PCIRF_6_8_VCO

download PCIRF_6_8_VCO

of 93

Transcript of PCIRF_6_8_VCO

  • 7/29/2019 PCIRF_6_8_VCO

    1/93

    [email protected] 2006 1

    Osci l latorsAleksandar Tasic

    Electronics Research LaboratoryDelft University of Technology

  • 7/29/2019 PCIRF_6_8_VCO

    2/93

    [email protected] 2006 2

    UMTS VCO Requirements

    VCO design parameters Design requ irem entOscillating frequency 2.1GHz

    Tuning range 400MHzVoltage swing 0.7V

    Phase noise -110dBc@1MHz

    Supply voltage 3V

    Power consumption 10mW

    Technology parameters ValuesTechnology BiCMOS

    Number of metals 4

    Transit frequency 50GHzMIM capacitors available

    Varactors available

  • 7/29/2019 PCIRF_6_8_VCO

    3/93

    [email protected] 2006 3

    Outline

    LC Oscillators

    Oscillation Signal Steady-State Amplitude

    Interpretation of Noise in Oscillators Linear Phase-Noise Model

    Spectral Analysis of Phase Noise

    Noise Suppression of Bias Current Sources

    LC-Oscillator Design Procedure

  • 7/29/2019 PCIRF_6_8_VCO

    4/93

    [email protected] 2006 4

    LC Osc il lato rs

  • 7/29/2019 PCIRF_6_8_VCO

    5/93

    [email protected] 2006 5

    Negative Resistance Oscillator

    C CL,

    UT

    VCC

    RLV V

    Q1 Q2

    ITAIL

    QCS

    QCS

    resonating LC tank

    active pair

    biasing current source

    Mg

    2/

    10

    VLC

  • 7/29/2019 PCIRF_6_8_VCO

    6/93

    [email protected] 2006 6

    Negative Resistance Oscillator

    - Simplified Model

    LC/10

    TKM Gg oscillation condition

    2/mM gg

    oscillation frequency

    2/CC V

    GTK C L-gM

    +

    V

    -gMV

  • 7/29/2019 PCIRF_6_8_VCO

    7/[email protected] 2006 7

    202

    0

    )(2)(

    CRL

    RG C

    LTK

    tank conductance

    0

    0

    1L C

    L V C

    LQ Q

    R C R

    quality factors

    CL

    TKQQL

    G111

    0

    C

    2R C

    L

    RL

    GTK C L

    LC Tank

  • 7/29/2019 PCIRF_6_8_VCO

    8/[email protected] 2006 8

    Steady-State

    Osc il lat ion Signal

    Ampl i tude

  • 7/29/2019 PCIRF_6_8_VCO

    9/[email protected] 2006 9

    Sub-Outline

    Differential Pair Characteristic

    Large-Signal Conductance Steady-State Oscillation Signal Amplitude

  • 7/29/2019 PCIRF_6_8_VCO

    10/[email protected] 2006 10

    Amplitude Stabilization

    Amplitude regulator

    amplitude control mechanism

    Resonator Resonator

    ALC

    y(x)y(x)

    Nonlinear amplifier

    well defined nonlinearity

    timing reference loss

    compensation

    loop-gain control

  • 7/29/2019 PCIRF_6_8_VCO

    11/[email protected] 2006 11

    IOUT

    VIN

    1/f0

    1/f0

    Differential Characteristic

    tcosx

    tanhI)t(iOUT2

    0

    I0

    -I0

    tcosV)t(vIN 1

    TT VVV/Vx 11

    n

    nOUT tncosaI...tcosItcosItcosI)t(i 1253 120531

    current harmonic content

    )x(aI)x(I nn 0 d)ncos(cosx

    tanh)x(an2

    1

    Q1 Q2

    IOUT

    VIN

    I0

    2

  • 7/29/2019 PCIRF_6_8_VCO

    12/[email protected] 2006 12

    Large Signal (Trans)Conductance

    II

    VV

    VI

    VIxG T

    T

    M

    0

    1

    1

    0

    1

    11 )(

    x

    xag

    I

    I

    xgxG MmM

    )(2

    1)( 1

    0

    11

    x

    xagxG MM

    )(2/)(

    11

    GM1(x)/gM

    x

    1

    0.5

    1 10

    gainloopsignalsmall

    1

    uctance)trans(condsignalsmall

    ductance(trans)conlfundamentasignallarge

    1011 jHg

    g

    VGM

    M

    M

    steady state oscillation condition

    1011 jHVGM

  • 7/29/2019 PCIRF_6_8_VCO

    13/[email protected] 2006 13

    Current Harmonic Components

    0

    120531 12cos...5cos3coscos)(n

    nOUT tnaItItItIti

    output current

    close to square wave ifV1 >> VT

    n

    I

    n

    I

    I

    TAIL

    n

    24 0

    harmonics of the square-wave signal current

  • 7/29/2019 PCIRF_6_8_VCO

    14/[email protected] 2006 14

    11

    1

    1

    111

    2)(

    V

    I

    V

    I

    I

    I

    V

    IVG TAILTAIL

    TAIL

    Mkg

    VG

    M

    M 1)( 11

    lfundamentacurrentresistancetanklfundamentavoltage

    TKTAILRIV2

    1

    steady state fundamental amplitude

    small signal loop gain (k)

