto thecomplex-ity of thematrixaswell asthetediousandlonganalytical

PESTICIDERESIDUES 83

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 12: Pesticide Residues in Medicinal Plants

procedures.Most of the papers grouped here wereacquired with difficulty due to their limited access(periodicalsof restrictedcirculation and/or in a widevariety of languages).In someof them, the scientificnameof the medicinalplant investigatedwasnot given.In other cases,the analytical procedurefor the samplepreparationwasnot satisfactorilydescribedin thepaperssurveyed,which led automaticallyto additionalresearchon the respectivereferencematerialcited.

Despitethesearguments,this review showsthat it isimperativeto dosupplementarystudiesandorganizedataobtainedfrom the most diverseand reliable sourcesin

this areaof pesticideresearch.Thus,the collectionof aconsiderableamountof availableinformation regardingthe issueof pesticideresiduesin medicinalplantsanditssystematization,asin thepresentreview,is believedto beof importance.

Acknowledgements

The authorswish to thankCAPES,CNPqandFAPESPfor financialsupportandfellowships.The contributionof FernandoM. Lancastothe preparationof this review is gratefully acknowledged.

REFERENCES

Ahmed, M. T., Ismail, S. M. M., and Mosleh, Y. Y. (1998).Determination of malathion residues in some medicinalplants by liquid chromatography with gas chromato-graphic/mass spectrometric con®rmation. J. AOAC Int.81, 1023±1025.

Alamanni, M. C., Piu, L., and Ginanneschi, R. (1988). Miscelepreconfezionate di droghe vegetali: ricerca di residui dipesticidi e controllo microbiologico. Riv. Soc. Ital. Sc.Alim. 17, 515±521.

Alamanni, M. C., Piu, L., Luca, G., and Mura, M. (1987a). Sullapresenza di pesticidi clorurati e policlorobifenili in piantemedicinali vendute in erboristeria. Riv. Soc. Ital. Sc. Alim.16, 135±139.

Alamanni, M. C., Piu, L., Luca, G., and Mura, M. (1987b). Sullapresenza di pesticidi clorurati e policlorobifenili in mis-cele preconfezionate di droghe vegetali. Riv. Soc. Ital. Sc.Alim. 16, 139±173.

Ali, S. L. (1983a). Bestimmung von Pestizid-RuÈ ckstaÈ nden undtoxischen Schwermetallspuren in Arzneidrogen. Phar-maz. Ztg. 128, 2248/14±2252/18.

Ali, S. L. (1983b). Bestimmung der pestiziden RuÈ ckstaÈ nde undanderer bedenklicher Verunreinigungen Ð wie toxischeMetallspuren- in Arzneip¯anzen. 1. Mitteilung. Pestizid-RuÈ ckstaÈ nde in Arzneidrogen. Pharm. Ind. 45, 1154±1156.

Ali, S. L. (1983c). Bestimmung der pestiziden RuÈ ckstaÈ nde undanderer bedenklicher Verunreinigungen Ð wie toxischeMetallspuren- in Arzneip¯anzen. 2. Mitteilung. Bestim-mung von toxischen Metallspuren in Arzneidrogen.Pharm. Ind. 45, 1294±1295.

Ali, S. L. (1985). Bestimmung der PestizidruÈ ckstaÈ nde undtoxischen Metallspuren in TeeaufguÈ ssen aus Arzneidro-gen. Pharmaz. Ztg. 130, 73/1927±78/1932.

Ali, S. L. (1987). Bestimmung der PestizidruÈ ckstaÈ nde undtoxischen Schwermetallspuren in Arzneidrogen undderen TeeaufguÈ ssen. Pharmaz. Ztg. 132, 7/633±12/638.

Allorde, L., and Plumel, M. M. (1984). De la pre paration desherbes aÁ celle des plantes me dicinales au moyen du fouraÁ micro-ondes. Ann. Pharm. Fr. 42, 313±315.

Atindehou, E., Robin, A., and Collombel, C. (1981). Lachromatographie liquide haute pression applique e audosage des insecticides organophosphore s dans lesplantes me dicinales. Ann. Pharm. Fr. 39, 171±180.

Ausher, R. (1997). Implementation of integrated pest man-agement in Israel. Phytoparasitica 25, 119±141.

Aziz, N. H., Yousseg, Y. A., El-Fouly, M. Z., and Moussa, L. A.(1998). Contamination of some common medicinal plantsamples and spices by fungi and their mycotoxins. Bot.Bull. Acad. Sinica 39, 279±285.

Bacci, E., Calamari, D., Gaggi, C., and Vighi, M. (1990).Bioconcentration of organic chemical vapours in plantleaves: experimental measurements and correlation.Environ. Sci. Technol. 24, 885±889.

Bagchi, G. D., and Puri, H. S. (1985). Pesticide residues incrude drugs and spices. Indian Drugs 22, 448±454.

Bajaj, Y. P. S. (1998). Biotechnology for the improvement ofmedicinal plants. Acta Hortic. 457, 37±45.

Barlow, F. (1985). Chemistry and formulation. In, PesticideApplication: Principles and Practice, ed. by P. T. Haskel,pp. 1±34. Oxford University Press, Oxford.

Barnard, C., Daberkow, S., Padgitt, M., Smith, M. E., and Uri,N. D. (1997). Alternative measures of pesticide use. Sci.Total Environ. 203, 229±244.

Bauer, R. (1998). Quality criteria and standardisation ofphytopharmaceuticals: can acceptable drug standardsbe achieved? Drug Inf. J. 32, 101±110.

Bauer, R., Czygan, F. C., Franz, G., Ihrig, M., Nahrstedt, A., andSprecher, E. (1993). QualitaÈ tsanspruÈ che an rationalanwendbare Phytopharmaka. Dtsch. Apoth. Ztg. 133,4105±4108.

Bauer, R., and Tittel, G. (1996). Quality assessment of herbalpreparations as a precondition of pharmacological andclinical studies. Phytomedicine 2, 193±198.

