Pattern Avoidance Classes Invariant Under the Modified...

38
Pattern Avoidance Classes Invariant Under the Modified Foata-Strehl Action Richard Zhou Mentor: Yan Zhuang May 20, 2017 MIT PRIMES Conference Richard Zhou (Mentor: Yan Zhuang) Pattern Avoidance May 20, 2017 MIT PRIMES Conference 1 / 17

Transcript of Pattern Avoidance Classes Invariant Under the Modified...

Page 1: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Pattern Avoidance Classes Invariant Under the ModifiedFoata-Strehl Action

Richard Zhou

Mentor: Yan Zhuang

May 20, 2017MIT PRIMES Conference

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 1

/ 17

Page 2: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Permutations

Definition

A permutation of a the set {1, 2, 3, . . . , n} is a length-n string that useseach number from 1 to n once.

Example

The string π = 67284135 is a permutation of the set {1, 2, 3, 4, 5, 6, 7, 8}.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 2

/ 17

Page 3: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Permutations

Definition

A permutation of a the set {1, 2, 3, . . . , n} is a length-n string that useseach number from 1 to n once.

Example

The string π = 67284135 is a permutation of the set {1, 2, 3, 4, 5, 6, 7, 8}.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 2

/ 17

Page 4: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Peaks and Valleys

Imagine a permutation as a ”mountain range”.Each letter is either a peak, valley, or free letter.

Example

The ”mountain range” representation of the permutation 67284135:

.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 3

/ 17

Page 5: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Peaks and Valleys

Imagine a permutation as a ”mountain range”.Each letter is either a peak, valley, or free letter.

Example

The ”mountain range” representation of the permutation 67284135:

.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 3

/ 17

Page 6: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Pattern Avoidance

Consider a ”long” permutation, such as π = 23514 and a shorter one,say σ = 132.

The 3-tuple of entries (2,5,4) in π forms a pattern of type 132.

We say the permutation π contains σ.

The permutation 15234 avoids the pattern 321.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 4

/ 17

Page 7: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Pattern Avoidance

Consider a ”long” permutation, such as π = 23514 and a shorter one,say σ = 132.

The 3-tuple of entries (2,5,4) in π forms a pattern of type 132.

We say the permutation π contains σ.

The permutation 15234 avoids the pattern 321.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 4

/ 17

Page 8: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Pattern Avoidance

Consider a ”long” permutation, such as π = 23514 and a shorter one,say σ = 132.

The 3-tuple of entries (2,5,4) in π forms a pattern of type 132.

We say the permutation π contains σ.

The permutation 15234 avoids the pattern 321.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 4

/ 17

Page 9: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Pattern Avoidance Classes

Let π be a permutation of [n] and let Σ = {σ1, σ2, . . . , σm} be a setof patterns each of length at most n. We say that π avoids Σ if πavoids every pattern in Σ.

Avn(Σ) denotes the set of all length-n permutations p such that pavoids Σ.

Av(Σ) denotes the set of all permutations that avoid Σ.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 5

/ 17

Page 10: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Pattern Avoidance Classes

Let π be a permutation of [n] and let Σ = {σ1, σ2, . . . , σm} be a setof patterns each of length at most n. We say that π avoids Σ if πavoids every pattern in Σ.

Avn(Σ) denotes the set of all length-n permutations p such that pavoids Σ.

Av(Σ) denotes the set of all permutations that avoid Σ.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 5

/ 17

Page 11: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Valley Hopping

Definition

A valley-hop (formally known as the modified Foata-Strehl Action) Hj(σ)is the permutation obtained by moving the free letter j in σ across theadjacent valleys to the nearest slope of the same height.

Example

Hj(σ) for j = 5 and σ = 67284135

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 6

/ 17

Page 12: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Hop Equivalence Classes

Valley-hopping naturally partitions the set of length-n permutationsinto equivalence classes:

Definition

Two permutations σ1 and σ2 of [n] are in the same hop equivalence classif there exists some sequence of valley-hops Hi1 ,Hi2 , . . . ,Hik such thatHi1(Hi2(...(Hik (σ1))...)) = σ2. We let Hop(σ) denote the hop equivalenceclass of σ.

