PCIRF_6_9_VCO

55
A. Tasic © 2009 1 On the P hase Noise  and Noise F a c tor in  C i rcu i ts and S y stems -  N ew T hou gh ts on a n Ol d  Subject   Aleksandar T asic QCT - Analo g/RF Group Qualcomm Incorporated, San Diego

Transcript of PCIRF_6_9_VCO

Page 1: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 1/57

A. Tasic © 20091

On the Phase Noise 

and Noise Facto r in 

Circu its and Sys tems - New Though ts on an Old 

Subject  Aleksandar Tasic

QCT - Analog/RF Group

Qualcomm Incorporated, San Diego

Page 2: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 2/57

A. Tasic © 2009 2

Outline

• Spectral Analysis of Noise in LC-Oscillators

• LC-tank, g m-cell, bias current source noise

• (Phase-) Noise factor 

• Bipolar vs. CMOS LC-Oscillators

• LC-Oscillators Noise Reduction Methods

• Mixer Noise Factor from VCO Noise Factor 

• Oscillator Phase Noise in Receiver’s SNR

• LNA and Mixer Noise Factors in a Receiver 

• BBFilter Noise Transfer vs. LO/Mix Duty

Page 3: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 3/57

A. Tasic © 20093

Phase Noise Model o f B ipo lar and 

CMOS 

LC-Osci l lators 

Page 4: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 4/57

A. Tasic © 20094

Outline

• Oscillation Condition

• LC-Tank Noise Folding

• gm

-Cell Noise Folding

• Bias-Current Source Noise Folding

• Phase-Noise Model of Bipolar LC-Oscillators

• Phase-Noise Model of CMOS LC-Oscillators• Bipolar vs. CMOS LC-Oscillators

Page 5: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 5/57

A. Tasic © 20095

LC-Oscillator Noise Sources

LC-tank noise

transconductor noise

bias current source noise

 L/ 2

Q1 Q

2

QCS 

~ ~

v B1 v B2

iC 1 iC 2

i B2

i B1

iGTK 

i BCS 

2C 

 I TAIL

 RTK  / 2 RTK  / 2

 L/ 2

2C 

2 ( ) 2 / 2 N C C mi I qI KTg  

2 ( ) 2 N TK TK i G KTG

2( ) 2 N B Bv r KTr  

2

, , ,( ) (1 2 ) N BCS m CS B CS m CS i I KTg r g  

Page 6: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 6/57

A. Tasic © 20096

Oscillator and Phase-Noise Model

• phase-modulating noise component (double-sided)

*0 , 0 , 01( ) ( ) ( )2

 PM N O N Oi f i f i f    

*0 , 0 , 0

1( ) ( ) ( )

2 PM N O N Oi f i f i f    

• phase-related noise power (single-sided)2

2 2 ,2

, 0 0 0 2

1

( ) ( ) ( )2 4

 PM TOT 

 PM TOT PM PM TOT 

i

v i f i f Z f     C 

i AM 

iS 

i PM 

*, 0( ) N Oi f  

, 0( ) N Oi f  ‘

 LC-tank  

 g m-cell  

+ N v

, NOv

, NOi

Page 7: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 7/57

A. Tasic © 20097

g m -Cell Transfer Function

• Fourier domain – (magnitude) complex harmonic components

2 f  0 f  0-f  0 f  0-2

 g 0 g 2 g -2

 f  0-4

 g -4 g 4

4 f  03 f  0-3 f  0

2

2

sin( )i

i d  g gd 

i d 

00

0

/42

2/4

0

2( )

T  j i t 

iT 

 g g t e dt T 

1

2

• small-signal gain in the presence of a large signal

1   /   f   0  1   /  2   f   0  

-   g  =   g  m   /  2  d   /  2   f   0  

t  

i  OUT   

v  S   

=  d  i   d  v  S    g   IN    OUT   

   

   

 

Page 8: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 8/57

A. Tasic © 20098

Oscillation Condition• harmonics: g m-cell and oscillation signal

• convolution:

• oscillation signal:

• oscillation condition:

 g 0

2 f  0 f  0-f  0 f  0-2

 g 2 g -2

vS  / 2 vS  / 2

 g 0

2 f  0 f  0-f  0 f  0-2

 g -2

 g 0 g 2vS  / 2 vS  / 2

vS  / 2 vS  / 2

0 0 0 00 0 2 2 0 2

( ) ( ) ( ) ( )( )