Behrendt, H., and BruÈ ggemann, R. (1993). Modelling the fateof organic chemicals in the soil plant environment: modelstudy of root uptake of pesticides. Chemosphere 27,2325±2332.

Beitz, H. (1989). Aktuelle Aspekte der oÈ kologisch-chemischenBewertung von P¯anzenschutzmitteln. Z. Chem. 29, 269±276.

Be langer, A. (1989). Residues of azinphosmethyl, cyper-methrin, benomyl and chlorotalonil in monarda andpeppermint oil. Acta Hortic. 249, 67±73.

Benecke, R., Brotka, J., Wijsbeek, J., Franke, J. P., Bruins, A.P., and De Zeeuw, R. A. (1986a). Untersuchung p¯anzli-cher Drogen auf RuÈ ckstaÈ nde von Organochlorverbindun-gen. 2. Mitteilung. Identi®zierung der RuÈ ckstaÈ nde vonDDT und seinen Analogen durch Vergleich von Gaschro-matographie an gepackter und KapillarsaÈ ule sowie GC/MS-Kopplung. Pharmazie 41, 499±501.

Benecke, R., Brotka, J., Wijsbeek, J., Franke, J. P., Bruins, A.P., and De Zeeuw, R. A. (1988). Untersuchung p¯anzlicherDrogen auf RuÈ ckstaÈ nde von Organochlorverbindungen.3. Mitteilung. Identi®zierung der RuÈ ckstaÈ nde polychlor-ierter Biphenyle durch Vergleich von Gaschromatogra-phie an gepackter und KapillarsaÈ ule sowie GC/MS-Kopplung. Pharmazie 43, 123±125.

Benecke, R., Brotka, J., Wijsbeek, J., and Zeeuw, R. A. (1985).Chemical transformation to avoid interference in theanalyses of DDT-type compounds and polychlorinatedbiphenyls in medicinal plants. HRC & CC. 8, 30±31.

Benecke, R., Ennet, D., and Frauenberger, H. (1987). RuÈ ck-staÈ nde von P¯anzenschutzmitteln in Drogen von wild-wachsenden Arzneip¯anzen. 1. Mitteilung. Pharmazie 42,869±871.

Benecke, R., and Ortwein, J. (1992). Untersuchung p¯anzli-cher Drogen auf RuÈ ckstaÈ nde von Organochlor-Pestiziden.Pharm. Ind. 54, 726±728.

Benecke, R., Ortwein, J., Ennet, D., and Frauenberger, H.(1989). RuÈ ckstaÈ nde von Lindan und DDT in Drogen vonwildwachsenden Arzneip¯anzen aus forstwirtschaftlichgenutzten Waldgebieten. 2. Mitteilung. Pharmazie 44,562±564.

Benecke, R., Thieme, H., and Brotka, J. (1986b). Untersu-chung p¯anzlicher Drogen auf RuÈ ckstaÈ nde von Organo-chlorverbindungen. 1. Mitteilung. Gaschromatogra®scheBestimmung von RuÈ ckstaÈ nden chlororganischer Insekti-zide. Pharmazie 41, 133±137.

84 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 13: Pesticide Residues in Medicinal Plants

Bentson, K. P. (1990). Fate of xenobiotics in foliar pesticidedeposits. Rev. Environ. Contam. Toxicol. 114, 125±156.

Bisset, N. G. (1994). Herbal Drugs and Phytopharmaceuticals:A Handbook for Practice on a Scienti®c Basis, pp. 11±41.CRC Press, London.

Brennecke, R. (1989). A method for determining residues ofthe fungicides euparen, euparen M and folicur in plantmaterial and beverages by gas chromatography. P¯an-zenschutz-Nachr. 42, 223±284.

Brennecke, R. (1991). The use of extraction columns forpesticide residues analysis of plant material and bev-erages. Fresenius J. Anal. Chem. 339, 399±401.

Bruhn, J. G. (1989). The use of natural products in modernmedicine. Acta Pharm. Nord. 1, 117±131.

Buchholz, H. (1988). Organochlor-Pestizid-RuÈ ckstaÈ nde inschwarzem Tee. Lebensmittelchem. Gerichtl. Chem. 42,140.

Carisano, A., and Rovida, C. (1995). SFE-facilitated detectionof pesticide residues in camomile. LC-GC Int. 8, 334±337.

Cetinkaya, M. (1988). Organophosphor- und Organochlor-pestizidruÈ ckstaÈ nde in Rohkaffee. Dtsch. Lebensm.Rundsch. 84, 189±190.

Cetinkaya, M., and Thiemann, W. (1985). RuÈ ckstandsanalysevon schwer¯uÈ chtigen Organochlorverbindungen inschwarzem Tee. Dtsch. Lebensm. Rundsch. 81, 393±395.

Chaigneau, M. (1983). Action de l'oxyde d'e thyleÁ ne sur desplantes me dicinales et des e pices: absorption et combi-naison. Ann. Pharm. Fr. 41, 385±390.

Chaigneau, M. (1986). Sur la combinaison de l'oxyded'e thyleÁ ne avec des lignines. Ann. Pharm. Fr. 44, 317±318.

Chaigneau, M., and Muraz, B. (1986). Sur des produitsre siduels de la de sinfection des plantes me dicinales parl'oxyde d'e thyleÁ ne. Ann. Pharm. Fr. 44, 339±346.

Chizzola, R., and Franz, C. (1996). Metallic trace elements inmedicinal and aromatic plants from Austria. J. Appl. Bot.-Angew. Bot. 70, 52±56.

Chourasia, H. K. (1995). Mycobiota and mycotoxins in herbaldrugs of Indian pharmaceutical industries. Mycol. Res.99, 697±703.

Cioni, F., and Bartolucci, G. (1994). Metodo multiresiduo perla determinazione di residui di pesticidi in erbe aroma-tiche ed infusionali essicate. Boll. Chim. Igien. 45, 51±63.

