Pathogenesis of Dengue Virus Infection

download Pathogenesis of Dengue Virus Infection

of 16

Transcript of Pathogenesis of Dengue Virus Infection

  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    1/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 1/16

    Official reprint from UpToDate

    www.uptodate.com 2014 UpToDate

    AuthorAlan L Rothman, MD

    Section EditorMartin S Hirsch, MD

    Deputy EditorElinor L Baron, MD, DTMH

    Pathogenesis of dengue virus infection

    All topics are updated as new evidence becomes available and our peer review process is complete.Literature review current through: Nov 2014. | This topic last updated: Feb 19, 2014.

    INTRODUCTION Substantial gaps remain in the basic understanding of the pathogenesis of dengue

    infection. In large part this limitation is related to the lack of a suitable animal model [1]. Rhesus monkeys

    develop viremia similar in pattern to humans after dengue virus challenge but do not develop clinical disease.

    Careful epidemiologic and experimental challenge studies in humans have provided valuable information on

    dengue virus infection, but detailed data on virus distribution in vivo are available only from small numbers of

    patients with more severe disease, unusual manifestations, or the later stages of infection. Little pathogenetic

    information isavailable concerning milder infections, which constitute the vast majority of cases.

    THE DENGUE VIRAL REPLICATION CYCLE Dengue viruses are members of the family Flaviviridae

    genus Flavivirus. They are small, enveloped viruses containing a single-strand RNA genome of positive

    polarity [2]. Dengue viruses infect a wide range of human and nonhuman cell types in vitro. Viral replication

    involves the following steps:

    Binding of dengue virions to cells, which is mediated by the major viral envelope (E) glycoprotein, is critical for

    infectivity [3]. The determination of the three-dimensional structures of the dengue E glycoprotein and the intact

    virion has facilitated the understanding of this process [4-6]. Dengue viruses bind via the E glycoprotein to viral

    receptors on the cell surface, which may include heparan sulfate or the lectin DC-SIGN [ 7,8] they can also

    bind to cell surface immunoglobulin receptors in the presence of antibodies to the E glycoprotein or membrane

    precursor (pre-M) protein, as described further below [9].

    Following fusion of viral and cell membranes in acidified endocytic vesicles, the viral RNA enters the

    cytoplasm. The viral proteins are then translated directly from the viral RNA as a single polyprotein, which iscleaved to yield the three structural and seven nonstructural proteins [2]. Cleavage of several of the viral

    proteins requires a functional viral protease encoded in the nonstructural protein NS3. The nonstructural protein

    NS5 is the viral RNA-dependent RNA polymerase, which assembles with several other viral proteins and

    several host proteins to form the replication complex. This complex transcribes the viral RNA to produce

    negative-strand viral RNA, which serves as the template for the production of the viral genomic RNA.

    The assembly and budding of progeny virions is still poorly understood. The pre-M structural protein is cleaved

    by a cellular enzyme, furin, as one of the final steps in maturation of progeny virions [10]. Cleavage of the pre-

    M protein enhances the infectivity of the virions 100-fold.

    COURSE OF INFECTION The course of dengue virus infection is characterized by early events,dissemination, and the immune response and subsequent viral clearance (figure 1).

    Early events Dengue virus is introduced into the skin by the bite of an infected mosquito, most commonly

    Aedes aegypti. The spread of virus early after subcutaneous injection has been studied in rhesus monkeys

    Attachment to the cell surface

    Entry into the cytoplasm

    Translation of viral proteins

    Replication of the viral RNA genome

    Formation of virions (encapsidation)

    Release from the cell

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/10http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/2http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/9http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/3http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/1http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/10http://www.uptodate.com.ezlibrary.ju.edu.jo/home/editorial-policyhttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/2http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/4-6http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/image?imageKey=ID%2F63173&topicKey=ID%2F3029&rank=3%7E68&source=see_linkhttp://www.uptodate.com.ezlibrary.ju.edu.jo/http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/9http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/3http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/7,8http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/1http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/2http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributorshttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/contributors
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    2/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 2/16

    [11]. During the first 24 hours, virus could only be isolated from the injection site. The major cell type infected

    was not defined both Langerhans cells and dermal fibroblasts have been proposed to be target cells for dengue

    virus infection in the skin. One study using human skin dendritic cells demonstrated expression of dengue virus

    antigens following in vitro exposure, suggesting that these cells are permissive for dengue viral infection [12].