2 2 2 2

S S S S  S TK S TK

v f v f v f v f    v g g g g R g g v R

0 2 TK  g g G

small-signal loop gain:

k =R TK g m/2

duty cycle:

d=1/(2k )

Page 9: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 9/57

A. Tasic © 20099

0

( ) N 

v f  

2  f  0  f  0-f  0  f  0-2

 g 0

0

( ) N 

v f  0( ) N v f  0( ) N v f  

 g 2 g -2

0( ) N v f  

2  f  0  f  0-f  0  f  0-2

 g 0 0( ) N v f  0( ) N v f  

0( ) N v f   g 0 g 0 g 0

LC-Tank Noise Folding• convolution: g 0 and g 2 harmonics and LC-tank noise

0( ) N v f  

2  f  0  f  0-f  0  f  0-2

 g 0

0( ) N v f  0( ) N v f  

0( ) N v f  

 g 2 g -2

0( ) N v f  

2  f  0  f  0-f  0  f  0-2

0( ) N v f   0( ) N v f  0( ) N v f   g -2 g 2 g 2 g -2

Page 10: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 10/57

A. Tasic © 200910

• LC-tank noise contribution:

LC-Tank Noise Folding

, 0 0 0 2 0( ) ( ) ( ) N O N N i f g v f g v f    

, 0 0 0 2 0( ) ( ) ( ) N O N N i f g v f g v f    

, 0 0 0 2 0( ) ( ) ( ) N O N N i f g v f g v f    

, 0 0 0 2 0( ) ( ) ( ) N O N N i f g v f g v f    

0( )

 N v f  

2 f  0 f  0-f  0 f  0-2

 g 0 0( )

 N v f  

0( ) N v f  0

( ) N 

v f   g 0 g 0 g 0

0( ) N v f  

2 f  0 f  0-f  0 f  0-2

0( ) N v f   0( )

 N v f  

0( ) N v f   g -2 g 2 g 2 g -2

Page 11: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 11/57

A. Tasic © 200911

LC-Tank Noise Contribution• phase-modulating noise component:

• LC-tank noise transfer function:

2 2 2 220 22( ) ( ) 2 ( )2 ( ) 4

( ) 14 4 4 4

 N N  PM  TK TK TK  TK  TK TK 

TK TK TK TK  

 g g v R G v Ri R KTG F R

 KTG KTG KTG KTG

• LC-tank noise factor:

, 0 , 0 , 0 , 0

1( ) ( ) ( ) ( )2

 PM N O N O N O N Oi i f i f i f i f    

0 2 0 0 2 0( ) ( ) ( ) ( ) PM N N i g g v f g g v f    

• phase-related noise power (k >>1, g =g 0=g 2):

2 2 20 2( ) ( )TK TK   g R g g G

2 2 2

0 2( ) ( ) ( ) PM N TK TK  i R g g v R

C

Page 12: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 12/57

A. Tasic © 200912

0

( ) N 

v f  

2 f  0 f  0-f  0 f  0-2

 g 0

0

( ) N 

v f  0( 3 ) N v f  0( 3 ) N v f  

 g 2 g -2

0( )

 N v f  

2 f  0 f  0-f  0 f  0-2

 g 0 0( )

 N v f  

0( )

 N v f  

0( )

 N v f   g 0 g 0 g 0

0( ) N v f  

2 f  0 f  0-f  0 f  0-2

0( ) N v f   0( ) N v f  0( ) N v f   g -2 g 2 g 2 g -2

 f  0-4

 g -4

0(3 ) N v f  0(3 ) N v f  

 g 4

0( ) N v f  0( ) N v f  

4 f  03 f  0-3 f  0

g m -Cell Noise Folding• convolution: g 0 and g 2 harmonics and f 0 g m-cell noise

• g m-cell noise around odd multiples of the oscillation frequency is

folded to the LC-tank noise around the oscillation frequency

Page 13: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 13/57

A. Tasic © 200913

g m -Cell Noise Contributions

2 22 (2 ) 2 4(2 ) 2

4 4

 PM  B TK B B B TK 

TK TK  

i r  kG KTr   F r kr G kc

 KTG KTG

• g m-cell noise factors:

• phase-related noise power:22 2 2 2 2 22

2 2 21 2( ) ( ) ( ) ( ) 2 ( )

2 PM N N N 

im IN i i m IN m IN m IN  

 g i g g g v g v g dg v g  d d 

• g m-cell noise transfer function:

2 2 2 2 21( ) 2 2 ( ) 2 ( )

2 2

m

m IN TK TK  

 g  g g dg d kG kG

2 22 (2 ) 2 2 / 1(2 ) /

24 4

 PM  C  TK mC TK m

TK TK  

i I  kG KT g   F I kG g 

 KTG KTG

Bi C t S N i

Page 14: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 14/57

A. Tasic © 200914

Bias Current-Source Noise

Transfer Function• g m-cell large-signal V -to-I transfer function

 I 

V  IN 

1 /f  0

OUT 

1 / f  

1

-1

 I OUT 

0

• Fourier domain – (magnitude) complex harmonic components

2 f  0 f  0-f  0 f  0-2

c1c-1

 f  0-4

c-3 c3

4 f  03 f  0-3 f  0

2 1

sin((2 1) / 2)

(2 1) / 2i

ic

i

Page 15: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 15/57

A. Tasic © 200915

• BCS noise factor:

• phase-related noise power:

• BCS noise transfer function:

22 ( ) (1 2 ) 2 (1 2 )

( )4 4 4

1 1(1 2 ) ( ) (2 ) (2 )

2 2

 PM  BCS  m B m TK  BCS 

TK TK TK  

C B

i I  KTg r g   KT kG kc F I 

 KTG KTG KTG

k kc k kc k F I F r  

BCS Noise Contribution

2,2 2( ) 1

( ) ( )4 4

 PM DIFF BCS  PM BCS N BCS 

i I i I i I  

2 1( )

4 BCS  g I 

BCS noise around even multiples of the oscillation frequency is

folded to the LC-tank noise around the oscillation frequency

Ph N i M d l f

Page 16: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 16/57

A. Tasic © 200916

Phase-Noise Model of 

Bipolar Switching LC-Oscillators

• Noise factor:( ) (2 ) (2 ) ( )

1 2 1 1 21 ( ) 1 (1 ) ( )

2 3 2 2 3

TK C B BCS   F F R F I F r F I 

 F kc k kc k kc k 

2 2 2

( ) (2 ) (2 ) ( ) 4

(4 ) (4 )S 

TK C B BCS TK  

TOT TOT  

 R I r I KTG F 

C v C 

L L L L  L 

• Phase noise:

2

2 2

1 21 (1 ) ( )

4 2 3( )8(4 )

TK 

T TOT 

k kc k   KTG

V C k L 

8S  T v kV 

Ph N i M d l f

Page 17: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 17/57

A. Tasic © 200917

• Constant phase-noise contributions

• LC-tank noise contribution ~ 1

• g m-cell current shot noise contribution ~ ½

• Small-signal loop-gain related contributions

• g m-cell base-resistance noise contribution ~ 0.66ck 

• phase-noise contribution of the bias current source is

k -times larger then the noise contribution of the g m-cell ~

k (½+ck )!

Phase Noise Model of 

Bipolar Switching LC-Oscillators

1 2 11 ( )2 3 2

 F kc k kc

Page 18: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 18/57

A. Tasic © 200918

• high ss loop-gain, high quality LC-tank, BCS noise present:

2

1 1( )

3 1 12 2~ ~

5 10

k kc kc

k k k 

e.g., k >>1(=10), c <<1(~0.01)

2

7 3(1 )

56 2~ ~1

4

e.g., k~1(=2), c ~1(~0.5)

Low/High-Performance VCO Designs

• low ss loop-gain, low quality LC-tank, BCS noise present:

• high ss loop-gain, high quality LC-tank, BCS noise eliminated:

e.g., k >>1(=10), c <<1(~0.01)