Czarnecki, M., and Zalecki, R. (1990). Dobo r herbicydo w wuprawie Tymianku wlasciwego (Thymus vulgaris L.).Herba Pol. 36, 13±24.

Debska, W., and Gnusowski, B. (1980). Propyzamid inmedicinal plants. Planta Med. 39, 292.

Debska, W., Gnusowski, B., and Zygmunt, B. (1979). Deter-mination of oxycarboxin residues in medicinal plants.Analyst 104, 1191±1194.

Debska, W., and Lutomski, J. (1979). Problems of tolerance ofmedicinal plantsÐcontamination with pesticides. PlantaMed. 36, 288.

Dorea, H. S., Tadeo, J. L., and Sanchez-Brunete, C. (1996).Determination of organophosphorus pesticide residuesin fruits by gas chromatography with ITD and NPDdetection. Chromatographia 43, 1996.

DoÈ r¯er, U., Adler-KoÈ hler, R., Schneider, P., Scheunert, I., andKorte, F. (1991). A laboratory model for determining thevolatility of pesticides from soil and plant surfaces.Chemosphere 23, 485±496.

Efuntoye, M. O. (1996). Fungi associated with herbal drugplants during storage. Mycopathologia 136, 115±118.

El-Keltawi, N. E., and Croteau, R. (1986a). In¯uence ofethephon and daminozide on growth and essential oilcontent of peppermint and sage. Phytochemistry 25,1285±1288.

El-Keltawi, N. E., and Croteau, R. (1986b). In¯uence ofphosfon-D and cycocel on growth and essential oilcontent of sage and peppermint. Phytochemistry 25,1603±1606.

El-Keltawi, N. E., and Croteau, R. (1987). In¯uence ofherbicides and growth regulators on the growth andessential oil content of sage. Phytochemistry 26, 675±679.

Ennet, D. (1989). Fremdstoffe in p¯anzlichen Arzneimitteln.Pharmazie 44, 383±386.

Ennet, D., Hauschild, J., and Pank, F. (1978). RuÈ ckstaÈ nde vonP¯anzenschutzmitteln und Mitteln zur Steuerung bio-logischer Prozesse in Drogen des Arzneibuches der DDR.1. Mitteilung: Allgemeine Aspekte des Einsatzes von

P¯anzenschutzmitteln (PSM) and Mitteln zur Steuerungbiologischer Prozesse (MBP) im Arzneip¯anzenanbau derDDR. Pharmazie 33, 697±705.

Erdelmeier, C. A. J. (1993). Removal of pesticides from plantdrugs and extracts using supercritical ¯uid extraction.Planta Med. 59, A593±A594.

Evans, W. C. (1989). Trease & Evans' Pharmacognosy, pp.126±141. 11th edn, Bailie re-Tindall, London.

FAO/OMS (1994). Codex Alimentarius. Residuos de Plaguici-das en los alimentos. FAO/OMS, Roma. Vol. 2.

Farmacope ia Brasileira (1996). 4th edn, Atheneu Editora SaÄ oPaulo, SaÄ o Paulo.

Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarto, D. D.,and Guo, Z. G. (1985). Medicinal plants in therapy. Bull.WHO 63, 965±981.

Fehr, D., and Ali, S. L. (1980). UÈ ber die Bestimmung von p,p'-DDT und g-HCH in Flores Chamomillae, Folia Sennae undFructus Phaseoli. Pharmaz. Ztg. 125, 558±562.

Ferna ndez, N., Sierra, M., GarcõÂa, J. J., Diez, M. J., and Tera n,M. T. (1993). Organochlorine pesticide residues in blacktea, camomile and linden. Bull. Environ. Contam. Toxicol.50, 479±485.

Figura, B., Pluta, J., and Lorenz, K. (1998). Assessment of thelevel of certain heavy metals in Polish galenic prepara-tions. Pharmazie 53, 458±462.

Finkelman, J. (1996). Chemical safety and health in LatinAmerica: an overview. Sci. Total Environ. 188, S3±S29.

Friedrich, H., and BuÈ ter, H. G. (1974a). Problematik derAnwendung von Pestiziden im Arzneip¯anzenbau Unter-suchungen an Mentha piperita L. 1. Teil. GrundsaÈ tzlicheBetrachtung und Ausgangssituation. Dtsch. Apoth. Ztg.114, 1793±1799.

Friedrich, H., and BuÈ ter, H. G. (1974b). Problematik derAnwendung von Pestiziden im Arzneip¯anzenbau Unter-suchungen an Mentha piperita L. 3. Teil. Dtsch. Apoth.Ztg. 114, 1875±1879.

Friedrich, H., and BuÈ ter, H. G. (1974c). Problematik derAnwendung von Pestiziden im Arzneip¯anzenbau Unter-suchungen an Mentha piperita L. 3. Teil. Dtsch. Apoth.Ztg. 114, 1980±1987.

Friedrich, H., and BuÈ ter, H. G. (1975). Problematik derAnwendung von Pestiziden im Arzneip¯anzenbau Unter-suchungen an Mentha piperita L. 4. Teil. Dtsch. Apoth.Ztg. 115, 179±185.

Friedrich, H., and Schneider, D. (1976). RuÈ ckstandsproblema-tik bei der Begasung von Sennae Fructus Angustifoliaedes Handels mit AÈ thylenoxid. Planta Med. 30, 122±132.

Gabrio, T., and Ennet, D. (1982). Gaschromatogra®scheBestimmung der RuÈ ckstaÈ nde von s-Triazinherbiziden inp¯anzlichen Drogen. Pharmazie 37, 375±377.

Gabrio, T., Ennet, D., and Galetzka, G. (1988). PruÈ fung vonDrogen auf RuÈ ckstaÈ nde von P¯anzenschutzmitteln, Mittelzur Steuerung biologischer Prozesse und Vorratsschutz-mitteln. Pharmazie 43, 507±509.

Gabrio, T., Schlenkrich, H., and Ennet, D. (1990). PruÈ fung vonDrogen auf RuÈ ckstaÈ nde von chlororganischen P¯an-zenschutzmitteln (PSM) und polychlorierten Biphenylen(PCB). Pharmazie 45, 209±210.