Example

Hop(13542) = {13542, 13524, 31542, 31524}

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 7

/ 17

Page 13: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Hop Equivalence Classes

Valley-hopping naturally partitions the set of length-n permutationsinto equivalence classes:

Definition

Two permutations σ1 and σ2 of [n] are in the same hop equivalence classif there exists some sequence of valley-hops Hi1 ,Hi2 , . . . ,Hik such thatHi1(Hi2(...(Hik (σ1))...)) = σ2. We let Hop(σ) denote the hop equivalenceclass of σ.

Example

Hop(13542) = {13542, 13524, 31542, 31524}

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 7

/ 17

Page 14: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Hop Equivalence Classes

Valley-hopping naturally partitions the set of length-n permutationsinto equivalence classes:

Definition

Two permutations σ1 and σ2 of [n] are in the same hop equivalence classif there exists some sequence of valley-hops Hi1 ,Hi2 , . . . ,Hik such thatHi1(Hi2(...(Hik (σ1))...)) = σ2. We let Hop(σ) denote the hop equivalenceclass of σ.

Example

Hop(13542) = {13542, 13524, 31542, 31524}

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 7

/ 17

Page 15: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Valley Hopping and Pattern Avoidance Classes

Definition

Let Σ be a set of patterns. We say that Avn(Σ) is invariant undervalley-hopping if for any permutation π ∈ Avn(Σ), any valley-hop π′ of πis also in Avn(Σ).

If Avn(Σ) is invariant under valley-hopping for all n, the distributionof peaks and valleys for permutations in Av(Σ) is well understood.

Our problem: Classify all pattern sets Σ such that Av(Σ) is invariantunder valley-hopping.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 8

/ 17

Page 16: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Valley Hopping and Pattern Avoidance Classes

Definition

Let Σ be a set of patterns. We say that Avn(Σ) is invariant undervalley-hopping if for any permutation π ∈ Avn(Σ), any valley-hop π′ of πis also in Avn(Σ).

If Avn(Σ) is invariant under valley-hopping for all n, the distributionof peaks and valleys for permutations in Av(Σ) is well understood.

Our problem: Classify all pattern sets Σ such that Av(Σ) is invariantunder valley-hopping.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 8

/ 17

Page 17: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Valley Hopping and Pattern Avoidance Classes

Definition

Let Σ be a set of patterns. We say that Avn(Σ) is invariant undervalley-hopping if for any permutation π ∈ Avn(Σ), any valley-hop π′ of πis also in Avn(Σ).

If Avn(Σ) is invariant under valley-hopping for all n, the distributionof peaks and valleys for permutations in Av(Σ) is well understood.

Our problem: Classify all pattern sets Σ such that Av(Σ) is invariantunder valley-hopping.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 8

/ 17

Page 18: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Singleton Patterns

A set of patterns Σ is called singleton if |Σ| = 1.

Known that if Σ = {132} or Σ = {231}, then Av(Σ) is invariantunder valley-hopping.

We show that these are the only possible values for Σ:

Proposition

Let Σ be a nontrivial singleton pattern set with Av(Σ) invariant undervalley-hopping. Then Σ = {132} or Σ = {231}.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 9

/ 17

Page 19: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Singleton Patterns

A set of patterns Σ is called singleton if |Σ| = 1.

Known that if Σ = {132} or Σ = {231}, then Av(Σ) is invariantunder valley-hopping.

We show that these are the only possible values for Σ:

Proposition

Let Σ be a nontrivial singleton pattern set with Av(Σ) invariant undervalley-hopping. Then Σ = {132} or Σ = {231}.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 9

/ 17

Page 20: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Singleton Patterns

A set of patterns Σ is called singleton if |Σ| = 1.

Known that if Σ = {132} or Σ = {231}, then Av(Σ) is invariantunder valley-hopping.

We show that these are the only possible values for Σ:

Proposition

Let Σ be a nontrivial singleton pattern set with Av(Σ) invariant undervalley-hopping. Then Σ = {132} or Σ = {231}.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 9

/ 17

Page 21: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Singleton Patterns

A set of patterns Σ is called singleton if |Σ| = 1.