2 2

1 21

7.8 1 1 12 3~ ~5 1010

kc

k k L 

Page 19: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 19/57

A. Tasic © 200919

Single/Double-Switch CMOS LC-VCO

2

,( ) 2 N BCS m CS i I KT g  

2( ) 2 N D mi I KT g  

2 ( ) 2 N TK TK i G KTG

TK  N 

m

Gd 

 g 

Q1 Q2

Q3 Q4

Q2

QCS

i D1 i D2

i BCS 

Q1

i D1 i D2

i BCS QCS

i D3 i D4

 L/ 2

iGTK 

2C 

 RTK  / 2 RTK  / 2

 L/ 2

2C 

V  DD

 L/ 2

iGTK 

2C 

 RTK  / 2 RTK  / 2

 L/ 2

2C 

2

TK C 

m

Gd 

 g 

2

, ,( ) 2 N D P P m P i I KT g  

2

, ,( ) 2 N D N N m N i I KT g  

Page 20: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 20/57

A. Tasic © 200920

Phase Noise Model of 

CMOS LC-Oscillators

,

( ) (2 ) ( )

1 /(4 )

SS TK D BCS  

SS m CS TK  

 F F R F I F I 

 F g G

2 2 2

( ) (2 ) ( ) 4

(4 ) (4 )S 

TK D BCS TK  

TOT TOT  

 R I I KTG F 

C v C 

L L L L 

• Phase noise:

,

22

1 /(4 )4

2(4 ) ( )

m CS TK  TK SS 

TAIL TK 

 g G KTG

C   I R

• Noise factor ( N = P , g m,N =g m,P ):

,

( ) (4 ) ( )

1 /

 DS TK D BCS 

 DS m CS TK 

 F F R F I F I 

 F g G

,

22

1 /4

4(4 )( )

m CS TK  TK  DS 

TAIL TK 

 g G KTG

C  I R

f

Page 21: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 21/57

A. Tasic © 200921

Phase Noise Model of 

CMOS LC-Oscillators

• Constant phase-noise contributions

• LC-tank noise contribution ~ 1

• g m-cell drain-current thermal noise contribution ~

• Small-signal loop-gain related contributions (?)

• bias current source noise contribution ~  g m,CS /GTK  (k  )

,1 /m CS TK   F g G

Page 22: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 22/57

A. Tasic © 200922

CMOS vs. Bipolar LC-Oscillators

1 21

2 3 BIP  F kc

1CMOS  F 

• noise factors (for removed BCS noise):

• bipolar VCO better for the same power consumption (v s,BIP =v s,CMOS )

3 2 5

2 3 3kc  

8

TK  B

 Rkr 

• e.g., k =10, R TK =800

80010

80 Br 

• e.g., k =10, R TK =80

801

80 Br 

 

Page 23: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 23/57

A. Tasic © 200923

CMOS vs. Bipolar LC-Oscillators

• power consumption figure of merit:

• V CC =1.8V, v s,BIP =0.4V, v s,SS-CMOS =1.2V, (3I CC,BIP =I CC,SS-CMOS)

2

0

10log ( ) CC CC   FOM V I L 

4.8 BIP SS CMOS  FOM FOM dB

• V CC =1.8V, v s,BIP =0.4V, v s,DS-CMOS =1.2V, (1.5I CC,BIP =I CC,DS-CMOS)

7.8 BIP DS CMOS  FOM FOM dB

Page 24: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 24/57

A. Tasic © 200924

Phase-Noise Model Conclusions

Parametric Phase-Noise Model electrical circuit parameters (ss loop gain)

worst-case phase noise (bandwidth unlimited)

Bipolar vs. CMOS LC-Oscillators bipolar ss loop-gain related contributions

v S,BIP~k (<<V CC ), v S,CMOS~V CC 

bipolar capacitive tapping for larger v S,BIP, butalso larger k -related noise contributions and

power consumption

Page 25: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 25/57

A. Tasic © 200925

Suppress ion o f B ias Curren t-Source No ise 

in 

LC-Osci l lators 

Page 26: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 26/57

A. Tasic © 2009

Outline

• Contribution of Bias Current-Source Noiseto Phase Noise of LC-Oscillators

• Techniques for Reduction of Bias Current-

Source Noise• Noise Analysis of Degenerated Bias

Current Source

• Bias Noise Suppression - Design Example

26

Page 27: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 27/57

A. Tasic © 200927

VCO Noise Contributions

LC-tanknoise ~ 1

transconductor 

noise ~ 0.5+c •k 

bias current-source

noise ~ (0.5+c •k )•k 

Q1 Q

2

QCS 

v B1

v B2

iC 1 iC 2

i B2i B1

i BCS 

C  A

C  B

C  A

C  B

 I TAIL

C  C 

 L

V V 

iGTK 

V CC 

V TUNE 

~~

VCO N i C t ib ti

Page 28: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 28/57

A. Tasic © 200928

VCO Noise Contributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 6 8 9.6

r B,CS 

I C,CS 

r B 

I C 

R TK 

BCS:~85%

g m :

