Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction...

19
Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Supported by  Pavel Bochev, Marta D'Elia, Mauro Perego , Denis Ridzal  Rome, Italy, April 6, 2017 Optimization-based, property preserving finite element methods Center for Computing Research Sandia National Laboratories Albuquerque, NM, USA

Transcript of Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction...

Page 1: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Sandia National Laboratories  is a multi­mission  laboratory managed  and  operated  by  Sandia  Corporation,  a  wholly owned subsidiary of Lockheed Martin Corporation,  for  the U.S.  Department  of  Energy’s  National  Nuclear  Security Administration under contract DE­AC04­94AL85000.

Supported by 

 

Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal  

Rome, Italy, April 6, 2017

Optimization­based, property preserving finite element methods

Center for Computing ResearchSandia National Laboratories

Albuquerque, NM, USA

Page 2: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Optimization­based modeling (OBM)

Use optimization and control ideas to manage externally those objectives that are difficult (or impractical) to handle directly in the discretization process. 

Approach:

➪ Coupling of different physics: reformulation into an equivalent optimization problem,     constrained by the single physics

➪ Avoid use of limiters: see talk.

➪ Generality with respect to problem discretization: applicable to FE, FV and FD      schemes as well as particle methods, on mixed n­D grids

➪ Generality with respect to problem type:  elliptic, hyperbolic, …

➪ Enabling of efficient reuse of existing codes: solvers, optimization tools,…

Potential payoffs

Challenges:

● Typically, constraints are not preserved automatically under discretization, even with stabilization/regularization

● Automatic preservation of maximum principle, local and global bounds, is required for robust, predictive simulations

Page 3: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

physical model:

physical properties:

match target

define target

enforce bounds

Preservation of properties as an optimization problem

“Optimization based remap”, Bochev, Ridzal, Scovazzi, Shashkov JCP, 2011

“Optimization-based transport”, Parts 1-3, Bochev, Peterson, Ridzal, Young, LNCS 2012

“Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev,

Shashkov, JCP, 2016

Find the optimal solution that● [objective] minimizes the mismatch with the high­order target solution● [constraints] satisfies the physical bounds/properties

Optimization based approach has been successfully used in several problems including transport remap and mesh correction:

Here we investigate its use in the context of bound preservation for scalar transport equations and compare it with algebraic flux correction schemes.

Transport equation

Page 4: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Accurate Galerkin finite element solution

Low order,  bound preserving  solution

Flux formulation*:  

Local bounds

By construction, fluxes are antisymmetric, which implies global mass conservation.

Spatial DiscretizationFlux formulation

We would like the solution to satisfy local bounds:

*Kuzmin, “Algebraic flux correction I”, in “Flux­corrected Transport”, Kuzmin, Löhner, Turek Editors, Springer, 2011

Page 5: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

weak LED constr.

Optimization­Based Transport (OBT) Flux Target formulation

The optimization problem is solved resorting to a dual formulation featuring simple bound constraints, see “Optimization­based transport”, Part 2, Young, Ridzal, Bochev, LNCS 2012.

Page 6: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Optimization­Based Transport (OBT) Flux Target formulation

Linearized Algebraic Flux­corrected Transport (FCT)  formulation*

FCT can be viewed as approximation of OBT obtained by replacing the OBT constraints set by this simpler set of box constraints

The FCT solution satisfies the weak LED constraint 

The optimization problem is solved resorting to a dual formulation featuring simple bound constraints, see “Optimization­based transport”, Part 2, Young, Ridzal, Bochev, LNCS 2012.

*Kuzmin, “Algebraic flux correction I”, in “Flux­corrected Transport”, Kuzmin, Löhner, Turek Editors, Springer, 2011

weak LED constr.

Page 7: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT and FCT for the combo* problem

*LeVeque, SINUM 33, 1996

Crank Nicholson scheme is used for the time discretization (throughout the talk)

Page 8: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT and FCT for the combo* problem

*LeVeque, SINUM 33, 1996

Crank Nicholson scheme is used for the time discretization (throughout the talk)

Page 9: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT with density target and FCT for a different geometryline plot

Smooth Time Deriv. Sharp Time Deriv.

Smooth Time Deriv. Sharp Time Deriv.

Page 10: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Local bounds coputed at previous time step

OBT, Density Target formulation

We consider three different ways to compute the target:

Galerkin finite element solution

SUPG solution

Flux­based solution, fluxes computed with sharp time deriv. approx. 

Advantages of the density target formulation: ● the optimization problem can be solved very efficiently.● Less intrusive. Does not need fluxes, except for the third case.

Global mass conservation

Page 11: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Fast Optimization Algorithm for OBT with density target

Without the equality constraint the KKT conditions are fully separable and can be solved for any fixed value of  .λ

Without the equality constraint the QP is fully separable into N one­dimensional QPs with simple bounds

Singly linearly constrained QP with simple bounds:

The Lagrangian:

The Karush­Kuhn­Tucker (KKT) conditions:

Page 12: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

       is continuous, piece­wise linear and monotonic increasing

- Can solve to machine precision by a simple secant method -             is an excellent initial guess: 

- solves the QP without the equality constraint, i.e., “almost” a solution

-            barely violates the mass conservation constraint

Fast Optimization Algorithm for OBT with density target

Page 13: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT with density target and FCT for the combo problem

­ Vanilla Density­Target OBT, presents large terracing effect. OBT­SUPG is more diffusive than the “sharp” FCT, but less diffusive then the “smooth” FCT.­ Compared to the Flux­Target OBT, Density­Target OBT is more diffusive.

Terracing

Page 14: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT with density target and FCT for the combo problemhigher resolution

At higher resolution, the methods perform more similarly, however “vanilla” OBT presents large terracing effect. OBT with SUPG is more diffusive than the other methods.

Page 15: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT with density target and FCT for a different geometryhigher resolution

Local undershoot

Page 16: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT with density target and FCT for a different geometryline plot

SmoothTime Deriv.

SmoothTime Deriv.

SharpTime Deriv.

SharpTime Deriv.

OBT­SUPG presents smaller local over/under­shoots that FCT.Its accuracy is between the two FCT implementations considered

Page 17: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT with density target and FCT for staircase problemhigher resolution

Local undershoot

Page 18: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Comparison between OBT with density target and FCT for staircase problemline plot

SmoothTime Deriv.

SmoothTime Deriv.

SharpTime Deriv.

SharpTime Deriv.

OBT with SUPG presents smaller local over/under­shoots than the sharp FCT.

Page 19: Pavel Bochev, Marta D'Elia, Mauro Perego, Denis Ridzal · “Optimization-based mesh correction with volume and convexity constraints”, D'Elia, Ridzal, Peterson, Bochev, Shashkov,

Conclusions● Flux­Target OBT proved to be the most accurate method, although the costs 

associated with the solution of the optimization are too high for most applications

● Density­Target OBT is generally more diffusive than the Flux­Target counterpart.In its vanilla version, it presents significant terracing.

● Density­Target OBT, with SUPG target showed good performances in all the problems tested. It is more dissipative than the sharp version of FCT, but less dissipative than the smooth FCT and it presents small violations of monotonicity compared to FCT.

● Density­Target OBT is very efficient and less intrusive. According to our matlab simulation is the fastest method.  It only requires one matrix solve per time step, in contrast with the sharp FCT that requires the two matrix solves.

● Further developments  include improvement of the Flux­Target optimization scheme and further understanding of the properties of OBT.

Acknowledgment: S. Mabuza, D. Kuzmin