Peng Fracture 1997

download Peng Fracture 1997

of 6

Transcript of Peng Fracture 1997

  • 8/12/2019 Peng Fracture 1997

    1/6

    E L S E V I E R

    Theoretical and Applied Fracture Mechanics 27 (I 997) 135-140

    t h e o r e t ic l n d

    a p p l ie d f ~ d u r e

    mech nlcs

    rac ta l ana lys i s o f f rac ture in concre te

    J u n P e n g a , , Z h i m i n W u b, G u o f a n Z h a o b

    a Department of Civil and Constructing Engineering, Dalian University, Dalian 116622, PR China

    b Department of Cioil Engineering, Dalian University of Technology, Dalian 116023, PR China

    Abstract

    Experimental results indicate that propagation paths of cracks in concrete are often irregular, producing rough fracture

    surfaces which are fractal. Based on dynamic analysis of microcrack coalescence, this paper presents a statistical fractal

    model to describe the damage evolution of concrete. The model demonstrates that the mechanism of fracture surfaces formed

    in concrete is closely related to the dynamic processes of the cascade coalescence of microcracks. A unimodal relation

    between the fractal dimension and the coalescence threshold can qualitatively explain the relation between fractal dimension

    and fracture energy.

    I I n t r o d u c t i o n

    Fracture mechanics was first applied to study the

    failure behavior of concrete in [1]. It was based on

    the assumption that cracks are smooth and straight.

    This, however, is contrast to the fact that cracks in

    concrete follow a zigzag pattern. To better under-

    stand the fracture behavior of concrete, irregularity

    in the crack path should be considered.

    In recent years, fractal geometry has been widely,

    used to describe some irregular phenomena in the

    fracture behavior of materials [2-8]. However, the

    correlation between fractal dimension and fracture

    energy was contrary to experimental observation

    [3,5,9]. One of the reasons is that most o f the works

    were limited to geometrical description of fractal

    surfaces. Dynamic effects related to the formation of

    fractal surfaces were neglected as a rule.

    In what follows, the fracture behavior of concrete

    is analyzed by fractal geometry. Based on experi-

    Corresponding author. Fax: + 86-411-3633080.

    mental and analytical results that include the dynam-

    ics of microcrack coalescence, the crack formation

    process is first studied. The fractal dimension as

    affected by the fracture energy is then explained

    qualitatively.

    2 F r a c t a l c h a r a c t e r i s t ic s o f c o n c r e t e f r a c t u r e

    It was pointed out in [10,11] that the microstruc-

    ture of concrete contains a huge number of cracks

    prior to any loading. These microcracks are usually

    formed by the hydration and segregation process.

    Their subsequent nucleation, growth, and interaction

    are responsible for the macroscopic failure of the

    solid [12-14].

    2.1. Description of concrete specimen

    Concrete is a multiphase material composed of

    coarse and fine aggregates, cement and water. Cracks

    in concrete usually propagate along three paths as

    shown in Fig. l(a-c) which correspond respectively,

    to kinking along the interfaces between aggregate

    0167-8442/97/$17.00 Copyright 1997 Elsevier Science B.V. All rights reserved.

    PII

    S01 67-8442(97)0001 5-3

  • 8/12/2019 Peng Fracture 1997

    2/6

    1 3 6

    J. Peng et al. / Theoretical and Applied Fracture Mechanics 27 (1997) 135- 140

    . g g e g . e i 7 o k , . t o

    A g g r e g a t e ~

    ~ ,,

    cement

    Cement Cement

    l l l l t t t t t t

    Aggregat

    Cracknto

    ',

    aggregate

    Cement

    I t t t

    F i g . 1 . C r a c k g r o w t h p a t h s i n c o n c r e t e : a ) c r a c k a t i n t e r l a c e , b )

    c r a c k i n to c e m e n t , a n d c ) c r a c k i nt o a g g r e g a t e .

    and cement paste, kinking into the cement paste and

    into the aggregate. Aggregates usually consist of

    crushed stones, the surfaces of which are fractal [15].

    For a certain kind of concrete, the physical and

    mechanical properties of the cement paste are fixed.

    Subjected to external loadings, the crack propagating

    paths may be assumed as self-similar. Attempts will

    be made to verify such a behavior by experiments.

    Because the maximum coarse aggregate sizes are

    different the specimens are divided into four groups

    (A to D). The cement type is No. 425 common

    portland cement. Coarse aggregates are mechanical

    crushed limestone with maximum sizes of 20, 40, 80

    and 150 mm. Fine aggregates are washed river sand

    with finess modulus of 3.20. The compositions of the

    concrete specimens in Table 1 are determined such

    that the uniaxial compressive strengths (6 12 in.

    cubic strength) and the uniaxial tensile strength of

    specimens in four groups are the same (30.4 MPa

    and 2.87 mPa).