    MTKgRk

    large signal conductance and steady state oscillationcondition

    Steady-State Oscillation Amplitude

  • 7/29/2019 PCIRF_6_8_VCO

    15/[email protected] 2006 15

    So Far

    VCO design parameters Design requi rementOscillating frequency 2.1GHz

    Tuning range 400MHz

    Voltage swing 0.7V

    Phase noise -110dBc@1MHz

    Supply voltage 3V

    Power consumption 10mW

    Technology parameters ValuesTechnology BiCMOS

    Number of metals 4

    Transit frequency 50GHz

    MIM capacitors available

    Varactors available

  • 7/29/2019 PCIRF_6_8_VCO

    16/[email protected] 2006 16

    In terp retat ion o f

    Noise in

    Osci l lators

  • 7/29/2019 PCIRF_6_8_VCO

    17/[email protected] 2006 17

    Sub-Outline

    Signal Phasor Description

    Signal Spectral Description Phase-Noise Definition

    Phase-Noise Specification

  • 7/29/2019 PCIRF_6_8_VCO

    18/[email protected] 2006 18

    Bennett Noise Interpretation

    kkk tatn cos)(

    White noise spectrum (power spectral density)

    One noise component (time domain)

    AfN )(

    ak known amplitude

    k known angular frequency

    k random phase (constant and uniform)

    )2( A

  • 7/29/2019 PCIRF_6_8_VCO

    19/[email protected] 2006 19

    Oscillation Signal Description

    Ideal vs. actual oscillation signalV0cos 0t vs. V0[1+a(t)]cos[ t+ (t)]

    a(t) amplitude modulated component

    (t) phase modulated component

  • 7/29/2019 PCIRF_6_8_VCO

    20/[email protected] 2006 20

    Oscillation Signal Phasor

    Description

    in-phase component (AM) can be removed

    quadrature-phase component (PM) is unavoidable

    )(ta

    )(t

    a(t)

    n(t)

    v(t)

    )(t

    ttttattttatv tn 0000)( sin)(cos)(cos)(cos)](1[)(

  • 7/29/2019 PCIRF_6_8_VCO

    21/[email protected] 2006 21

    Oscillation Signal Phasor

    Description

    a(t)

    n(t)

    v(t)

    )(t

    ttttattttatv tn 0000)( sin)(cos)(cos)(cos)](1[)(

    amplitude control

    mechanism

  • 7/29/2019 PCIRF_6_8_VCO

    22/[email protected] 2006 22

    Oscillation Signal Spectral

    Description

    =

    +

    AM

    PM

    f0 f+f0

    oscillating signal and

    noise component

    amplitude modulated

    component

    phase modulated

    component

  • 7/29/2019 PCIRF_6_8_VCO

    23/[email protected] 2006 23

    oscillating signal and

    noise component

    amplitude control

    mechanism

    phase modulated

    component

    Oscillation Signal Spectral

    Description

    =

    +

    AM

    PM

    f0 f+f0

  • 7/29/2019 PCIRF_6_8_VCO

    24/[email protected] 2006 24

    Phase Spectrum vs. Oscillation

    Signal Spectrum

    )()()()()( 0000 fffffffffV

    0

    f0-f0

    ( )f phase spectrum

    oscillation signal spectrum

    ttAtA

    ttAttAtv

    kkk

    kkk

    00

    00

    sinsincos

    sincos)(cos)(

  • 7/29/2019 PCIRF_6_8_VCO

    25/[email protected] 2006 25

    Phase Noise Definition

    ratio of the noise power in a 1Hz bandwidthat frequency f0+ fand the carrier power

    ( )=10log[Pside-band( 0+ )/Pcarrier( 0)] [dBc/Hz]L

  • 7/29/2019 PCIRF_6_8_VCO

    26/93

    [email protected] 2006 26

    Why is Phase Noise Important?