    In rhesus monkeys, virus was detected in regional lymph nodes 24 hours after infection [11]. In one study

    using a mouse model deficient in both type I and type II interferon (IFN) receptors, macrophages and dendritic

    cells were demonstrated to be early cellular targets for infection [ 13].

    Dissemination Viremia begins in rhesus monkeys between two and six days after subcutaneous injectionand lasts for three to six days. In humans infected with "natural" dengue viruses, viremia begins approximately

    one day later than in monkeys, but the duration of viremia is similar [14]. Viremia is detectable in humans 6 to

    18 hours before the onset of symptoms and ends as the fever resolves [15].

    In rhesus monkeys during the period of viremia, virus was frequently detected in lymph nodes distant from the

    site of inoculation and less commonly from spleen, thymus, lung, and bone marrow [11]. Virus was also

    isolated from peripheral blood leukocytes at the end of the viremic period and sometimes for one day after.

    The distribution of virus in humans has been studied in blood, biopsy, and autopsy specimens from patients

    with natural dengue virus infection. Infection of peripheral blood mononuclear cells persists beyond the period

    of detectable viremia [16-18]. Conflicting data have been published regarding the principal infected cell type in

    the peripheral blood. An older study reported more frequent isolation of infectious virus from the adherent cell

    population than the nonadherent population, suggesting that monocytes are the primary target cell for infection

    [16]. A similar conclusion was reached in a study using flow cytometry, which reported the detection of dengue

    viral antigen in a very high percentage of circulating monocytes [18]. However, an earlier study using flow

    cytometry reported that the majority of cell-associated virus was contained in the CD20+ (B lymphocyte)

    fraction [17].

    The yield of dengue virus from tissues obtained at autopsy has generally been low. However, in one study

    using the most sensitive techniques for virus isolation, virus was isolated most often (4 of 16 cases) from liver

    tissue [19]. Antigen staining has suggested that the predominant cell types infected are macrophages in the

    skin [20] and Kupffer cells in the liver [21,22] dengue viral antigens have also been detected in hepatocytes insome cases [23].

    Immune response and viral clearance Both innate and adaptive immune responses induced by dengue

    virus infection are likely to play a role in the clearance of infection [24]. Infection of fibroblasts and monocytes

    in vitro induces production of interferon-beta and -alpha, respectively [25,26]. Consistent with these

    observations, elevated serum levels of interferon alpha have been demonstrated in children with dengue virus

    infection in Thailand [27].

    The role of these cytokine responses is uncertain. Interferon inhibits dengue virus infection in monocytes in

    vitro [26]. In addition, dengue virusinfected cells are susceptible to lysis by natural killer cells in vitro [28].

    However, dengue viral proteins are able to block the antiviral function of type I interferons in infected cells

    [29,30]. In one study of host cell gene expression by microarray analysis of blood samples obtained from 14

    adults with dengue, a cluster of 24 gene transcripts, many reflecting type I interferon signaling, was identified

    as significantly less abundant in the six patients with dengue shock syndrome (DSS) than in the eight patients

    without DSS [31]. These subjects had low to undetectable plasma viral RNA and IFN-alpha levels when

    studied. Whether attenuated interferon responses are the result or cause of severe dengue disease is

    unknown.

    The antibody response to dengue virus infection is primarily directed at serotype-specific determinants, but

    there is a substantial level of serotype-crossreactive antibodies. E, pre-M, and NS1 are the principal viral

    proteins that are targeted. In vitro, E proteinspecific antibodies can mediate neutralization of infection, direct

    complement-mediated lysis or antibody-dependent cellular cytotoxicity of dengue virusinfected cells, andblock virus attachment to cell receptors [28,32,33]. Pre-Mspecific antibodies only bind to virions that have not

    fully matured and have remaining uncleaved pre-M protein. NS1 is not found in the virion NS1-specific

    antibodies are therefore incapable of neutralization of virus infection but can direct complement-mediated lysis

    of infected cells [32]. In mice, passive transfer of antibodies specific for E, pre-M, or NS1 was sufficient for

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/12http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/17http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/26http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/16-18http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/32http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/20http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/18http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/23http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/13http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/29,30http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/16http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/24http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/28,32,33http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/19http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/21,22http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/25,26http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/11http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/11http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/15http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/14http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/28http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/27http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/11http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/31
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    3/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 3/16

    protection against lethal dengue virus infection [32,34,35].