Gentry, A. H. (1993). Tropical forest biodiversity and thepotential for new medicinal plants. In, Human MedicinalAgents from Plants, ed. by A. D. Kinghorn and M. L.Balandrin, pp. 12±24. ACS Symposium series, Washing-ton.

Gerard, D., Kraus, J., FroÈ hlingsdorf, B., Jerga, C., and DalluÈ ge,A. (1990). RuÈ ckstandsfreier Vorratsschutz fuÈ r Arznei- undTeedrogen. Dtsch. Apoth. Ztg. 130, 2014±2018.

Goldberg, L. (1986). Hazard Assessment of Ethylene Oxide.CRC Press, Boca Raton.

GuÈ beli, T., and Clerc, J. T. (1988). Nachweis von Pestizid-RuÈ ckstaÈ nden in ethanolischen P¯anzenextrakten. Pharm.Acta Helv. 63, 85±89.

GyeÁ resi, AÂ ., Kelemen, H., and Kata, M. (1997). Summary ofthe chromatographic methods recommended by phar-macopoeias for analysis of medicinal plants and theirproducts. J. Planar Chromatogr. 10, 172±177.

Halt, M. (1998). Moulds and mycotoxins in herb tea andmedicinal plants. Eur. J. Epidemiol. 14, 269±274.

Hapke, H. J. (1982). Zur toxikologischen Bewertung vonKontaminanten in Lebensmitteln: Schwermetalle. ErnaÈ hr.Umsch. 29, 251±255.

PESTICIDERESIDUES 85

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 14: Pesticide Residues in Medicinal Plants

Harvey, J. (1986). Pesticide metabolism in plants. In,Analytical Methods for Pesticides and Plant GrowthRegulators, ed. by G. Zweig and J. Sherma, pp. 231±246. Academic Press, New York.

Henneberg, M., and Lutomski, J. (1972). Untersuchungser-gebnisse mit chlorierten Insektizid-RuÈ ckstaÈ nden in pol-nischen Handelsdrogen: Fol. Menthae und Flos Chamo-millae. Herba Hung. 11, 79±85.

Illes, S., Mestres, R., Tourte, J. Campo, M., and Illes, A. (1976).Controle des re sidus de pesticides dans les plantesaromatiques et me dicinales. Ann. Fals. Exp. Chim. 69,209±218.

Karavaeva, E. N., and Molchanova, I. V. (1998). Accumulationof radionuclides by medicinal plants in the zone of impactfrom the Beloyarskaya nuclear power plant. Russ. J. Ecol.29, 357±359.

Kips, R. H. (1985). Environmental aspects. In, PesticideApplication: Principles and Practice, ed. by P. T. Haskel,pp. 1±34. Oxford University Press, Oxford.

Kira ly, Z. (1996). Sustainable agriculture and the use ofpesticides. J. Environ. Sci. Health B 31, 283±291.

Kirsch, T., Kaffarnik, F., Riederer, M., and Schreiber, L. (1997).Cuticular permeability of three species Prunus laurocer-asus L., Ginko biloba L. and Juglans regia L.: comparativeinvestigation of the transport proprieties of intact leaves,isolated cuticular and reconstituted cuticular waxes. J.Exp. Bot. 48, 1035±1045.

Koupai-Abyazani, M., Creaser, C. S., and Stephenson, R.(1992). Separation of ¯avone, ¯avonol, iso¯avone and¯avanone aglycones by capillary column gas chromato-graphy. Phytochem. Anal. 3, 80±84.

Krstulovic, A. M., and Lee, C. R. (1997). De®ning drug puritythrough chromatographic and related methods: currentstatus and perspectives. J. Chromatogr. B 689, 137±153.

Kubiak, R., MuÈ ller, T., Maurer, T., and Eichhorn, K. W. (1995).Volatilisation of pesticides from plant and soil surfacesЮeld versus laboratory experiments. Intern. J. Environ.Anal. Chem. 58, 349±358.

Kumar, S., and Roy, A. K. (1993). Occurrence of a¯atoxin insome liver curative herbal medicines. Lett. Appl. Micro-biol. 17, 112±114.

Kwon, S. K., Dicke, W., and Thier, H. P. (1986). PestizidruÈ ck-staÈ nde in drei Drogen aus SuÈ dkorea. Planta Med. 2, 155±156.

Lai, S. J., Binder, S. R., Essien, H., and Wen, K. (1995).Identi®cation of western medicines as adulterants inChinese herbal medicines using a broad-spectrum drugscreening HPLC system. J. Liq. Chromatogr. 18, 2861±2875.

LancËas, F. M., Barbirato, M. A., Galhiane, M. S., and Rissato,S. R. (1996). Supercritical ¯uid extraction of chlorothalonilfrom apples. Chromatographia 42, 547±550.

Lehotay, S. J., and Valverde-Garcia, A. (1997). Evaluation ofdifferent solid-phase traps for automated collection andclean-up in the analysis of multiple pesticides in fruits andvegetables after supercritical ¯uid extraction. J. Chroma-togr. A 765, 69±84.

Lino, C. M., and Silveira, I. N. (1996). ContribuicËoÄ es para apresencËa de residuos de pesticidas organoclorados nohomem. Rev. Port. Farm. 46, 143±147.

Lino, C. M., and Silveira, I. N. (1997a). Extraction and clean-upmethods for the determination of organochlorine pesti-cide residues in medicinal plants. J. Chromatogr. A 769,275±283.

Lino, C. M., and Silveira, I. N. (1997b). Loss of organochlorinepesticide residues during the infusion processes of linden(Tilia cordata Mill.). J. Agric. Food Chem. 45, 2718±2722.

Lorusso, S., Camoni, I., and Chiacchierini, E. (1985). Con-siderazioni sul problema dei residui di pesticidi e metallipesanti nelle droghe vegetali utilizzate dall'industriafarmaceutica. Nuovi Ann. Ig. Microb. 36, 169±180.