Known that if Σ = {132} or Σ = {231}, then Av(Σ) is invariantunder valley-hopping.

We show that these are the only possible values for Σ:

Proposition

Let Σ be a nontrivial singleton pattern set with Av(Σ) invariant undervalley-hopping. Then Σ = {132} or Σ = {231}.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 9

/ 17

Page 22: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Single Hop Equivalence Classes

If Σ is a pattern set such that Av(Σ) is invariant under valley-hoppingand σ ∈ Σ, then Hop(σ) ⊆ Σ.

Only nontrivial Σ with more than one element for which Av(Σ) wasknown to be invariant under valley-hopping was Σ = {1423, 1432}.Can we classify all σ for which Av(Hop(σ)) is invariant undervalley-hopping?

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 10

/ 17

Page 23: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Single Hop Equivalence Classes

If Σ is a pattern set such that Av(Σ) is invariant under valley-hoppingand σ ∈ Σ, then Hop(σ) ⊆ Σ.

Only nontrivial Σ with more than one element for which Av(Σ) wasknown to be invariant under valley-hopping was Σ = {1423, 1432}.

Can we classify all σ for which Av(Hop(σ)) is invariant undervalley-hopping?

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 10

/ 17

Page 24: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Single Hop Equivalence Classes

If Σ is a pattern set such that Av(Σ) is invariant under valley-hoppingand σ ∈ Σ, then Hop(σ) ⊆ Σ.

Only nontrivial Σ with more than one element for which Av(Σ) wasknown to be invariant under valley-hopping was Σ = {1423, 1432}.Can we classify all σ for which Av(Hop(σ)) is invariant undervalley-hopping?

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 10

/ 17

Page 25: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Classification for Single Hop Equivalence Classes

Single hop equivalence classes invariant under valley-hopping havespecific structure:

Proposition

Let σ be a permutation such that Av(Hop(σ)) is nontrivial and invariantunder valley-hopping. Then σ has exactly one peak, which is its largestletter.

Proposition

There does not exist a position i < |σ| for which i and i + 1 are both freeletters in σ.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 11

/ 17

Page 26: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Classification for Single Hop Equivalence Classes

Single hop equivalence classes invariant under valley-hopping havespecific structure:

Proposition

Let σ be a permutation such that Av(Hop(σ)) is nontrivial and invariantunder valley-hopping. Then σ has exactly one peak, which is its largestletter.

Proposition

There does not exist a position i < |σ| for which i and i + 1 are both freeletters in σ.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 11

/ 17

Page 27: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Classification for Single Hop Equivalence Classes

Single hop equivalence classes invariant under valley-hopping havespecific structure:

Proposition

Let σ be a permutation such that Av(Hop(σ)) is nontrivial and invariantunder valley-hopping. Then σ has exactly one peak, which is its largestletter.

Proposition

There does not exist a position i < |σ| for which i and i + 1 are both freeletters in σ.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 11

/ 17

Page 28: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Classification for Single Hop Equivalence Classes (Cont.)

These properties place tight restrictions on σ:

Theorem

There are 14 nontrivial hop equivalence classes H for which Avn(H) isinvariant under valley hopping.

Av of the hop equivalence classes for following permutations are invariantunder valley-hopping:

132, 231

1423, 2413, 3412, 1243, 1342, 2341

12534, 13524, 14523, 23514, 24513, 34512

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 12

/ 17

Page 29: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Classification for Single Hop Equivalence Classes (Cont.)

These properties place tight restrictions on σ:

Theorem

There are 14 nontrivial hop equivalence classes H for which Avn(H) isinvariant under valley hopping.

Av of the hop equivalence classes for following permutations are invariantunder valley-hopping:

132, 231

1423, 2413, 3412, 1243, 1342, 2341

12534, 13524, 14523, 23514, 24513, 34512

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 12

/ 17

Page 30: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Classification for Single Hop Equivalence Classes (Cont.)