~15%

• f 0~5.74GHz, R TK ~340 , n~1.65, c ~0.25, V CC =2.2V

Page 29: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 29/57

A. Tasic © 200929

Bias Noise Reduction Techniques

resona ntinductivedegeneratio n(RID)resistive degeneration(RD)commonemi tter(CE)

high supply

required large area if 

integrated

noise injection if 

discrete

transconductor 

noise always ON

reduced output

impedance

resistive

degenerationinductive

degeneration filtering?

V IN 

I TAIL

V IN 

I TAIL

R D

LD

V IN 

I TAIL

+

-

C D

Page 30: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 30/57

A. Tasic © 200930

Capacitive Filtering

 AC short 

 AC open

20

1

d  /  0 f  2

1/ f  0

1/ f  0

0

d’  /  0 f  2

1

1' (1 )2

d d 

'(2 ) ~2

n F I k 

1

2d 

(2 ) ~ 2C 

n F I 

• for k =10, d =5%, d’ =52.5%, and F’>F 

Bias Current Source with

Page 31: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 31/57

A. Tasic © 200931

Bias Current Source with

Resonant-Inductive Degeneration

LRID matched to C  at 2f 0

r B,CS noise contribution reduced

transconductance gain small at resonance series resonance

I B,CS noise contribution small

common-base like configuration (gain of 1)

I C,CS noise contribution removed

parallel resonance

emitter open at resonance (I C,CS floats)

LRID

V IN 

I TAIL

VCO Noise Contributions

Page 32: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 32/57

A. Tasic © 200932

VCO Noise Contributions

after RID applied to BCS

• f 0~5.74GHz, LRID~1.3nH, R TK ~340 , n~1.65, c ~0.25, V CC =2.2V

0%

20%

40%

60%

80%

100%

4 6 8 9.6

r B,CS  I C,CS 

r B 

I C 

R TK 

BCS:

~6%

g m :

~94%

Page 33: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 33/57

A. Tasic © 200933

to groundto ground

to TCS transistors to ground

VCO w/ RID vs. VCO w/o RID

Ph N i ( / RID / RID)

Page 34: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 34/57

A. Tasic © 200934

with RID

without RID

Phase Noise (w/ RID vs. w/o RID)

• 6dB phase-noise improvement with RID

• -112dBc/Hz @1MHz from 5.7GHz @ 4.8mA&2.2V

Page 35: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 35/57

A. Tasic © 200935

RID Conclusions

BCS noise >> g m-cell and LC -tank noise

Resonant inductive degeneration good suppression of high frequency BCS noise

low voltage operation

small chip area (vs. discrete solutions)

BCS DC noise upconversion

large area (vs. resistive degeneration) poorer noise suppression at high supplies (vs.

resistive degeneration)

Page 36: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 36/57

A. Tasic © 200936

Oscillator Conclusions

• Spectral Analysis of Noise in LC-Oscillators

• Phase-Noise Model

• LC-tank, g m-cell, bias current sourcecontributions

• Bipolar vs. CMOS LC-Oscillators

• Oscillator Noise Reduction Methods• Resonant-Inductive Degeneration

Page 37: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 37/57

A. Tasic © 200937

Future Worries

• Low-(Supply and Swing)-Voltage Operation

• Linear and Quasi-Linear Phase-Noise Model

• Low-Performance Oscillators• Noise-Reduction Methods

Page 38: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 38/57

A. Tasic © 200938

Worri less 

Low-Voltage LC-Osci l lators 

L V lt Bi l LC VCO

Page 39: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 39/57

A. Tasic © 200939

Low-Voltage Bipolar LC-VCO

LC-tank(fixed or tunable)