    The basis of neutralization of virus by antibody is not well understood. Neutralization clearly requires a

    threshold level of antibodies when the concentration of antibodies is below this threshold, the uptake of

    antibody-bound virus by cells that express immunoglobulin receptors is paradoxically increased, a process

    termed antibody-dependent enhancement (ADE) of infection [9,36]. Since monocytes, the putative cellular

    targets of dengue virus infection in vivo, express immunoglobulin receptors and manifest ADE in vitro, this

    phenomenon is thought to be highly relevant in natural dengue virus infections (see below). In rhesus monkeys,

    passive transfer of low levels of dengue-immune human sera or a humanized chimpanzee dengue virusspecific monoclonal antibody resulted in a 2- to 100-fold increase in dengue-2 or dengue-4 viremia titers as

    compared with control animals [37,38]. An increase in viral titers in blood and tissues and enhanced disease

    were also observed after passive transfer of low levels of dengue virus-specific antibody in mice lacking

    interferon receptors [39].

    One study characterized 301 human dengue virus-specific monoclonal antibodies [40]. Pre-Mspecific

    antibodies represented a larger fraction of the monoclonal antibodies detected than antibodies directed at E or

    NS1. Pre-Mspecific antibodies showed poor neutralization of infection in vitro but could mediate ADE.

    The T lymphocyte response to dengue virus infection also includes both serotype-specific and serotype-

    crossreactive responses [41]. Dengue virusspecific CD4+ and CD8+ T cells can lyse dengue virusinfected

    cells in vitro and produce cytokines such as interferon-gamma, tumor necrosis factor (TNF)-alpha, and

    lymphotoxin [41,42]. In vitro, interferon-gamma can inhibit dengue virus infection of monocytes. However,

    interferon-gamma also enhances the expression of immunoglobulin receptors, which can augment the antibody-

    dependent enhancement of infection [43].

    Primary versus secondary infection Infection with one of the four serotypes of dengue virus (primary

    infection) provides lifelong immunity to infection with a virus of the same serotype [ 14]. In contrast, immunity to

    the other dengue serotypes is transient, and individuals can subsequently be infected with another dengue

    serotype (secondary infection). Two prospective cohort studies found that the interval between primary and

    secondary dengue virus infections was significantly longer among children who experienced a symptomatic

    secondary infection than those who had a subclinical secondary infection, suggesting that heterotypicprotective immunity wanes gradually over one to two years [ 44,45].

    In one report, the distribution of dengue virus in secondary infections was evaluated in eight rhesus monkeys

    [11]. The onset and duration of viremia were similar to primary infections. Autopsy specimens from six

    monkeys yielded virus somewhat more frequently from various tissues than specimens from primary

    infections. Another study found higher plasma virus titers in secondary than primary dengue-2 virus infections

    but not in secondary infections with dengue viruses of the other serotypes [46].

    There is little information from human studies to allow comparisons of virus distribution or titer in primary and

    secondary infections. Several studies have reported that higher peak plasma virus titers in secondary dengue

    infections were associated with more severe illness [47-49]. Two studies failed to demonstrate higher viremia

    titers in patients with secondary dengue infections than in patients with primary dengue infections [50,51], but a

    study using quantitative RT-PCR reported higher viral RNA levels in CD14+ monocytes among dengue fever

    patients with secondary infections compared with dengue fever patients with primary infections [52].

    The kinetics of dengue virusspecific antibodies in secondary dengue infections differ from those of primary

    dengue infections in several ways.

    Low concentrations of antibodies to the virus serotype causing the secondary infection are present before

    exposure to the virus. As a result, antibody-dependent enhancement of infection could occur early in

    secondary dengue virus infections.

    Concentrations of dengue virusspecific antibodies increase earlier in secondary infection, reach higherpeak titers, and have a lower IgM:IgG ratio, suggestive of an anamnestic response. Thus, the levels of

    dengue virusspecific antibodies are much higher during the late stage of viremia in secondary infections,

    with greater potential for forming immune complexes of dengue virions and activating complement.

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/43http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/44,45http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/40http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/46http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/52http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/37,38http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/50,51http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/47-49http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/41,42http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/41http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/39http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/11http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/9,36http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/32,34,35http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/14
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    4/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 4/16

    The kinetics of the T lymphocyte response in secondary infections also differ from those of primary infections.

