Pedestrian Detection using Infrared Images and Histograms of

32
Pedestrian Detection using Infrared Images and Histograms of Oriented Gradients F. Suard 1 , A. Rakotomamonjy 1 , A. Bensrhair 1 , A. Broggi 2 [email protected] 1 Laboratoire d’Informatique, Traitement de l’Information, Syst` emes. INSA de Rouen, Rouen, France 2 Dipartimento di Ingegneria dell’Informazione, Universit` a di Parma, Parma, Italy Intelligent Vehicle Symposium 2006 Tokyo, 14th June 2006

Transcript of Pedestrian Detection using Infrared Images and Histograms of

Page 1: Pedestrian Detection using Infrared Images and Histograms of

Pedestrian Detection using Infrared Imagesand Histograms of Oriented Gradients

F. Suard1, A. Rakotomamonjy1, A. Bensrhair1, A. Broggi2

[email protected]

1 Laboratoire d’Informatique, Traitement de l’Information, Systemes.INSA de Rouen, Rouen, France

2 Dipartimento di Ingegneria dell’Informazione,Universita di Parma, Parma, Italy

Intelligent Vehicle Symposium 2006

Tokyo, 14th June 2006

Page 2: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Introduction

Machine learning and vision system.

Histogram of Oriented Gradient [DT05],

Classifier : Support Vector Machines [Vap98].

Application : pedestrian detection with infrared images.

Objectives

using HOG method for pedestrian detection,

extracting windows from infrared images.

F. Suard 2

Page 3: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Histogram of Oriented Gradient

Introduced by N. Dalal and B. Triggs [DT05]

⇒ representing an image (128× 64 pixels) with a vector.

Computation of local gradient histograms.

F. Suard 3

Page 4: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG computation steps

Original Image :

F. Suard 4

Page 5: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG computation steps

Gradient Orientation and Norm:

F. Suard 4

Page 6: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG computation steps

Cell Splitting:

F. Suard 4

Page 7: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG computation steps

Histogramm normalization, block 1:

Final descriptor: [0.01 0.5 0 0.8]

F. Suard 4

Page 8: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG computation steps

Histogramm normalization, block 2:

Final descriptor: [0.01 0.5 0 0.8 0.2 0 0.9 0]

F. Suard 4

Page 9: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG computation steps

Histogramm normalization, block n:

Final descriptor: [0.01 0.5 0 0.8 0.2 0 0.9 0 ... 0.6 0.7 0.1 0]

F. Suard 4

Page 10: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG parameters

Parameters

cell: number of pixels,

block: number of cells, overlap, normalization factor (no, L1, L2),

histogram: number of bins, weighted vote(gradient magnitude, vote).

Exhaustive test for parameters tuning,

Dataset : pedestrians and non-pedestrians manually extracted.

F. Suard 5

Page 11: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG parameters

Optimal set of parameters

size of cell : 8× 8 pixels,

size of block : 2× 2 cells,

overlap between blocks : 1 cell,

normalization factor for block : L2,

number of bins per histogram : 8

weigthed vote for histogram : gradient magnitude.

⇒ Descriptor dimension: 3360

F. Suard 6

Page 12: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Linear SVM Classifier

Data X ∈ Rn

Label y ∈ {−1, 1}Decision function f (x) =

∑mk=1 αk · yk · 〈xk , x〉+ b

Class of X = sign of f (x)

F. Suard 7

Page 13: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Single Frame Classification

ROC Curve for single frame classifi-cation (test dataset: 4400 examples)when size of learning dataset varies :

Confusion matrix (1000)

TrueP N

PredictionP 2096 54N 71 2079

detection 0.9749accuracy 0.9709precision 0.9672

F. Suard 8

Page 14: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Single Frame Classification

ROC Curve for single frame classifi-cation (test dataset: 4400 examples)when size of learning dataset varies :

Confusion matrix (1000)

TrueP N

PredictionP 2096 54N 71 2079

detection 0.9749accuracy 0.9709precision 0.9672

For 90 % of good recognition : 1 false-positive for330 windows examined

F. Suard 8

Page 15: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Misclassification

Examples of bad classification :

mis-classification

mis-classification

false-positive false-positive

F. Suard 9

Page 16: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

HOG applied to infrared images

Application

infrared images,

pedestrian detection.

⇒ Windows extraction function

Particularity of infrared images

Warm area (pedestrian head) appears lighter

F. Suard 10

Page 17: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

Original Image:

F. Suard 11

Page 18: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

Warm areas:

F. Suard 11

Page 19: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

Warm area of the second pedestrian:

F. Suard 11

Page 20: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

Gradient :

F. Suard 11

Page 21: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

left and right bounds:

F. Suard 11

Page 22: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

upper bound:

F. Suard 11

Page 23: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

lower bounds:

F. Suard 11

Page 24: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

combination and windows extraction (> 1000):

F. Suard 11

Page 25: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Windows extraction

Classification:

F. Suard 11

Page 26: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Results

Windows which prediction are over threshold :

f (x) > 0 f (x) > 0.5

F. Suard 12

Page 27: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Results

f (x) > 0 f (x) > 0.5

F. Suard 13

Page 28: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Results

f (x) > 0 f (x) > 0.5

F. Suard 14

Page 29: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Results

f (x) > 0 f (x) > 0.5

F. Suard 15

Page 30: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Results

f (x) > 0 f (x) > 0.5

F. Suard 16

Page 31: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

Conclusion and perspectives

+

Good results for single frame classification,

Answer for pedestrian size variability,

Good generalization for pedestrian pose variability.

-

Parameters,

Windows extraction.

Perspectives

Improve performance,

reduce computation time,

work with sequences.

F. Suard 17

Page 32: Pedestrian Detection using Infrared Images and Histograms of

Introduction HOG Method Application Conclusion

References

Navneet Dalal and Bill Triggs.

Histograms of oriented gradients for human detection.In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, International Conference on ComputerVision and Pattern Recognition, volume 2, pages 886–893, INRIA Rhone-Alpes, ZIRST-655, av. del’Europe, Montbonnot-38334, June 2005.

A. Broggi A. Fascioli P. Grisleri T. Graf M. Meinecke.

Model-based validation approaches and matching techniques for automotive vision based pedestriandetection.In Intl. IEEE Wks. on Object Tracking and Classification in and Beyond the Visible Spectrum, San Diego,USA, page in press, June 2005.

V. Vapnik.

Statistical Learning Theory.Wiley, 1998.

F. Suard 18