transconductor and C-coupling

f 0-tuning

C C  C C 

 R B

 R B

V  V 

Q1 Q

2I  BIAS 

 L

V CC 

V TUNE 

C  C 

 R RD R

 RD

QCS

 R RD-CS 

resistive

degeneration

bias

current

L V lt CMOS LC VCO

Page 40: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 40/57

A. Tasic © 200940

Low-Voltage CMOS LC-VCO

LC-tank

(fixed or tunable)

transconductor 

f 0-tuning

resistive

degeneration

V  V 

Q1 Q2

 L

V CC 

V TUNE 

C  C 

 R RD R

 RD

 

V  I  BIAS,TUNE  V  I  BIAS,TUNE  bias current

Pros of Emitter (Source) Tuned

Page 41: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 41/57

A. Tasic © 200941

Pros of Emitter (Source)-Tuned

LC-VCOs

Low supply voltage operation - single transistor 

between rails

Stable g m-cell bias from resistive degeneration Controlled degeneration/bias current/swing

from triode MOS transistor 

(Large) frequency-tuning range combined emitter/LC-tank tuning

Pros of Emitter-Tuned LC-VCOs

Page 42: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 42/57

A. Tasic © 200942

Pros of Emitter-Tuned LC-VCOs

Good phase noise – trade-off between

degeneration/bias current/voltage swing g m-cell noise suppressed at all times

(large) voltage swing – trade-off between

resistive degeneration and bias current lossy emitter varactor away from LC-tank

superior high-frequency (e.g. 60GHz)

performance over tail-biased VCOs

1/f noise contribution large for small transistors

in tail-biased VCOs

1/f noise contribution reduced with degeneration

in emitter-tuned VCOs at all times

Page 43: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 43/57

A. Tasic © 200943

Mixer Noise Fac to r 

(from Noise Fac tor o f LC-Osci l lators) 

Page 44: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 44/57

Folding of Mixer Noise Components

Page 45: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 45/57

A. Tasic © 200945

( ) N 

v

2 f  0 f  0-f  0 f  0-2

( ) N 

v

0( )

 N v f  

2 f  0 f  0-f  0 f  0-2

c1

0( )

 N v f  

0( 3 )

 N v f  

0( 3 )

 N v f  

c3

c-1

 f  0-4

c-3

0(3 )

 N v f  

0(3 )

 N v f  

0( )

 N v f  

0( )

 N v f  

4 f  03 f  

0-3 f  

0

1

2 f  0 f  0-f  0 f  0-2

 g 0 g -2 g 2

3 f  0-3 f  0

0( 2 )

 N v f  

0( 2 )

 N v f   ( )

 N v( )

 N v 0

(2 ) N 

v f  0

(2 ) N 

v f  

Folding of Mixer Noise Components

RC load

switching pair 

g m cell

• RC load noise components at offset frequency

• switching pair noise components around even LO

multiples

• g m-cell noise components around odd LO multiples

CMOS Mixer Noise Power

Page 46: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 46/57

A. Tasic © 200946

CMOS Mixer Noise Power 

• g m-cell noise contribution

• switching pair noise contribution

• total output noise power 

• RC-load noise contribution2 2

( ) 2 ( ) 4 N  NF TOT TOT TOT v R v R KTR

2 2 2(2 ) ( ) 2 N  NF D TK D TOT v I dR i I KT R

22 2( ) 2 ( ) /

4 N 

TK  NF m m TOT TOT 

 Rv g i g KTR G

2 2 (2 )2

CMOS TOT  

TOT 

v KTRG

Bipolar Mixer Noise Power

Page 47: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 47/57

A. Tasic © 200947

Bipolar Mixer Noise Power 

• gm-cell noise contribution

• switching pair noise contribution

• total output noise power 

• RC-load noise contribution2 2

( ) 2 ( ) 4 N  NF TOT TOT TOT v R v R KTR

2 2 2(2 ) ( ) N  NF C TK C TOT v I dR i I KTR

2 ( ) 2 (1 2 ) NF m TOT v g KTR k kc

2 1 22 2 (1 2 )

2 3 BIP TOT v KTR kc k kc

2 24 2(2 ) 2 2 ( 0.5 )3 3

 NF B TOT TOT v r KTR dk c KTR kc d k  

(CMOS) VCO vs Mixer Noise Power

Page 48: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 48/57

A. Tasic © 200948

(CMOS) VCO vs. Mixer Noise Power 

• 2X more correlated VCO folded noise components

• x½ for correlated VCO single-side band phase-noise

related components (2X½=1X VCO vs. Mix noise

components)

• load noise contribution: VCO gain=(g 0+g 2)2R TK 

2=1 vs.