These properties place tight restrictions on σ:

Theorem

There are 14 nontrivial hop equivalence classes H for which Avn(H) isinvariant under valley hopping.

Av of the hop equivalence classes for following permutations are invariantunder valley-hopping:

132, 231

1423, 2413, 3412, 1243, 1342, 2341

12534, 13524, 14523, 23514, 24513, 34512

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 12

/ 17

Page 31: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Construction for General Pattern Sets

For any permutation pattern σ of length n, there is a trivial patternset Σ such that Avn(Σ) is invariant under valley-hopping. We wouldlike to improve upon this:

Theorem

Let σ be a permutation pattern of length n. Then there exists a family oflength-n permutation patterns Σ containing σ such that

|Σ| < n!

(n − pk(σ))!2n−2pk(σ)−1

where pk(σ) denotes the number of peaks in σ.

Improvement over trivial family size of n! by factor of (n−pk(σ))!2n−2pk(σ)−1 .

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 13

/ 17

Page 32: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Construction for General Pattern Sets

For any permutation pattern σ of length n, there is a trivial patternset Σ such that Avn(Σ) is invariant under valley-hopping. We wouldlike to improve upon this:

Theorem

Let σ be a permutation pattern of length n. Then there exists a family oflength-n permutation patterns Σ containing σ such that

|Σ| < n!

(n − pk(σ))!2n−2pk(σ)−1

where pk(σ) denotes the number of peaks in σ.

Improvement over trivial family size of n! by factor of (n−pk(σ))!2n−2pk(σ)−1 .

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 13

/ 17

Page 33: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Construction for General Pattern Sets

For any permutation pattern σ of length n, there is a trivial patternset Σ such that Avn(Σ) is invariant under valley-hopping. We wouldlike to improve upon this:

Theorem

Let σ be a permutation pattern of length n. Then there exists a family oflength-n permutation patterns Σ containing σ such that

|Σ| < n!

(n − pk(σ))!2n−2pk(σ)−1

where pk(σ) denotes the number of peaks in σ.

Improvement over trivial family size of n! by factor of (n−pk(σ))!2n−2pk(σ)−1 .

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 13

/ 17

Page 34: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Alternating Permutations

Definition

A permutation is strictly alternating if it has no free letters.

Example

1745263 is a strictly alternating permutation.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 14

/ 17

Page 35: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Families of Strictly Alternating Permutations

Definition

We call a permutation tall if every peak is greater than every valley.

Theorem

Let Σ be a family of strictly alternating permutations with k peaks suchthat Av(Σ) invariant under valley-hopping. Then there exists some subsetΠ of Σ of size (k − 1)! such that

Every permutation in Π is tall

Every permutation in Π has the same valleys

For any π ∈ Π, the letter in position 2 is the smallest peak.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 15

/ 17

Page 36: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Families of Strictly Alternating Permutations

Definition

We call a permutation tall if every peak is greater than every valley.

Theorem

Let Σ be a family of strictly alternating permutations with k peaks suchthat Av(Σ) invariant under valley-hopping. Then there exists some subsetΠ of Σ of size (k − 1)! such that

Every permutation in Π is tall

Every permutation in Π has the same valleys

For any π ∈ Π, the letter in position 2 is the smallest peak.

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 15

/ 17

Page 37: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Future Work

Classify all sets of strictly alternating permutations with Av(Σ)invariant under valley-hopping.

Current strategy: start with singleton pattern set Σ and insert moreelements until Av(Σ) is invariant under valley-hopping. Is there amore general way of generating Σ invariant under valley-hopping?

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 16

/ 17

Page 38: Pattern Avoidance Classes Invariant Under the Modified ...math.mit.edu/research/highschool/primes/materials/2017/conf/5-1-Zhou.pdfRichard Zhou (Mentor: Yan Zhuang) Pattern Avoidance

Acknowledgements

Many thanks to:

Yan Zhuang, my mentor

Dr. Tanya Khovanova

My parents

MIT PRIMES

Richard Zhou (Mentor: Yan Zhuang) Pattern AvoidanceMay 20, 2017 MIT PRIMES Conference 17

/ 17