    Reciprocal mixing

    desired signal covered by thephase-noise skirt of the interferer

  • 7/29/2019 PCIRF_6_8_VCO

    27/93

    [email protected] 2006 27

    Phase Noise Specification

    Typical blocking profile

    Specra of downconverted signals

    BW

    blocker

    S/N

    desired signal (MDS)

    f

    ( f)=SMDS-SBLOCK-10logBW-S/N [dBc/Hz]

    S/N=SMDS-NxBW

    =N/SBLOCKL

    L

  • 7/29/2019 PCIRF_6_8_VCO

    28/93

    [email protected] 2006 28

    Linear

    Phase-NoiseModel

  • 7/29/2019 PCIRF_6_8_VCO

    29/93

    [email protected] 2006 29

    Sub-Outline

    Generic Linear Phase-Noise Model

    Circuit-Specific Linear Phase-Noise Model

    G

  • 7/29/2019 PCIRF_6_8_VCO

    30/93

    [email protected] 2006 30

    Generic Linear Phase-Noise

    Model - Outline

    Linear Oscillator Model

    LC-Tank noise

    active part noise

    (Phase) Noise Factor

    Phase-Noise Properties

    Li O ill t M d l

  • 7/29/2019 PCIRF_6_8_VCO

    31/93

    [email protected] 2006 31

    Linear Oscillator Model

    GTK C L

    -gM

    LC-tank impedance (noise shaping)

    2

    0

    2

    22

    0

    22

    2

    0

    0

    00

    00

    44

    1

    22

    Q

    R

    QG)(Z

    C

    j

    /

    Lj)(Z

    TK

    TKTK

    TK

    G

    CQ

    LGQ

    0

    0

    1

    LC-tank quality factor

    LC-tank noise

    transconductornoise

    no tail-currentsource noise

  • 7/29/2019 PCIRF_6_8_VCO

    32/93

    [email protected] 2006 32

    LC-Tank Noise

    GTK C L

    -gMI(GTK)

    tank resistance noise (RTK=1/GTK)

    TKTK KTGI 4

    2

    tank contribution to the equivalent voltage noise spectral density2

    2 2 2 0

    2

    0

    ( )( )

    TKTKTK

    GV I Z KT

    C

  • 7/29/2019 PCIRF_6_8_VCO

    33/93

    [email protected] 2006 33

    Active Part Noise

    GTK C LI(GTK)-gM

    I(gM)

    active part contribution to the equivalent voltage noisespectral density

    2

    0

    2

    0

    2

    )(A

    C

    GKTV TKAP

    active part noise factorA

    excess negative conductance

    additional noise of the active devices

    ideallyA=1 (i.e., gM=GTK, and no excess noise from the active part)

  • 7/29/2019 PCIRF_6_8_VCO

    34/93

    [email protected] 2006 34

    Phase Noise

    VN,TOT

    IN,TOT

    222

    APTKTOT VVV

    2

    0

    2

    0

    2

    )(F

    C

    GKTV TKTOT

    2

    0

    2

    2

    QP

    FkT

    S

    )L(

    2

    0

    22

    2

    1

    2/2

    1) QFGVKTV

    V

    TKSS

    TOT

    L(

    total voltage noise spectral density

    oscillator noise factorF=1+A

    resulting phase noise

  • 7/29/2019 PCIRF_6_8_VCO

    35/93

    [email protected] 2006 35

    Phase Noise Properties

    inversely proportional to tank quality factor (square)

    inversely proportional to signal power

    -20dB/decade slope at mid frequencies (~MHz)

    directly proportional to oscillation frequency (square)

    2

    0

    2

    2

    QP

    FkT

    S

    )L(

    Leesons phase noise model

  • 7/29/2019 PCIRF_6_8_VCO

    36/93

    [email protected] 2006 36

    Phase Noise Plot

    Leesons modification to capture 1/fand flat noise part

    f/

    S QP

    FkT)(

    1

    2

    0 12

    12

    L

    1/f noise

    Thermal, shot noise

    Noise floor due to activeelements or instrumentation

    Circuit Specific Linear Phase

  • 7/29/2019 PCIRF_6_8_VCO

    37/93

    [email protected] 2006 37

    Circuit-Specific Linear Phase-

    Noise Model - Outline

    Spectral Noise Analysis

    oscillation condition

    LC-tank, gm

    -cell, current source noise

    (phase) noise factor

    Circuit Noise Analysis

    LC-tank, gm

    -cell, current source noise

    (phase) noise factor

  • 7/29/2019 PCIRF_6_8_VCO

    38/93

    [email protected] 2006 38

  • 7/29/2019 PCIRF_6_8_VCO

    39/93

    [email protected] 2006 39

    Spectral Analys iso f No ise in

    Swi tch ing

    LC-Osci l lators

    S b O tli

  • 7/29/2019 PCIRF_6_8_VCO

    40/93

    [email protected] 2006 40

    Sub-Outline

    Duty Cycle of Small-Signal gm-cell Gain Oscillation Condition

    LC-Tank Noise

    gm-cell Noise Tail-Current Source Noise

    (Phase) Noise Factor Bipolar VCO

    (Phase) Noise Factor CMOS VCO

    Bipolar vs. CMOS VCO

    Is it Indeed so Simple?