Mix gain= ½(1+1)2=2

• switching pair noise contribution: VCO gain=1 vs. Mixgain=1

• tail noise contribution: VCO gain=1 vs. Mix gain=2 (½

VCO PN contribution lost in AM noise from c 0 conversion)

2, 2 (1 )

4CMOS VCO TOT  

TK 

v KTRG

2, 2 (2 )

2CMOS MIX TOT  

TOT 

v KTRG

(Bipolar) VCO vs. Mixer Design

Page 49: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 49/57

A. Tasic © 200949

(Bipolar) VCO vs. Mixer Design

• Constant noise-figure contributions

• RC-load noise contribution ~ 2

• switching pair current shot noise contribution ~ ½

• Small-signal gain related contributions• switching pair base-resistance and g m-cell noise

contributions ~ k 2 and d 

• Mixer small-signal gain independent of LO signal

swing

• Trade-off between LO swing (~1/d ) and switching

pair small-signal gain (~k )

2 21 42 2 (1 2 )

2 3 BIP TOT v KTR dk c k kc

Page 50: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 50/57

A. Tasic © 200950

System 

Noise Issues 

System Phase Noise

Page 51: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 51/57

A. Tasic © 200951

System Phase Noise

X

XVCO_Q

VCO_I

PN=f 2(PN VCO)

XVCO

VCO

VCO_Q

VCO_I

/n

X

X

VCO_I

VCO_Q

PN VCO

PN VCO

PN=f 1(PN VCO)

Mixer Noise Factor in a System

Page 52: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 52/57

A. Tasic © 200952

Mixer Noise Factor in a System

XR S

R S

R L

F MIX 

F MIX 

LNA

F LNA

M

R SR S X

R S

R L

F MIX 

F MIX 

R S

F LNA

F=f 1(F MIX )

F=f 2(F MIX )XF MIX 

F MIX 

R S

R S /2 

900

power

combiner

LNA Noise Factor in a System

Page 53: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 53/57

A. Tasic © 200953

LNA Noise Factor in a System

X

X

LNAVCO_Q

VCO_I

X

XVCO_Q

VCO_I

X

X

VCO_Q

VCO_I

+

-F LNA

F MIX 

F MIX 

F=F LNA

F=f 1(F LNA)

F=f 2(F LNA)

F=f 3(F LNA) F=f 4(F LNA)

IR

BBF Noise in a System

Page 54: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 54/57

A. Tasic © 200954

BBF Noise in a System

+-

-+

+-

-+

RF+

RF-

I+

Q+

I-

Q-

R R TIA

LNA+

• BBF Noise Power Transfer vs. passive mixer impedance

degeneration and LO duty cycle

Receiver Noise (Signal)

Page 55: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 55/57

A. Tasic © 200955

Receiver Noise (Signal)

Transformations

• Noise Power Transfer  – power matched

interface

• Noise Power Combining• Noise Voltage/Current Transfer - resonant-

matched interface

• Noise Voltage/Current Combining

• Correlated/Uncorrelated Combining (e.g.,

I-mixer gm-cell noise splits between I and Q

paths)

Page 56: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 56/57

A. Tasic © 200956

Conclus ions 

Conclusions

Page 57: PCIRF_6_9_VCO

7/29/2019 PCIRF_6_9_VCO

http://slidepdf.com/reader/full/pcirf69vco 57/57

Conclusions

• Spectral Analysis of Noise in LC-Oscillators

• LC-tank, g m-cell, bias current source noisecontributions

• Bipolar and CMOS VCO Noise Factors

• LC-Oscillators Noise Reduction Methods

• Mixer Noise Factor from VCO Noise Factor 

• Oscillator Phase Noise in Receiver’s SNR

• Mixer Noise Factor in a Receiver 

• LNA Noise Factor in a Receiver