    The frequency of dengue virusspecific T lymphocytes is much higher prior to secondary infection than primary

    infection. Furthermore, these memory T cells respond much more rapidly after contact with antigen-presenting

    cells than nave T cells. As a result, dengue virusspecific T lymphocyte proliferation and cytokine production

    would be expected to occur earlier and reach higher levels in secondary infections. Studies of circulating T

    lymphocytes during acute secondary infections have shown a high percentage of cells expressing markers of

    activation and high frequencies of dengue antigenspecific cells, consistent with this hypothesis [ 53-56].

    However, a study that compared the frequencies of T cells specific for an immunodominant dengue epitope

    between primary and secondary dengue virus infections found no significant differences, perhaps due to thevariation in responses between subjects [57].

    The severity of dengue disease has been correlated with the level and quality of the dengue virusspecific T

    lymphocyte responses in some studies but not in others. In two studies, the frequency of dengue virus

    specific CD8+ T cells was higher after dengue hemorrhagic fever (DHF) than after dengue fever (DF) among

    subjects experiencing secondary infections [54,55]. One study using HLA-peptide tetramers found that a high

    proportion of the dengue virusspecific CD8+ T lymphocytes had higher affinity for dengue viral serotypes

    other than the infecting serotype a very high percentage of the tetramer-positive cells were apparently primed

    to undergo apoptosis [54]. However, two subsequent studies found no associations between the frequencies of

    dengue virusspecific T cells and disease severity [57,58] in one of those studies, dengue virusspecific

    CD8+ T cells were not detected by human leukocyte antigen (HLA)-peptide tetramer staining until after the

    development of plasma leakage [58].

    Some serotype-crossreactive T cells present after primary infection display qualitatively altered functional

    responses to other dengue serotypes [59]. In one prospective cohort study, specific T cell responses prior to

    secondary dengue virus infection were associated with the subsequent occurrence of DHF, such as production

    of TNF-alpha in response to stimulation with dengue antigens [60]. In contrast, higher frequencies of CD4+ T

    cells producing IFN-gamma or interleukin (IL)-2 in response to stimulation with dengue antigens were

    associated with subclinical dengue infection, suggesting a protective effect as well [ 61].

    FACTORS INFLUENCING DISEASE SEVERITY Most dengue virus infections produce mild, nonspecific

    symptoms or classic dengue fever (DF). The more severe manifestations, dengue hemorrhagic fever (DHF)

    and dengue shock syndrome (DSS), occur in less than 1 percent of dengue virus infections. Thus,

    considerable attention has been focused upon understanding the risk factors for DHF (table 1).

    Viral factors DHF can occur during infection with any of the four dengue serotypes several prospective

    studies have suggested that the risk is highest with dengue-2 viruses [ 15,62-64]. Genetic analyses of dengue

    virus isolates from the Western hemisphere strongly suggest that DHF only occurs during infection with

    viruses that fall into specific genotypes within each dengue serotype [ 65,66]. These "virulent" genotypes were

    originally detected in Southeast Asia but are now widespread. Several studies have suggested that "virulent"

    and "avirulent" genotypes differ in their ability to replicate in monocytic cells [ 67,68], but it is not clear that this

    difference in in vitro replication is the factor responsible for virulence.

    Prior dengue exposure Epidemiologic studies have shown that the risk of severe disease (DHF/DSS) is

    significantly higher during a secondary dengue virus infection than during a primary infection. This relationship

    can be illustrated by the following observations:

    The increased risk of DHF in secondary dengue virus infections is felt to reflect the differences in immune

    responses between primary and secondary dengue virus infections described above: antibody-dependent

    An outbreak of dengue-2 virus infections in Cuba in 1981 followed an outbreak of dengue 1 virus

    infections in 1977 that involved 45 percent of the island's population 98 percent of cases of DHF/DSS in

    children and adults were associated with secondary infections [69,70].

    In a prospective study in Bangkok in 1980, hospitalization for DHF was required in none of 47 children

    with primary infections compared with 7 of 56 with secondary infections [62].

    A prospective study in Myanmar from 1984 to 1988 found a relative risk of DSS in secondary infections

    of 82 to 103 [71].

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/60http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/61http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/57,58http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/image?imageKey=ID%2F58587&topicKey=ID%2F3029&rank=3%7E68&source=see_linkhttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/15,62-64http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/67,68http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/54http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/65,66http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/57http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/59http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/71http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/58http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/53-56http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/69,70http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/54,55http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/62
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    5/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 5/16

    enhancement of infection, enhanced immune complex formation, and/or accelerated T lymphocyte responses.