    The sizes of specimens in four groups are (L X h

    t) 450 x 450 x 450 mm (18 X 18 18 in.), with

    a / h

    = 0.4, where a is the length of precast crack.

    2.2. Fractals

    Shown in Fig. 2 is a set-up for photoclastic

    coating which is applied to observe the crack paths

    in the splitting-tensile tests. The results are given in

    Fig. 3(a) to (f), inclusive for different ratios of

    P/Pmax

    where P is the current load while Pmax is

    the maximum load. Crack propagation paths are

    shown in these photos. When the color of strips

    changes from green to yellow, the microcracks which

    are invisible by naked eyes coalesce and become

    T a b l e 1

    C o m p o s i t i o n s o f c o n c r e t e s p e c i m e n s k g / m 3 )

    G r o u p C e m e n t C o a r s e a g g r e g a t e m m ) F i n e W a t e r

    8 ~ 2 0 2 0 ~ 4 0 4 0 ~ 8 0 8 0 ~ 1 5 0 a g g r e g a t e

    A 4 2 7 1 2 1 4 - - - - - - 6 5 4 2 0 5

    B 3 8 6 6 8 5 6 8 5 - - - - 5 6 0 1 8 5

    C 3 4 4 5 0 4 5 0 4 5 0 5 - - 4 7 8 1 6 5

    D 3 1 2 4 0 2 4 0 3 4 0 2 4 0 3 4 2 8 1 5 0

    o r

    macroscopic in size. Direct observation demonstrates

    that portion of the crack paths are self-similar.

    For curves with fractal characteristic, they can be

    described as

    U r ) - r - D

    1)

    o r

    L r )

    =N( r) -r r -D 2)

    In this way D can be obtained as follows:

    In N(r)

    In(I / r ) 3)

    In

    L r )

    D = 1 + ln(1/r-----~ (4 )

    where r is a measurement scale with dimension of

    length,

    N r )

    is number of measurements,

    L r )

    is the

    length of the corresponding curve and D is dimen-

    sion of fractal. By means of the graphics analysis

    ~ C a m e r a

    P o l ] r l z

    ~ O u a r t e r - w a v e

    \ ' T '

    D - - /

    \~j/ / S R e f le c t in g u r f a c e

    I I I / r l l / / ] / l I I I / I / ~ / / / / S p e c i m e n

    F i g . 2 . S c h e m a t i c d i a g r a m o f p h o t o e l a s t i c c o a t i n g s e t- u p .

  • 8/12/2019 Peng Fracture 1997

    3/6

    J. Peng et al. / Theoretical and Applied Fracture Mechanics 27 (1997) 135-140

    137

    a ) b ) c )

    d ) e ) f )

    F i g . 3 . C r a c k g r o w t h p a t h s s h o w n b y p h o t o e l a st i c c o a ti n g m e t h o d f o r

    P/Pmax

    e q u a l s t o ( a ) 0 .5 5 5 , ( b ) 0 . 6 1 5 , ( c ) 0 . 7 0 4 , ( d ) 0 . 7 7 8 , ( e ) 0 . 8 5 9

    a n d ( f ) 0 . 9 2 6 .

    t e c h n o l o g y , t h e f r a c t a l d i me n s i o n o f c o n c r e t e f r a c -

    ture surfaces in our tes ts i s from 1.15 to 1 .24.

    3 D y n a m i c m o d e l o f m i c r o c ra c k

    U n d e r e x t e r n a l l o a d i n g s , t h e c o a l e s c e n c e o f

    n e i g h b o r i n g mi c r o c r a c k s d e p e n d s n o t o n l y o n t h e

    p h y s i c a l a n d me c h a n i c a l p r o p e r t i e s o f c o n c r e t e , b u t

    a l so on the re l a t ive d i s t r ibu t ion o f the c racks , and

    s i z e s o f s p e c i me n s . A s i mp l e me c h a n i c s a n a l y s is w i l l

    b e g i v e n t o a c c o u n t f o r m i c r o c r a c k c o a l e s c e n c e .

    Fig . 4 shows tha t two cracks wi th l eng th c a re

    co l l inear , t hey a re spaced a t a d i s t ance d apar t and

    sub jec ted to s t res s o -0 . Dimens iona l ana lys i s l eads to

    express ion fo r the c rack t ip s t res s [16]

    o 0

    w h e r e r i s t h e d i s t a n c e f r o m t h e c r a c k t i p . T h e

    average s t res s in the l igament d i s

    v 1 l o a f ( r d ) ( d )

    0 ~ , d r = F ( 6 )

    t t t t t t t t t

    F i g . 4 . C o a l e s c e n c e o f t w o c o l l i n e a r c r a c k s .