  • 7/29/2019 PCIRF_6_8_VCO

    41/93

    [email protected] 2006 41

    Is it Indeed so Simple?

    noise from the transistors Q1 and Q2 is switched ON and OFF

    noise from current source QCS is modulated by oscillator switching

    LC-tank noise

    transconductornoise

    tail-current sourcenoise

    C C

    L

    V V

    Q1 Q

    2

    QCS

    IGT

    ICIC

    IB

    VB

    VB

    ICS

    IB

    VCO N i S

  • 7/29/2019 PCIRF_6_8_VCO

    42/93

    [email protected] 2006 42

    VCO Noise Sources

    2 ( ) 2N B Bv r KTr

    2 ( ) 2 / 2N B B mi I qI KTg

    2 ( ) 2 / 2N C C mi I qI KTg

    2 ( ) 2N TK TKi G KTG

    ,2 2 2

    , , , ,

    1( ) 2 1 2 ( ) ( )

    2

    m CS

    N TCS B CS m CS B CS m CS

    F T

    gi I KT r g r g

    LC-tank noise

    base-resistance thermal noise

    collector-current shot noise

    base-current shot noise

    tail-current source output noise

    A ti P t B V lt N i

  • 7/29/2019 PCIRF_6_8_VCO

    43/93

    [email protected] 2006 43

    Active Part - Base Voltage Noise

    small signal gain in presence of a large signal

    g(t)

    2/

    2/

    2 0

    2)('

    1'

    T

    T

    tkjdtetg

    T

    ck

    Fourier domain even harmonicsc

    0 c2c4

    Fourier domain convolution = spectra shifting

    C C

    L

    V V

    Q1 Q

    2

    QCS

    QCS

    VB VB

    )(')( 02

    , kffScfS VBk

    kVBTK

    IOUT

    VIN

    dIOUT dVIN

    1/f0

    1/2f0

    gM

    A ti P t B C t N i

  • 7/29/2019 PCIRF_6_8_VCO

    44/93

    [email protected] 2006 44

    Active Part - Base Current Noise

    base current (switching) transfer function

    2/

    2/

    2 0

    2)(''

    1''

    T

    T

    tkjdtetg

    Tc

    k

    Fourier domain even harmonics

    Fourier domain convolution = spectra shifting

    C C

    L

    V V

    Q1 Q

    2

    QCS

    IBIB

    QCS

    )('')( 02

    , kffScfS IBk

    kIBTK

    :)2

    (''

    2

    BIg

    1/2f0

    1.41

    0

    1

    Active Part Collector Current Noise

  • 7/29/2019 PCIRF_6_8_VCO

    45/93

    [email protected] 2006 45

    Active Part - Collector Current Noise

    collector current (switching) transfer function

    2/

    2/

    2 0

    2)('''

    1'''

    T

    T

    tkjdtetg

    Tc

    k

    Fourier domain even harmonics

    Fourier domain convolution = spectra shifting

    C C

    L

    V V

    Q1 Q

    2

    QCS

    ICIC

    QCS

    :)2

    ('''

    2

    CIg

    )(''')( 02

    , kffScfS ICk

    kICTK

    1/2f0

    1

    0

    0

    Active Part Noise Folding

  • 7/29/2019 PCIRF_6_8_VCO

    46/93

    [email protected] 2006 46

    Active Part Noise Folding

    x

    f0 2f0 3f0

    cAP,0 cAP,2

    cAP,4

    =

    shifting of active part noise spectral components

    , 0

    2 2 2

    0 0 0 0 0 0

    2 2 2

    2 0 2 0 2 0

    2 2 2

    2 0 2 0 2 0

    ( )

    ' ( ) '' ( ) ''' ( )

    ' ( ) '' ( ) ''' ( )

    ' (3 ) '' (3 ) ''' (3 )

    ...

    TK AP

    VB IB IC

    VB IB IC

    VB IB IC

    S f f

    c S f f c S f f c S f f

    c S f f c S f f c S f f

    c S f f c S f f c S f f

    active part noise at odd multiples of the resonant frequency istransformed into the LC-tank noise at the resonant frequency