Lorusso, S., Camoni, I., Muccio, A., and Chiacchierini, E.(1984). Considerazioni sulle tecniche e strumentazionianalitiche applicate al controllo della contaminazionedegli alimenti da residui pesticidi. Riv. Soc. It. Alim. 13,173±185.

Luckner, R., and Luckner, M. (1972). VorschlaÈ ge zumDeutschen Arzneibuch, 8. Ausgabe, der DeutschenDemokratischen Republik. Der Nachweis von DDT inof®ziellen Drogen. Zbl. Pharm. 111, 267±280.

Lutomski, J., and Debska, W. (1974). Pesticide residues inmedicinal plants in Poland. Residue Rev. 52, 27±44.

Lydon, J., and Duke, S. O. (1989). Pesticide effects onsecondary metabolism of higher plants. Pestic. Sci. 25,361±373.

Ma, X., Yu, X., Zheng, Z., and Mao, J. (1991). Analyticalsupercritical ¯uid extraction of Chinese herbal medicines.Chromatographia 32, 40±44.

Maas, G. (1979). Herbicide residues in some medicinal plants.Planta Med. 36, 251.

Maclntosh, D. L., Spengler, J. D., OÈ zkaynak, H., Tsai, L., andRyan, B. (1996). Dietary exposure to selected metals andpesticides. Environ. Health Perspect. 104, 202±209.

Matysik, G. (1996). Modi®ed programmed multiple gradientdevelopment (MGD) in the analysis of complex plantextracts. Chromatographia 43, 39±43.

Mautner, U., Marquard, R., and VoÈ mel, A. (1982). Untersu-chungen uÈ ber Triacin-RuÈ ckstande in Thymus vulgarisund Salvia of®cinalis nach Anwendung der HerbizideGesagard 50 und Semeron 25. Planta Med. 45, 144.

McLean, J. C. (1996). Residue and risks. Plant Prot. Quart. 11,94±95.

Mestres, R., Tourte, J., Campo, M., and Illes, S. (1974).Me thode polyvalente de recherche et de dosage desre sidus de pesticides divers dans les matieÁ res alimen-taires. Ann. Fals. Exp. Chim. 67, 513±526.

Mestres, R., Tourte, J., Campo, M., and Illes, S. (1975).Me thode polyvalente de recherche et de dosage desre sidus de pesticides divers dans les matieÁ res alimen-taires. Ann. Fals. Exp. Chim. 68, 81±84.

Miellet, A. (1982). Dosage de re sidus de pesticides parC.L.H.P. sur plantes me dicinales et aromatiques. Ann.Fals. Exp. Chim. 75, 369±375.

Molinari, G. P., Del Re, A., Redaelli, C., and Formentini, L.(1981). Determinazione di residui di antiparassitari incamomille: rischi di errore nella ricerca di organo-clorurati. Ind. Alim. 20, 91±94.

Molto , J. C., Lejeune, B., Prognon, P., and Pradeau, D. (1994).GC-MS determination of organochlorine pesticides in®ve medicinal plants. Intern. J. Environ. Anal. Chem. 54,81±91.

Moraes, M. L. L., Vilegas, J. H. Y., and LancËas, F. M. (1997).Supercritical ¯uid extraction of glycosylated ¯avonoidsfrom Passi¯ora leaves. Phytochem. Anal. 8, 257±260.

Mortimer, R. D., Weber, D. F., and Sun, W. F. (1995). Analysisof total free and glucose-conjugated pyrethroid acidmetabolites in tea infusions as hexa¯uoroisopropylesters by gas chromatography with electron capturedetection. J. AOAC Int. 78, 846±855.

Muccio, A., Barbini, D. A., Generali, T. et al. (1997). Clean up ofaqueous acetone vegetable extracts by solid-matrixpartition for pyrethroid residue determination by gas-chromatography-electron capture detection. J. Chroma-togr 765, 39±49.

Muccio, A., Camoni, I., and Vittory, L. G. L. (1981). Indaginesul contenuto di residui di pesticidi clorurati e fosforati inprodotti di erboristeria in commercio in Italia. Nuovi Ann.Ig. Microb. 32, 267±277.

Nagayama, T. (1996). Behaviour of residual organopho-sphorus pesticides in foodstuffs during leaching orcooking. J. Agric. Food Chem. 44, 2388±2393.

Nastasa, V., Sirghie, E., and Cuciureanu, R. (1981). Studiulpoluarii cu substante ®tofarmaceutice (pesticide) a unorplante medicinale de pe teritoriul Moldovei, in ultimii anii.Farmacia 29, 1±5.

Nunes, M. J., CamoÄ es, M. F., and Fournier, J. (1997). Analysisof organophosphorus, organochlorine and pyrethroidinsecticides in medicinal plants. Chromatographia 44,505±513.

Omer, E. A., Nofal, M. A., Lashin, S. M., and Haggag, W. M. E.(1997). Effect of some growth regulators on the growthparameters and oil content of cumin wilt diseaseincidence under two types of soil. Egypt. J. Hort. 24, 29±41.

Pank, F., Buhr, L., and BoÈ hm, H. (1987a). ChemischeUnkrautbekaÈ mpfung in Arzneip¯anzenkulturen. 9. Mit-teilung: Mohn (Papaver somniferum L.). Pharmazie42, 467±470.

Pank, F., Eichholz, E., and Ennet, D. (1982). ChemischeUnkrautbekaÈ mpfung in Arzneip¯anzenkulturen. 4. Mittei-

86 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 15: Pesticide Residues in Medicinal Plants

lung: Thymian (Thymus vulgaris L.). Pharmazie 37, 795±797.

Pank, F., Eichholz, E., Ennet, D., and Zygmunt, B. (1986).Chemische UnkrautbekaÈ mpfung in Arzneip¯anzenkul-turen. 7. Mitteilung: Pfefferminze (Mentha piperita L.).Pharmazie 41, 47±52.