  • 8/12/2019 Peng Fracture 1997

    4/6

    138 J. Peng et al. / Theoretical and Applied Fracture Mechanics 27 (1997) 135-14 0

    o r

    c = - = c 7 )

    c ~ o - 0 ]

    F o r t w o m i c r o c r a c k s w i t h l e n g t h c t a n d c 2 , th e

    r e s u l t i n g s t r e s s w i l l b e s h a r e d b y t h e n e i g h b o r i n g

    m e d i a . T a k i n g i n t o a c c o u n t t h e s t r e s s i n t e n s i t y f a c t o r

    a , t h e a v e r a g e d s t re s s in t h e l i g a m e n t d i s g i v e n b y

    c , / 2 ) 4 O o + c 2 / 2 ) ,~ O o + dO o

    o-~= d

    o c )

    = a + l , ( 8 )

    i n w h i c h

    C I + C 2

    C v 2 ( 9 )

    i t f o l l o w s t h a t

    d a o o

    L . . . . ( 1 0 )

    C v O -- Or0

    u s i n g a s t r e s s c r i t e r i o n , t h e m i c r o c r a c k s w i l l a s s u m e

    to co ale sc e w he n o-v _> o-~ w ith o-~ bein g th e cr i t ic al

    s tr e ss . T h e m i c r o c r a c k c o a l e s c e n c e t h r e s h o l d c a n b e

    g i v e n a s

    t~ tY0

    L

  • 8/12/2019 Peng Fracture 1997

    5/6

    J. Peng et al. / Theoretical and Applied Fracture Mechanics 27 (1997) 135-140

    139

    z

    = E

    =

    5 . 3

    0 . 1 0

    O . 5 0 . 2 0 0 . 2 5

    Fractal d imension D

    Fig. 6. Fracture energy versus fractal dimension for concrete

    present work).

    a r e c l o s e l y r e l a t e d t o t h e d y n a mi c s o f f r a c t u r e . T h i s

    h a s a l s o b e e n s h o w n i n [6 ].

    T h e p r e s e n t s t a t i s t i c a l f r a c t a l mo d e l c a n e x p l a i n

    t h e a b o v e e x p e r i me n t a l r e s u l t s . A s s h o w n i n F i g . 8

    f r a c t a l d i me n s i o n v s . c o a l e s c e n c e t h r e s h o l d 1/L c is

    a u n i mo d a l c u r v e . T h e c u r v e i n F i g . 8 i s i n a g r e e -

    ment wi th those in F igs . 6 and 7 .

    T o c o n c l u d e c o n c r e t e f r a c t u r e s u r f a c e c a n b e r e -

    garded as f rac ta l s t a t i s t i ca l ly . The fo rmat ion o f f rac-

    t a l s u r fa c e s c a n b e a t t ri b u t e d to t h e d y n a m i c p r o c e s s

    o f d a ma g e e v o l u t i o n .

    0 . 6

    0 . 4

    0 . 2

    / .N

    / x \

    / / 4340 st \ \

    l um i n e s e %

    300 grad

    me rag l n g ,~ .=

    steel

    ~ ~

    T i t an i u m \ ~

    / e o y e ~

    1 0 1 2 1 4 1 6

    Specif ic energy In ~ IN /m )

    Fig. 7. Fractal dim ension versus surface energy [17].

    Note tha t the cu rve a t t a ins a un imodal re l a t ion .

    S i mi l a r t r e n d i s f o u n d f o r t h e e x p e r i me n t a l re s u l ts i n

    [17] tha t summar izes the f rac ta l d imens ion D as a

    f u n c t i o n o f th e s u r f a c e e n e r g y r f o r d i f f e r e n t me t a l

    al loys as i l lus t rated in Fig. 7 .

    Po o r e x p l a n a t i o n f o r t h e s e p h e n o me n a w e r e a t -

    t r i b u t e d t o t h e l a c k o f e x p e r i me n t a l a c c u r a c y o f t h e

    f r a c ta l d i me n s i o n s . T h e p r e s e n t s t u d y s h o w s t h a t t he

    f o r ma t i o n o f f ra c t a l s u r f a c e s a n d d i me n s i o n a l c h a n g e s

    0 . 2 8

    g 0.24

    ~ 3

    ~ 0 2 0

    0 . 1 8 , 0 1 4 0 . 8 1 . 2 1 1 8 ; . 0

    Coalescence threshold l l L c

    Fig. 8. Va riat ions of fractal dim ension with inverse of coalescence

    threshold parameter.

    cknowledgements

    T h i s w o r k i s f i n a n c i a l l y s u p p o r t e d b y t h e N a t i o n a l

    Sc i e n c e Fo u n d a t i o n o f Ch i n a . T h e a u t h o r s w o u l d l i k e

    t o e x p r e s s t h e i r t h a n k s t o t h e e n g i n e e r s X i w e n W a n g

    a n d W a n mi n Y u f o r t h e i r a s s i s t a n c e i n e x p e r i me n t a l

    w o r k .