    ...2)(2

    2,

    2

    0,0, AP

    k

    kAPAPAPTK SccffS ...)3()( 00 ffSffSS APAPAP

    T il C t N i

  • 7/29/2019 PCIRF_6_8_VCO

    47/93

    [email protected] 2006 47

    Tail Current Noise

    oscillator switching model

    2

    2

    12 012

    1 /T

    /T

    t)k(jdte

    T

    a k

    Fourier domain odd harmonics

    Fourier domain convolution = spectra shifting

    a1 a3

    C C

    L

    V V

    Q1 Q

    2

    QCS

    QCS ICS

    )()( 02

    , kffSafS CSk

    kCSTK

    IOUT

    VIN

    1/f0

    1/f0

    T il C t N i F ldi

  • 7/29/2019 PCIRF_6_8_VCO

    48/93

    [email protected] 2006 48

    Tail Current Noise Folding

    shifting of tail-current source noise spectral components

    ...)6()4(

    )4()2(

    )2()()(

    0

    2

    50

    2

    5

    0

    2

    30

    2

    3

    0

    2

    1

    2

    10,

    ffSaffSa

    ffSaffSa

    ffSafSaffS

    CSCS

    CSCS

    CSCSCSTK

    tail current noise at even multiples of the resonant frequency

    is transformed into the LC-tank noise at resonant frequency

    CS

    k

    kCSTK SaffS2

    120, 2)( ...)4()2( 00 ffSffSS CSCSCS

    X

    f0 2f0 3f0

    c1 c

    3

    =

    aa

    T t l N i

  • 7/29/2019 PCIRF_6_8_VCO

    49/93

    [email protected] 2006 49

    Total Noise

    total power spectral density across the LC tank

    APTKCSTKTKTOT SSSS ,,

    near linear operation (Q1 and Q2 always ON; gM=GTK)

    2 22 2 22 2( ) 2

    2

    C BTKTOT B TK

    I IV Z I V G

    total voltage noise density across the LC tank

    22

    12

    22

    2

    22

    2

    22

    2

    222 '''''')( CSk

    kC

    k

    kB

    k

    kB

    k

    kTKTOT IaIcIcVcIZV

  • 7/29/2019 PCIRF_6_8_VCO

    50/93

    [email protected] 2006 50

    Other Noise Analysis Methods

    Linear frequency domain analysis Craninckx

    noise superimposed on the carrier

    Linear time varying analysis (Impulse Sensitivity

    Function) Hajimiri

    noise added to phase

    Nonlinear analysis Samori

    noise added to phase

    S F

  • 7/29/2019 PCIRF_6_8_VCO

    51/93

    [email protected] 2006 51

    So Far

    VCO design parameters Design requi rementOscillating frequency 2.1GHz

    Tuning range 400MHz

    Voltage swing 0.7V

    Phase noise -110dBc@1MHz

    Supply voltage 3V

    Power consumption 10mW

    Technology parameters ValuesTechnology BiCMOS

    Number of metals 4

    Transit frequency 50GHzMIM capacitors available

    Varactors available

  • 7/29/2019 PCIRF_6_8_VCO

    52/93

    [email protected] 2006 52

    Suppress ion o f No ise

    in Oscillators

    Tail-Curren t Source

    O tli

  • 7/29/2019 PCIRF_6_8_VCO

    53/93

    [email protected] 2006

    Outline

    Contribution of Tail-Current Source Noise to

    Phase Noise of LC-Oscillators

    Techniques for Reduction of Tail-CurrentSource Noise

    Analysis of Tail-Current Source Noise

    Bias Noise Suppression - Design Example

    VCO Noise Contributions

  • 7/29/2019 PCIRF_6_8_VCO

    54/93

    [email protected] 2006 54

    VCO Noise Contributions

    LC-tanknoise ~ 1

    transconductor

    noise ~ 0.5+ck

    tail-current sourcenoise ~ (0.5+ck)k

    C C

    L

    V V

    Q1 Q

    2

    QCS

    IGT

    ICIC

    IB

    VB

    VB

    CBCB

    ICS

    IB CACA

    (k=loop gain)

    TCS noise >> LC-tank noise + gm-cell noise (k>>1)

    VCO Phase Noise

  • 7/29/2019 PCIRF_6_8_VCO

    55/93

    [email protected] 2006 55

    VCO Phase-Noise

    TCS noise >> LC-tank noise + gm-cell noise

    powersignalsource)currentcell,-tank,-(LCpowernoise mgPN=

    phase noise ~ 1/k2 orconst

    TCS noise suppression with RID

    phase noise ~ 1/k2 or 1/k

    VCO noise power ~ 1 orck2

    VCO noise power ~ 1 orck

    (~k2)

    Bias Noise Reduction Techniques

  • 7/29/2019 PCIRF_6_8_VCO

    56/93

    [email protected] 2006 56

    Bias Noise Reduction Techniques

    resona ntinductivedegeneratio n(RID)resistive degeneration(RD)commonemi tter(CE)

    high supply

    required large area if

    integrated

    noise injection if

    discrete

    transconductor

    noise always ON

    reduced output

    impedance

    resistive

    degenerationinductive

    degeneration filtering?