Pank, F., Eichholz, E., Ennet, D., and Zygmunt, B. (1987b).Chemische UnkrautbekaÈ mpfung in Arzneip¯anzenkul-turen. 8. Mitteilung: Melisse (Melissa of®cinalis L.).Pharmazie 42, 191±195.

Pank, F., Eichholz, E., and Hauschild, J. (1978). ChemischeUnkrautbekaÈ mpfung in Thymiankulturen (Thymus vul-garis L.). Pharmazie 33, 369±371.

Pank, F., Eichholz, E., Zygmunt, B., and Hauschild, J. (1981).Chemische UnkrautbekaÈ mpfung in Arzneip¯anzenkul-turen. 3. Mitteilung: Salbei im ersten Anbaujahr (Salviaof®cinalis L.). Pharmazie 36, 432±435.

Pank, F., Eichholz, E., Zygmunt, B., and Hauschild, J. (1983).Chemische UnkrautbekaÈ mpfung in Arzneip¯anzenkul-turen. 5. Mitteilung: Schafgarbe (Achillea millefoliumL.). Pharmazie 38, 755±758.

Pank, F., and Ennet, D. (1980). Chemische UnkrautbekaÈ mp-fung in Arzneip¯anzenkulturen. 2. Mitteilung: Spitzwe-gerich (Plantago lanceolata L.). Pharmazie 35, 494±497.

Pank, F., and Ennet, D. (1988). Chemische UnkrautbekaÈ mp-fung in Arzneip¯anzenkulturen. 10. Mitteilung: Ringel-blume (Calendula of®cinalis L.). Pharmazie 43, 503±506.

Pank, F., Marlow, H., Eichholz, E., Ennet, D., and Zygmunt, B.(1984). Chemische UnkrautbekaÈ mpfung in Arzneip¯an-zenkulturen. 6. Mitteilung: KuÈ mmel (Carum carvi L.).Pharmazie 39, 838±842.

Pank, F., Jaruzelski, M., Neubauer, S., and Vekschin, B. S.(1979). Results of a coordinated herbicide check withDigitalis lanata Ehrh carried out 1978 in Czechoslovakia,the GDR, Poland and the USSR. Planta Med. 36, 249±250.

Pank, F., Hannig, H. J., Hauschild, J., and Zygmunt, B. (1980).Chemische UnkrautbekaÈ mpfung in Arzneip¯anzenkultu-ren. 1. Mitteilung: Baldrian (Valeriana of®cinalis L.).Pharmazie 35, 115±119.

Pank, F., and Neczypor, W. (1978). Untersuchungen zurchemischen UnkrautbekaÈ mpfung in Drillkulturen vonWolligem Fingerhut (Digitalis lanata Ehrh.). Pharmazie33, 677±683.

Parodi, B., Caviglioli, G., Bachi, A., Cafaggi, S., and Romussi,G. (1993). Herbal mixtures with claimed slimmingactivity: determination by TLC and HPLC of illegallyadded drugs. Pharmazie 48, 678±681.

Petersen, J. H., and Jensen, K. G. (1986). Pesticide residues inblack tea. Z. Lebensm. Unters. Forrsch. 182, 489±491.

P¯eeger, T. G., Fong, A. Hayes, R., Ratsch, H., and Wickliff, C.(1996). Field evaluation of the EPA (Kenaga) nomogram, amethod for estimating wildlife exposure to pesticideresidues on plants. Environ. Toxicol. Chem. 15, 535±543.

Pharmacope e Europe enne (1997). TroisieÁ me E dition. pp.121±125. Conseil de l'Europe, Strasbourg.

Pharmeuropa (1993). Me thodes d'analyse des re sidus depesticides; Insecticides organophosphore s, organo-chlore s et pyre thrinoides. 5(3), 195±196.

Pifferi, G., and Vitali, R. (1993). Medicines from plants. Chim.Ind. 75, 380±384.

Plimmer, J. R. (1996). Analytical chemistry and future ofpesticides. J. Environ. Sci. Health B 31, 645±670.

Pluta, J. (1988a). Studies on contamination of vegetabledrugs with halogen derivative pesticides. Part 1. Changesof concentration of halogen derivatives in herbal rawmaterials within period of 1980±1984. Pharmazie 43, 121±123.

Pluta, J. (1988b). Studies on contamination of vegetabledrugs with halogen derivative pesticides. Part 2. Con-centration of halogen derivative pesticides in vegetableblends and herbal granulated products produced inPoland in 1980±1984. Pharmazie 43, 348±351.

Pluta, J. (1989). Studies on concentration of halogenderivatives in herbal products from various regions ofPoland. Pharmazie 44, 222±224.

Pluta, J. (1990). Effect of technological factors on concentra-tion of halogen derivative pesticides in some vegetabledrugs. Pharmazie 45, 273±275.

Raffaelli, A., Moneti, G., Mercati, V., and Toja, E. (1997). Massspectrometric characterization of ¯avonoids in extracts

from Passi¯ora incarnata. J. Chromatogr. A. 777, 223±231.

Reichling, J. (1979a). Herbicides in camomile cultivation.Herba Hung. 18, 277±291.

Reichling, J. (1979b). Herbicides in cultivation of Matricariachamomila L. 5. Communication. Planta Med. 36, 250±251.

Reichling, J., Becker, H., and VoÈ mel, A. (1977). Herbizide imKamillenanbau (Matricaria chamomilla L.). II. Mitteilung:Ein¯ub der Herbizide auf die Zusammensetzung desaÈ therischen OÈ lspektrums. Planta Med. 32, 235±243.

Reichling, J., Becker, H., Exner, J., and DraÈ ger, P. D. (1979).Vergleichende Untersuchung verschiedener Han-deslmuster von Matricariae Flos. AÈ therisches OÈ l, Flavo-noide, Cumarine, PhenolcarbonsaÈ uren und P¯anzen-schutzmittelruÈ ckstaÈ nde. Pharmaz. Ztg. 124, 1998±2005.