    References

    [ 1] M .F. K aplan, Crack-prop agation and the fracture of concrete ,

    J . ACI 58 1961) 591-61 0 .

    [2] X.G. J iang, W.Y. C hn, C.M. H siao, Relat ionship between

    J~c and fractal value o f fracture surface o f ducti le materials ,

    Acta Metal l. Mater . 42 1994) 105 -108.

    [3] C.W. Lung, Z.Q. M u, Fractal dimension measured with

    per imete r -a rea re la t ion and toughness o f ma te r ia l s , Phys .

    Rev . B 38 1988) 11781-11784 .

    [4] X.G. J iang, J .Z. Cui , L.X. Ma, A fractal model for cavity

    dama ge and fracture of materials during superplastic defor-

    mation , Acta Metal l. Mater . 40 1992) 126 7-127 0.

    [5] C.S. Pande, L.E. Richards, N. Louat , B.D. Dempey, A.J .

    Schw oeble, Fractal character izat ion of fractured surfaces,

    Acta Metal l. 35 1987 ) 1633-1 637.

    [6] R.H. Dauskardt , F. Haub ensak, R.O. Ritchie, On the interpre-

    tat ion of the fractal ch aracter of fracture surfaces, Acta

    Metal l . Mater . 38 1990) 143-1 59.

    [7] J .J . Mech olasky, D.E. Passoja, K.S. Feinb erg-Ringei , Quanti-

    tat ive analysis of bri t t le fracture surfaces u sing fractal geom -

    etry, J . Am. Ceram. Soc. 72 1989) 60-65 .

    [8] J .C.M. Li , A the oret ical l imit of fracture toughness, Scripta

    Metal l. 22 1988) 837-83 8 .

    [9] C.W. Lung, Fractal and the fracture of cracked me tals , in: L.

    Pietronero, E. Tosat t i Eds.) , Fractals in Physics, Elsevier

    Science, Barking, 1986, pp. 189-192.

    [10] U. Diederick, U. S chneider , M. Terr ien, Form ation and

    propagation of cracks and acoust ic emission, in: F.H.

    Wi t tmann Ed .) , F rac tu re M echan ics o f Concre te , E l sev ie r,

    Amsterdam, 1983.

  • 8/12/2019 Peng Fracture 1997

    6/6

    140 J. Peng et al. / Theoretical and Applied Fracture Mechanics 27 (1997) 135- 140

    [1 I ] D. J . H olcom b, U s ing acous t i c em is s ions to de t e rmine in si tu

    s t r es s : p rob lems and p romis e , i n : S . Nemat -Nas s er Ed . ) ,

    G e o m e c h a n i c s A M D , A S M E 5 7 , N e w Y o r k , 1 98 3.

    [ 12 ] G . S . R o b i n s o n , M e t h o d s o f d e t e c t i n g t h e f o r m a t i o n a n d

    propag a t ion o f micro crack s in concre t e , in : A. E . B rooks , K.

    N e w m a n E d s . ) , T h e S t r u c tu r e o f C o n c r e t e , C e m e n t a n d

    C on cre t e As s o c ia t ion , Londo n , 1968 , pp . 131 - 145 .

    [ 13 ] S . D . S a n t i a g o , H . K . H i l s d o r f, F r a c t u re m e c h a n i s m o f c o n -

    c r e t e u n d e r c o m p r e s s i v e lo a d s , C e m . C o n c r . R e s . 3 1 9 7 3 )

    3 6 3 - 3 8 8 .

    [14] Y. Za i t s ev , C rack p ropaga t ion in a compos i t e mate r i a l , i n :

    F . H . W i t t m a n E d . ) , F r ac t u r e M e c h a n i c s o f C o n c r e t e , E ls e -

    v ie r , Ams terdam, 1983 .

    [15] D. L . Turco t t e , F r ac t a l s and f r agm enta t ion , J . Geop hys R es .

    91 1986) 1921 -1926 .

    [ 16 ] L . C h u n s h e n g , P h . D t h e s i s, R e s e a r c h I n s t it u t e o f M e c h a n i c s ,

    Ac adem ia S in ica , 1992 .

    [17] R . E . W i l l i f o rd , Mul t i f r ac t a l f r ac tu re , Scr . Meta l l . 22 1988)

    1 7 4 9 - 1 7 5 4 .