17-1 A Wide Tuning Range (1 GHz-to-15 GHz) Fractional...

28
17-1 A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N All-Digital PLL in 45nm SOI Alexander Rylyakov 1 , Jose Tierno 1 , George English 2 , Michael Sperling 2 , Daniel Friedman 1 1 IBM T. J. Watson Research Center Yorktown Heights, NY 10598 USA 2 IBM , Poughkeepsie, NY

Transcript of 17-1 A Wide Tuning Range (1 GHz-to-15 GHz) Fractional...

17-1

A Wide Tuning Range (1 GHz-to-15 GHz) Fractional-N

All-Digital PLL in 45nm SOI

Alexander Rylyakov1, Jose Tierno1, George English2, Michael Sperling2, Daniel Friedman1

1 IBM T. J. Watson Research CenterYorktown Heights, NY 10598 USA2 IBM , Poughkeepsie, NY

Outline• Motivation• Review of DPLL linear model• DPLL architecture, digital design details • Measurement results• Conclusion

Digital PLL Advantages• Uses primarily technology elements of digital

designs, simplifies technology support and should make yield profile match that of logic

• Enables extensive use of digital flows for design and verification, offers enhanced controllability and adaptability

• Compact: no explicit filter capacitor• Ideal for ASIC, processor or any digital

clocking application, where period jitter is the key metric

Charge-pump PLL vs BB-DPLL

Linear PFD

Continuously tuned VCO

Continuous-time

Bang-bang PFD

Discrete DCO

Discrete-time

BB PFDFref

LF DCO

÷N

Fout

σπ1

21

=PFDK1

1

1 −

−+

zzKK IP 11 −− z

KDCO

Ffbk

π2CPI

PFD+CPFref

LF VCO

÷N

Fout

Ffbk

CsR 1+

sKVCO

Bang-bang PFD LinearizationBB PFD

±1= sign(Φref - Φfbk)

Φfbk

Φref+1

-1Φref - Φfbk

Φref

σπ1

21

=PFDKΦfbk

KPFD ePFD

+Φref

Φfbk-

Φref - Φfbk KPFD*(Φref - Φfbk) + ePFD

Assumptions:

Gaussian jitter

uncorrelated quantization noise Razavi 2004

Proportional-Integral Loop Filter

1

1

1 −

−zzKI

1

1

1)( −

−+=

zzKKzH IP

ICP VCTRL

CsRsZ 1)( +=

RC

PK

1

1111 −

−−=⇒+=+≈=TzzssTTjez Tj ωω

(ωT << 1 )

CTKI =1

1

11

−+=+

zz

CTR

CsR RKP =⇒

analog and digital proportional-integral loop filters

are equivalent

DCO Linear Model and Quantization NoiseDCO

Control word Fout

∆f = KDCO

VCOFout

Fout • Quantizer•• eDCO• •

FoutControl wordVCO

REFOFFSET ff∆f 1

2

121

=L

Example: ∆f =10 MHz, fREF = 200 MHz results in -74 dBc/Hz at 1MHz offset

Note that DCO resolution of ∆f = 10 MHz requires a ~9 bit DAC for 4 GHz range

increasing DCO resolution to further reduce ∆f requires a >10 bit DAC

dithering can reduce DAC precision requirements

Linear Model of the BB-DPLL

BB PFDFref

LF DCO

÷N

Fout

1

1

1 −

−+

zzKK IPσπ

121

=PFDK11 −− z

KDCO

Ffbk

Noise sources:

Quantization noise of the bang-bang PFD

Quantization noise of the DCO

Phase noise of the oscillator

Quantization noise of the feedback divider (fractional-N)

Kratyuk 2007, Hanumolu 2007, Da Dalt 2008

Bode Magnitude Plot

105 106 107 108

Frequency [Hz]

Mag

nitu

de [d

B]

5

0

-5

Fref=200 MHz

N = 20

σ = 4 ps

KP = 0.75

KI = 2-8

KDCO= 20 MHz

linear model reflects the main features of the measured phase noise: high bandwidth (~ 40 MHz), limit cycle (~ 7 dB peaking)

not a substitute of full VHDL or Verilog time-domain simulation with noise, but useful for ballpark estimates

DPLL Block Diagram

PFD LF DCO

1/N 1/1,2 or 4clkg

DSM

referenceDSM

phold

ditherearly/late frac

N.FN

inc/decoutput

all gates are static CMOS (no CML, etc)

3 custom cells: 1 in the PFD, 1 in the DCO, plus voltage level shifter between the DCO and the logic power supplies

highly modular design: loop filter (LF), multimodulus feedback divider (1/N) and both DSMs use the same adder

Loop Filter

+I+P+I-P-I

-I

11

10

01

00

2

integral: 1 X 1 – z-11

proportional: (1 – z-1) X 1 – z-11

Realized Transfer Functions

Late 8 88

Inc

P = Proportional constantI = Integral constant

Dec

8FractionalFrequency

8-bit arithmetic realizedusing Kogge-Stone adder

merging proportional, integral paths simplifies DPLL logic

DCO Dithering

time

instantaneous frequencyf+∆f

FVCO

effective frequency

f

DITHOFFSET ff∆f 1

2

121

=LUniform dithering:

-81 dBc/Hz at 1MHz offset, ∆f=10 MHz, fDITH=1 GHz

2sin21

2

121

=

DITHDITHOFFSET ff

ff∆f π

L1st order ∆Σ dithering:

-105 dBc/Hz at 1MHz offset, ∆f=10 MHz, fDITH=1 GHz

∆Σ dithering works, but increases power dissipation, area, complexity

Analog vs Digital ∆Σ modulatorAnalog 1st order ∆Σ modulator:

digital quantizer is very easy:

use the MSB

digital ∆Σ modulator is a simple integrator,

quantization noise is 1st order shaped

∫-

D/A

+ Z-1in err

carry (out)

z-1*err

Digital implementation:

not needed in digital version: carry generation results in overflow and integrator is reset automatically

+in out

not needed in a digital circuit

in + z-1• err = carry + err

carry = in + (z-1 – 1) • err

Divider DSM vs DCO DSMRequires explicit 8-bit addersRequires signed arithmeticPipelining requires careful latency matching for proper noise shaping

Uses DCO as an adderGenerates DC offset (invisible due to loop action)Dithering outputs are applied in parallel with matched delays

+ Z-1 + “+”

N+FN+(z-1-1)*e1 N+FN+(z-1-1)2*e2

DCON

+ Z-1FN + Z-1

Z-1

e1

Z-1 Z-1

e2 + Z-1 + Z-1

Z-1

e1

Z-1 Z-1

e2

Z-1

DPLL Internal Clocking

+1

const

pholdclkg

divided clkg

phold

outputclkg

divided clkg

Timing diagram

Multi-modulus divider 1/N

phold is a masking signaldivided clkg is compared with reference in PFDconst can be updated between phold rising edges

columns 1 to 48

r o w

s

1

to

16

top row

dither <1:3> outputinc/dec

inc/dec

main array

1 2 13

inv_on

row/column control

DCO Schematic

784 delay cells (73 µm x 41 µm in 45nm CMOS)this is a ~ 9.5-bit DAC

Block Diagram: Annotated

PFD LF DCO

1/N

output

1/1,2 or 4clkg

DSM

referenceDSM

inc/dec

phold

dither

-P -I

+I+P+I

-I

early/late frac

frac

N.FN

N

FN

early/late inc/dec

0

4

8

12

16

0 0.2 0.4 0.6 0.8 1

DCO Fill Factor

Freq

uenc

y [G

Hz] 1.3 V

0.7 V

1.0 V

65°C125°C

DCO Tuning Curves

covers 2 GHz to 6 GHz range across wide V,T variations

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15

Frequency [GHz]

KD

CO

[MH

z pe

r ste

p]

0.7 V

1.3 V

1.0 V

15 mA5 mA 10 mA

DCO Gain vs Frequency

constant-current DCO bias enables trading off DCO tuning range for increase in DCO resolution

Period Jitter HistogramOutput: 2.06 GHz Reference: 2.06 MHz Period jitter: 2.5 ps rms, 29 ps peak to peak0.75 V, 65°C

494478Time [ps]

486

main metric for digital clocking applications: peak to peak jitter (“shortest clock cycle at a given frequency”)long term jitter (N-cycle or rms integrated from phase noise) is less of a concernphase noise purity usually not a factor

Integer and Fractional-N Period Jitter Histograms

1

260 262 264 266Time [ps]

4×4.75, 3rd order4×4.75, 1st order2×9.5, 3rd order2×9.5, 1st order1×19, no DSM

10-1

10-2

10-3

1st order DSM is adequate for digital clocking applicationsfractional-N mode could be used to save power

Fractional-N Operation at 3.6-3.8 GHz, 200 MHz reference

-200

-100

0

100

200

300

400

0 0.25 0.5 0.75 1Fractional N value

Freq

uenc

y Er

ror [

Hz]

synthesized frequency deviation from ideal: 0.12 ppm pp

limited by the sensitivity of the frequency counter

Output Spectrum at 15 GHz

-110-100

-90-80-70-60-50-40

14.95 15 15.05Frequency [GHz]

Pow

er [d

Bm

]

limited by the output driver, not by the DCO

Phase Noise at 4.1 GHz

-140

-120

-100

-80

-60

Frequency Offset [Hz]

Pow

er [d

Bc/

Hz]

104 105 106 107 108 109

high bandwidth, limit cycle are clearly visible

overall shape follows linear model predictions

acceptable for digital clocking applications

Physical Design

DCORow

ControlColumn

Control

DCO-DSMD

ivid

er-D

SM Loop Filter

Divider16

0µm

• Technology: IBM 45nm SOI CMOS

• TransistorCount: ~25k

175µm

Performance Summary

1.2 ps rms, 13.0 ps ppPeriod Jitter *

0.84 GHz – 13.3 GHz (1.0V, 65°C)1.2 GHz – 15.9 GHz (1.3V, 65°C)

Tuning Range

6.9 mWLogic

11.7 mWDCOPower Dissipation *

175 µm X 160 µmArea

45 nm SOI CMOS Technology

* at 4.12 GHz (206 MHz reference), 1.0V, 65°C

Conclusions• All static CMOS, all-digital, fractional-N PLL

demonstrated in 45 nm SOI

• Highly modular design: all key blocks (loop filter, feedback divider, DCO-DSM, divider-DSM) use instances of the same 8-bit Kogge-Stone adder

• Tuning range and period jitter performance adequate for ASIC and microprocessor clocking applications

Acknowledgements• IBM Yorktown: B. Parker, D. Kuchta, S. Gowdaand M. Soyuer

• IBM Poughkeepsie: P. Muench, G. Smith and R. Dussault

• Partial support through DARPA contract HR0011-07-9-0002