    VIN

    ITAIL

    VIN

    ITAIL

    RD

    LD

    VIN

    ITAIL

    +

    -

    CD

    Resonant-Inductive

  • 7/29/2019 PCIRF_6_8_VCO

    57/93

    [email protected] 2006 57

    Resonant Inductive

    Degeneration (RID)

    high TCS noise

    suppressionintegration

    no voltage

    headroom

    integrated degenerative inductor (LRID)matched with base-emitter capacitance (C )

    at 2f0

    LRID

    VIN

    ITAIL

    C

    P & C f RID

  • 7/29/2019 PCIRF_6_8_VCO

    58/93

    [email protected] 2006 58

    Pros & Cons of RID

    good suppression of high frequency TCSnoise (2f0)

    low voltage operation

    small chip area (vs. discrete solutions)

    TCS DC noise upconversion

    large area (vs. resistive degeneration) poorer noise suppression at high supplies

    (vs. resistive degeneration)

    Tail-Current Source with

  • 7/29/2019 PCIRF_6_8_VCO

    59/93

    [email protected] 2006 59

    Tail-Current Source with

    Resonant-Inductive Degeneration

    LRID matched to C at 2f0

    rB noise contribution reduced

    transconductance gain small at resonance series resonance

    IB noise contribution small

    common-base like configuration (gain of 1)

    ICnoise contribution removed

    parallel resonance

    emitter open at resonance (IC floats)

    LRID

    VINITAIL

    C

    IC

    IB

    Circuit Diagram for Noise

  • 7/29/2019 PCIRF_6_8_VCO

    60/93

    [email protected] 2006 60

    Circuit Diagram for Noise

    Transfer Functions

    (VB -VE)gm

    C

    E

    B

    LRID

    rBC

    IB IC IOUT

    VB

    IC to IOUT: VB short, IB open

    IB to IOUT: VB short, ICopen

    VB to IOUT: ICopen, IB open

    Tail-Current Source Noise

  • 7/29/2019 PCIRF_6_8_VCO

    61/93

    [email protected] 2006 61

    Tail Current Source Noise

    Contributions

    2

    1( ) 1

    1/ 1 ( )

    OUT m

    BBm RID B m

    RID T

    I gf

    C r fI g j C j L r g L f

    2

    1( ) 1 1 0

    1/ 1 ( )

    OUT m

    BCm RID B m

    RID T

    I gf

    C r fI g j C j L r g L f

    1( ) ( )

    1/

    OUT Tm

    T RID RID T B

    I ff g

    L j L j C fV

    series resonance

    parallel resonance

    parallel resonance

    TCS w/ RID vs TCS w/o RID

  • 7/29/2019 PCIRF_6_8_VCO

    62/93

    [email protected] 2006 62

    TCS w/ RID vs. TCS w/o RID

    more than a factor (fT/2f0)2 noise reduction after RID

    22 2 0

    ,

    0

    1 24 0 ( ) 2

    2 2

    m TCS RID B m

    F T

    g f fI kT r g

    f f

    22

    0

    14 1 0 ( ) 2

    2 2

    m TCS B m

    F

    g fI kT r g

    f

    TCS noise without degeneration

    TCS noise with degeneration

    for (fT/2f0)=10, a factor of100 reduction

    22 2

    0,

    2CS RID CS

    T

    fI I

    f

    5.7GHzband VCO

  • 7/29/2019 PCIRF_6_8_VCO

    63/93

    [email protected] 2006 63

    LC-tankRID

    buffer-g-cell

    m

    buffer

    5.7GHz

    band VCO

    5 metals

    active area 0.1mm2

    LRID=2.6nH, 7-turns, 0.01mm2

    Phase Noise (w/ RID vs w/o RID)

  • 7/29/2019 PCIRF_6_8_VCO

    64/93

    [email protected] 2006 64

    to groundto ground

    to TCS transistors to ground

    Phase Noise (w/ RID vs. w/o RID)

    TCS noise into phase noise: w/ RID 9%, w/o RID 77%

    Phase Noise (w/ RID vs. w/o RID)

  • 7/29/2019 PCIRF_6_8_VCO

    65/93

    [email protected] 2006 65

    with RID

    without RID

    Phase Noise (w/ RID vs. w/o RID)

    6dB phase-noise improvement with RID

    -112dBc/Hz @1MHz from 5.7GHz @ 4.8mA&2.2V

    RID Conclusions

  • 7/29/2019 PCIRF_6_8_VCO

    66/93

    [email protected] 2006 66

    RID Conclusions

    resonant-inductive degeneration for a 4-foldphase noise improvement of a 5.7GHz VCO

    no voltage headroom required

    small inductance for resonance at 2f0

    cost-effective implementation in multi-layer

    technologies

    manifold oscillator phase-noise improvement

  • 7/29/2019 PCIRF_6_8_VCO

    67/93

    [email protected] 2006 67

    LC-VCO Des ign

    Procedure

    Sub-Outline

  • 7/29/2019 PCIRF_6_8_VCO

    68/93

    [email protected] 2006 68

    Sub-Outline

    VCO Specifications

    LC-Tank Design

    How to Choose LC-Tank Inductance How to Choose LC-Tank Varactor

    Active-Part Design

    UMTS VCO

  • 7/29/2019 PCIRF_6_8_VCO

    69/93

    [email protected] 2006 69

    UMTS VCO

    WCDMA Specs ValueReceiving Band (GHz) 2.11-2.17

    Channel Spacing (MHz) 5 (3.84)