Reifenstein, H., and Pank, F. (1975). TriazinruÈ ckstaÈ nde anArzneip¯anzen. Pharmazie 30, 391±393.

Reynolds, E. F. J. (1989). Martindale: The Extra Pharmaco-poeia. 29th edn pp. 1344±1354. The PharmaceuticalPress, London.

Robin, A., Guillot, B., Ferry, S., and Collombel, C. (1978).E tude de la teneur des plantes me dicinales en insecti-cides organochlore s. Plantes Med. Phytot. 12, 130±136.

Robin, A., Collombel, C., Ferry, S., and Guillot, B. (1979a).Insecticides organochlore s et plantes me dicinales. LyonPharm. 30, 175±182.

Robin, A., Collombel, C., Ferry, S., and Guillot, B. (1979b).Technique de recherche et de dosage des insecticidesorganochlore s dans les plants me dicinales. Ann. Fals.Exp. Chim. 72, 325±334.

Roy, A. K., and Chourasia, H. K. (1990). Myco¯ora, mycotoxinproducibility and mycotoxins in traditional herbal drugsfrom India. J. Gen. Appl. Microbiol. 36, 295±302.

Ruminska, A. (1965). Die chemische UnkrautbekaÈ mpfung undderen Ein¯ub auf die Mineralstoffaufnahme, Ertragsqua-litaÈ t der Droge einiger Heil- und Duftp¯anzen der FamilieUmbelliferae. Herba Hung. 4, 39±57.

Sathiyamoorthy, P., Van Damme, P., Oven, M., and GolanGoldhirsh, A. (1997). Heavy metals in medicinal andfodder plants of Negev desert. J. Environ. Sci. Health A32, 2111±2123.

Schilcher, H. (1977). Der Ein¯uss von Herbiziden auf dasWachstum von Matricaria chamomilla L. und auf dieBiosynthese des aÈ therischen OÈ les. Biochem. Physiol.P¯anzen 171, 385±390.

Schilcher, H. (1982). RuÈ ckstaÈ nde and Verunreinigungen beiDrogen und Drogenzubereitungen. 19. Mitteilung: ZurWertbestimmung und QualitaÈ tspruÈ fung von Drogen.Planta Med. 44, 65±77.

Schilcher, H. (1983a). Contamination of natural products withpesticides and heavy metals. In, Topics in PharmaceuticalSciences, ed. by D. D. Breimer and P. Speiser, pp. 417±427. Elsevier Science, New York.

Schilcher, H. (1983b). Contamination of natural products withpesticides and heavy metals. Pharm. Int. 7, 191.

Schilcher, H. (1985a). RuÈ ckstandsbelastung von Drogen undDrogenzubereitungen. Zur Problematik der P¯anzenbe-handlungsmittel, Vorratsschutzmittel und Schwermetallein Drogen und Drogenzubereitungen aus toxikologischerund arzneimittelrechtlicher Sicht. Dtsch. Apoth. Ztg. 125,47±52.

Schilcher, H. (1985b). RuÈ ckstandsanalytik bei Drogen undDrogenzubereitungen. Fresenius Z. Anal. Chem. 321,342±351.

Schilcher, H. (1987). Possibilities and limitations of phy-totherapy. Pharm. Weekblad 9, 215.

Schilcher, H., and Habenicht, M. (1998). Neue Bestimmungs-methode zum Nachweis von Organochlorpestiziden inaÈ therischen OÈ len und Untersuchungsergebnisse von 110AÈ therischoÈ l-Handelsmustern sowie Fertiganeimitteln.Pharm. Ind. 60, 249±252.

Schilcher, H., Peter, H., and Wank, H. (1987). Pestizide undSchwermetalle in Arzneip¯anzen und Arzneip¯anzen-Zubereitungen. Pharm. Ind. 49, 203±211.

Schlumpf, R., and Stettler, J. (1981). Die PruÈ fung auf Pestizidein Arzneip¯anzen. Schweiz. Apoth.-Ztg./J. Suisse dePharmacie 119, 90±92.

Schreiber, L., and SchoÈ nherr, J. (1993). Mobilities of organiccompounds in reconstituted cuticular wax of barley

PESTICIDERESIDUES 87

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)

Page 16: Pesticide Residues in Medicinal Plants

leaves: determination of diffusion coef®cients. Pestic. Sci.38, 353±361.

Schroll, R., Bierling, B., Cao, G. et al. (1994). Uptake of organicchemicals from soil by agricultural plants. Chemosphere28, 297±303.

Silva, M. P., and Thiemann, W. (1991). Organochlorinepesticide residues in different grades of Sri Lanka tea.Chem. Mikrobiol. Technol. Lebensm. 13, 89±94.

Simon, S. L., and Graham, J. C. (1996). Dose assessmentactivities in the Republic of the Marshall Island. HealthPhys. 71, 438±456.

Stahl, E., and Rau, G. (1984). Entfernung von PestizidruÈ ck-staÈ nden aus Drogen mit uÈ berkritischem Kohlendioxid.Planta Med. 50, 171±173.

Starr, H., Kiigemagi, U., and Terriere, L. C. (1963) Insecticideresidues in peppermint and their distillation with pepper-mint oil. Agri. Food Chem. 11, 482±486.

Suganavam, B. (1996). Risk reduction in pesticide develop-ment in developing countriesÐchallenges and opportu-nities. J. Environ. Sci. Health B 31, 307±323.

Sullivan, J. H. (1980). Pesticide residues in imported spices. Asurvey for chlorinated hydrocarbons. J. Agric. FoodChem. 28, 1031±1034.

Tekel, J., and Hatrik, S. (1996). Pesticide residue analyses inplant material by chromatographic methods: clean-upprocedures and selective detectors. J. Chromatogr. A.754, 397±410.

Tekel, J., Tahotna , S., Pecnikova , K., Holla , M., and Vaverko-va , S. (1998a). Multiresidual method for determination ofthe uracil herbicides in plant samples by GC-NPD. Dtsch.Lebensm. Rundsch. 94, 334±336.