    Multiplex / Modulation FDD / QPSKMDSeff (dBm) -99

    SNR (dB) / BER 7 / 1E-3Processing Gain (dB) 25Tx-Rx Isolation (dB) 50

    Blocker @ 8MHz (dB) -46

    VCO design parameters Design requi rementOscillating frequency 2.1GHz

    Tuning range 400MHzVoltage swing 0.7V

    Phase noise -110dBc@1MHz

    Supply voltage 3V

    Power consumption 10mW

    Technology parameters ValuesTechnology BiCMOS

    Number of metals 4Transit frequency 50GHz

    MIM capacitors available

    Varactors available

    (8MHz)=-99-(-46)-10log(3.84e6)-7=-129dBc/Hz

    L

    Series vs Parallel Resonator

  • 7/29/2019 PCIRF_6_8_VCO

    70/93

    [email protected] 2006 70

    Series vs. Parallel Resonator

    frequency f0=2.1GHz

    desired signal powerP=10mW

    RTK

    C L

    L=3nH, C=1.9pF, RS=2

    fundamental current and voltage

    i=100mA, v=0.2V

    L=3nH, C=1.9pF, RTK=800

    fundamental current and voltage

    i=5mA, v=4V

    QL=20

    very large current moderate current and voltage

    realistic choice

    RS

    CL

    Negative Resistance Oscillator

  • 7/29/2019 PCIRF_6_8_VCO

    71/93

    [email protected] 2006 71

    Negative Resistance Oscillator

    resonating LC tank

    active part

    biasing current source

    LC1

    0

    2/gm

    2T

    C II

    2/CC VC CL,

    UT

    VCC

    RLV V

    Q1 Q2

    ITAIL

    QCS

    QCS

    LC Tank Design

  • 7/29/2019 PCIRF_6_8_VCO

    72/93

    [email protected] 2006 72

    LC Tank Design

    LCf

    2

    10

    oscillation frequency

    2/CC V

    parasitics impose largercapacitive tuning range

    MIN,V

    PAR

    MIN,V

    PAR

    MIN,V

    MAX,V

    MIN

    MAX

    C

    C

    CC

    CC

    f

    f

    21

    2

    MIN,V

    PAR

    MIN

    MAX

    MIN

    MAX

    MIN,V

    MAX,V

    C

    C

    f

    f

    f

    f

    C

    C12

    22

    determine L and C

    determine CMAXand CMIN

    tuning range

    How to Choose L?

  • 7/29/2019 PCIRF_6_8_VCO

    73/93

    [email protected] 2006 73

    tank conductance

    CL

    TKQQL

    G111

    0

    How to Choose L?

    2

    0

    2

    2F

    V

    RRKT

    S

    CL)L(

    largerL => largerQL

    largerL => lowerGTK

    largerL => lower power consumption

    largerL => largerRL largerL => poorer

    choice ofL

    phase noise

    choose for the largest L having peak Q close to the

    operating frequency

    largerL => lowerfRES, fQ-PEAK

    largerL => lower tuning range

    L

    How to Choose C?

  • 7/29/2019 PCIRF_6_8_VCO

    74/93

    [email protected] 2006 74

    How to Choose C?

    largerC=> lowerQ

    largerC=> largerGTK

    largerC=> larger power consumption

    tank conductance phase noise 20

    2

    2F

    V

    RRKT

    S

    CL)L(2

    020

    2 )C(R)L(

    RG C

    LTK

    choice ofC

    largerC=> slightly better

    largerC=> larger tuning range

    choose forCproviding not more than the required

    frequency tuning range

    largerC=> lowerRC

    L

    Active Part Design

  • 7/29/2019 PCIRF_6_8_VCO

    75/93

    [email protected] 2006 75

    Active Part Design

    chosen LC tank parameters determine losses tobe compensated2

    02

    0

    2 )C(R)L(

    RG C

    LTK

    oscillation condition gM>GTKdetermines the very

    minimum compensating active-devices current

    2/mM gg

    cross-coupled pair conductance

    TC

    L

    TTKTmC V)C(R)L(

    R

    VGVgI2

    02

    0222

    choose for the transistors having enough fT(~10f0) forthe determined collector current

    What About Phase Noise?