Tekel, J., Tahotna , S., and Vaverkova , S. (1998b). Gaschromatographic method for determination of uracilherbicides in roots of Echinacea angustifolia Moench(Asteraceae). J. Pharm. Biomed. Anal. 16, 753±758.

Tekel, J., Vaverkova , S., Kovacicova , Holla , M., and Havra nek,E. (1994). A screening method for the determination ofthe residues of uracil herbicides in Melissa of®cinalis L.Pharmazie 49, 899±901.

Torres, P., and Luque de Castro, M. D. (1996). Interfacing arobotic station with a gas chromatograph for the fullautomation of the determination of organochlorinepesticide in vegetable. Instrum. Sci. Technol. 24, 57±70.

Vaverkova, S., Holla, M., and Tekel, J. (1995a). The effect ofherbicides on the qualitative properties of healing plants.2. Content and composition of the essential oil fromSalvia of®cinalis L. after application of Afalon 50 WP.Pharmazie 50, 143±144.

Vaverkova, S., Holla, M., Tekel, J., and Mistrikova, I. (1997).Quality and content of the essential oil from Mentha xpiperita after application of Terbacil. Biologia 52, 549±552.

Vaverkova, S., Tekel, J., and Holla, M. (1995b). The effect ofherbicides on the qualitative properties of healing plants.3. Content and composition of the essential oil fromMelissa of®cinalis L. after application of Basagran.Pharmazie 50, 835±836.

Vilegas, J. H. Y., LancËas, F. M., and Antoniosi Filho, N. R.(1995). High temperature capillary GC analysis of phyto-preparations of `Espinheira Santa' (Maytenus ilicifolia M.and Maytenus aquifolium M. Ð Celastraceae), a Brazilianantiulcer plant. Chromatographia 40, 341±343.

Voitcu, M., Nastase, V., Cuciureanu, R., and Leanca, M.(1995). Consequences of the presence of pesticides in

medicinal plants. Proc. 1st World Meeting APGI/APV,Budapest, 994±995.

VoÈ mel, A., and Mautner, U. (1982). Der Einsatz von Prometrynund Desmetryn bei Thymus vulgaris, Salvia of®cinalisund Silybum marianum und ihre Auswirkung auf Ertragund Inhaltsstoffe. Planta Med. 45, 143±144.

VoÈ mel, A., Reichling, J., Becker, H., and DraÈ ger, P. D. (1977).Herbizide im Kamillenanbau. I. Mitteilung: Ein¯uû derHerbizide auf Ertrag und Unkrautbestand; RuÈ ckstandsun-tersuchungen. Planta Med. 31, 378±389.

Wagler, M. (1988). Tendenzen der ReinheitspruÈ fung vonArzneimitteln. Pharmazie 43, 855±858.

Wan, H. (1989). Large-volume spotting apparatus and itsapplication to the semiquantitative determination oforganochlorine pesticides in tea. J. Chromatogr. 469,403±405.

Wan, H. (1990). Small-scale method for the determination oforganophosphorus insecticides in tea using sulphuricacid as clean-up reagent. J. Chromatogr. 516, 446±449.

Wan, H., Xia, H., and Chen, Z. (1991). Extraction of pesticideresidues in tea by water during the infusion process.Food Addit. Contam. 8, 497±500.

Whitaker, R. J., and Evans, D. A. (1987). Plant production of®ne chemicals. Chemtech. 17, 674±679.

WHO/PHARM/92.559 (1992). Quality control methods formedicinal plant material. pp. 37±62. WHO/PHARM, Gen-eva.

Wong, M. K., and Koh, L. L. (1986). Mercury, lead and otherheavy-metals in Chinese medicines. Biol. Trace Elem.Res. 10, 91±97.

Wong, M. K., Tan, P., and Wee, Y. C. (1993). Heavy-metals insome Chinese herbal plants. Biol. Trace Elem. Res. 36,135±142.

Wu, J., and Fan, D. (1992). Gas chromatographic determina-tion of dimethoate residues in Chrysanthemums and soil.J. AOAC Int. 75, 588±590.

Yoon, H. R., Lee, E. J., Park, M. K. and Park, J. H. (1998).Sulfuric acid pretreatment for the simultaneous GCscreening of organochlorine and organophosphoruspesticides in herbal essential oils. Chromatographia 47,587±592.

Zimmerli, B., and Blaser, O. (1982). Orientierende Untersu-chungen zum UÈ bergang von Pestiziden aus KraÈ uterteesin den Aufguû. Mitt. Gebiete Lebensm. Hyg. 73, 174±185.

Zongmao, C., and Haibin, W. (1988). Factors affectingresidues of pesticides in tea. Pestic. Sci. 23, 109±118.

Zongmao, C., and Haibin, W. (1997). Degradation of pesti-cides on plant surfaces and its predictionÐa case studyon tea plant. Environ. Monit. Assess. 44, 303±313.

Zongmao, C., and Wang, Y. (1996). Chromatographic meth-ods for the determination of pyrethrin and pyrethroidpesticide residues in crops, foods and environmentalsamples. J. Chromatogr. A 754, 367±395.

Zongmao, C., and Xuefen, C. (1990). Chemical control ofpests and diseases in tea production in China: progressand strategy. Trop. Agric. 67, 363±367.

Zuin, V. G., Airoldi, F. P. S., Nascimento, N. R., Landgraf, M.D., and Rezende, M. O. O. (1999). Determination ofpentachlorophenol and hexachlorobenzene in naturalwaters affected by industrial chemical residues. J. Braz.Chem. Soc. 10, 25±30.

Zweig, G., and Aspelin, A. L. (1983). The role of pesticides indeveloping countries. In, Formulation of Pesticides, ed.by A. R. Khane, pp. 1±13, United Nations, New York.

88 V. G. ZUIN AND J. H. Y. VILEGAS

Copyright# 2000JohnWiley & Sons,Ltd. Phytother.Res.14, 73–88(2000)