  • 7/29/2019 PCIRF_6_8_VCO

    76/93

    [email protected] 2006 76

    What About Phase Noise?

    there is nothing better than the best LC-tank the best LC tank chosen determines power

    consumption and accordingly active devices

    operating current

    shot noise is directly determined by operating

    current, i.e., LC tank

    the larger the transistor the lower the base

    resistance thermal noise (but more parasitics)

    choose for as large transistors as possible havingenough fT(~10f0) for the determined collector current

    Tail Current Source

  • 7/29/2019 PCIRF_6_8_VCO

    77/93

    [email protected] 2006 77

    Tail Current Source

    Tail current noise around even multiples of the oscillating

    frequency is transformed into the phase noise of the VCO

    Tail current noise contribution larger than all other

    contributions together

    Reducing the output noise power of the current source, its

    contribution to the phase noise is reduced as well

    emitter degeneration reduces the tail-

    current source noise transfer functions

    resistive degeneration effective at all

    frequencies but requires voltage headroom

    inductive degeneration effective in narrow

    frequency band but requires no voltage

    headroom

    ZD

    B,CSV

    B,CSI

    RIDCSI ,

    C,CSI

    QCS

    So Far

  • 7/29/2019 PCIRF_6_8_VCO

    78/93

    [email protected] 2006 78

    So Far

    VCO design parameters Design requi rementOscillating frequency 2.1GHzTuning range 400MHz

    Voltage swing 0.7V

    Phase noise -110dBc@1MHz

    Supply voltage 3V

    Power consumption 10mW

    Technology parameters ValuesTechnology BiCMOS

    Number of metals 4

    Transit frequency 50GHzMIM capacitors available

    Varactors available

  • 7/29/2019 PCIRF_6_8_VCO

    79/93

    [email protected] 2006 79

    VCO Des ign

    Example -Measurements

    Post-Design Flow

  • 7/29/2019 PCIRF_6_8_VCO

    80/93

    [email protected] 2006 80

    Post Design Flow

    Oscillator Design Layout

    Oscillator Chip Packaging

    Printed Circuit Board Design

    Measurement Setup

    Interpretation of Results

    VCO Chip Microphotograph

  • 7/29/2019 PCIRF_6_8_VCO

    81/93

    [email protected] 2006 81

    LC-gM

    LRID

    LRID

    VCO Chip Microphotograph

    VCO chipPackaged VCO IC

  • 7/29/2019 PCIRF_6_8_VCO

    82/93

    [email protected] 2006 82

    VCO chip

    bondwire

    bondpad

    SMD t fPackaged VCO IC on PCB

  • 7/29/2019 PCIRF_6_8_VCO

    83/93

    [email protected] 2006 83

    package

    SMD transformer

    SMD capacitor

    bias choke

    VCO IC

    SMD resistor

    SMD inductor

    Measurement Fixture

  • 7/29/2019 PCIRF_6_8_VCO

    84/93

    [email protected] 2006 84

    package

    transformer

    bias filtering

    bias filtering

    VCO IC

    I/O

    connectors

    PCB

    Measurement System

  • 7/29/2019 PCIRF_6_8_VCO

    85/93

    [email protected] 2006 85

    y

    testfixtureLO

    VCC

    ITAIL

    VVCO

    UTUNE

    IBUFFER

    VCC-XF

    VCC+

    + +

    +

    IBUFFER

    +VVCO

    Spectrumanalyzer

    Chip and Measurement Equipment -I t f

  • 7/29/2019 PCIRF_6_8_VCO

    86/93

    [email protected] 2006 86

    Interface

    Measured Signal Spectrum

  • 7/29/2019 PCIRF_6_8_VCO

    87/93

    [email protected] 2006 87

    g p

    signal frequency

    signal power

    Measured Frequency Tuning Range

  • 7/29/2019 PCIRF_6_8_VCO

    88/93

    [email protected] 2006 88

    Measured Frequency Tuning Range

    1,7

    1,8

    1,9

    2

    2,1

    2,2

    2,3

    2,4

    2,5

    0 0,5 1 1,5 2 2,5 3

    Tuning voltage VT [V]

    O

    sc

    illa

    tin

    gf

    requency

    [GHz

    ]

    V =3VCC

    fLOW=1.8GHz

    fUP=2.4GHz

    f=600MHz

    VTUNE=3V

    Measured Phase Noise

  • 7/29/2019 PCIRF_6_8_VCO

    89/93

    [email protected] 2006 89

    Measured Phase Noise

    PN(1MHz)=-110dBc@3mW

    Measured VCO Performance

  • 7/29/2019 PCIRF_6_8_VCO

    90/93

    [email protected] 2006 90

    Measured VCO Performance

    VCO design parameters Measurement Results

    Central frequency 2.1GHz

    Tuning range 600MHzVoltage swing 0.7V

    Phase noise -110dBc@1MHz

    Supply voltage 3V

    Power consumption 3mW

    Poor PCB Design

  • 7/29/2019 PCIRF_6_8_VCO

    91/93

    [email protected] 2006 91

    g

    number of spurs from cables and supply necessity for filtering on supply lines

  • 7/29/2019 PCIRF_6_8_VCO

    92/93

    [email protected] 2006 92

    Conclus ions

    So far

  • 7/29/2019 PCIRF_6_8_VCO

    93/93

    LC Oscillators

    Oscillation Signal Steady-State Amplitude

    Interpretation of Noise in Oscillators Linear Phase-Noise Model

    Spectral Analysis of Phase Noise

    Noise Suppression of Bias Current Source LC-Oscillator Design Procedure