    The increased risk for DHF associated with secondary dengue virus infections appears not to apply to

    infections with "avirulent" genotypes (see above). A prospective study in Iquitos, Peru, found no cases of DHF

    or DSS during an outbreak of dengue-2 virus infections that was estimated to involve over 49,000 secondary

    infections in children [66]. At least 880 cases of DHF would have been expected based upon previous studies

    in Thailand [62,63]. Furthermore, there are numerous documented cases of dengue hemorrhagic fever occurring

    during primary infection, suggesting that differences in viral virulence, as discussed above, are also important

    [1,15].

    Age The risk for DHF appears to decline with age, especially after age 11 years. During the 1981 epidemic

    of DHF in Cuba, the modal age of DHF cases and deaths was four years, although the frequency of secondary

    dengue-2 infections was similar in those 4 to 40 years of age [72,73].

    A specific population at higher risk for DHF in endemic areas is infants, particularly those between 6 and 12

    months of age. These children acquire dengue virusspecific antibodies transplacentally and become

    susceptible to primary dengue virus infection when antibody levels decline below the neutralization threshold

    [74,75]. This observation is taken to support the hypothesis of antibody-dependent enhancement of infection as

    a primary factor in determining the risk for DHF. A direct correlation between ADE activity of preinfection

    serum and the severity of infection has not been demonstrated, however [76].

    Nutritional status Unlike other infectious diseases, DHF/DSS is less common in malnourished children

    than in well-nourished children. As an example, malnutrition, as determined by weight for age, was noted in 13

    percent of 100 Thai children with DHF compared with 33 percent of 184 healthy Thai children and 71 percent of

    125 Thai children with other infectious diseases admitted to the same hospital [ 77]. This negative association

    may be related to suppression of cellular immunity in malnutrition.

    Genetic factors Epidemiologic studies in Cuba showed that DHF occurred more often in whites than in

    blacks [73], and a similar genetic resistance to DHF in blacks has been reported from Haiti [78]. Racial

    differences have been described in viral replication in primary monocytes and in the level of dengue serotype-

    crossreactive T cell responses [79], but it is unclear if either of these explains the genetic association.

    DHF has been associated with specific human leukocyte antigen (HLA) genes in studies from Thailand [ 80,81],

    Cuba [82], and Vietnam [83]. Other genetic factors that may be associated with varying degrees of

    susceptibility to DHF include receptor polymorphisms of tumor necrosis factoralpha, vitamin D, Fc gamma

    IIa, blood group type, and DC-SIGN genes [84-87].

    PATHOPHYSIOLOGY OF DISEASE MANIFESTATIONS

    Capillary leak syndrome Plasma leakage, due to an increase in capillary permeability, is a cardinal feature

    of dengue hemorrhagic fever (DHF) but is absent in dengue fever (DF). The enhanced capillary permeability

    appears to be due to endothelial cell dysfunction rather than injury, as electron microscopy demonstrated a

    widening of the endothelial tight junctions [88]. Dengue virus infects human endothelial cells in vitro andcauses cellular activation [89]. Additionally, soluble NS1 protein, which can be detected in the serum during

    acute infection, has been reported to bind to endothelial cells and may serve as a target for antibody binding

    and complement activation [90]. However, the effects on endothelial cell function during infection are most

    likely to be indirectly caused by dengue virus infection for the following reasons:

    Most investigations have focused on the hypothesis that circulating factors induce the transient increase in

    capillary permeability. Multiple mediators are likely to be involved in vivo, and interactions between these

    different factors have been demonstrated in experimental animals. The most important mediators are thought to

    include tumor necrosis factor (TNF)-alpha (released from virus-infected monocytes and activated T cells),

    interferon (IFN)-gamma and interleukin (IL)-2 (released from activated T cells), IL-8 (produced by virus-infected

    Histologic studies show little structural damage to capillaries [91].

    Infection of endothelial cells by dengue virus is not apparent in tissues obtained at autopsy [22].

    Increased capillary permeability is transient, with rapid resolution and no residual pathology.

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/84-87http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/88http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/90http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/66http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/72,73http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/83http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/77http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/89http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/91http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/62,63http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/76http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/1,15http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/82http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/73http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/80,81http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/79http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/74,75http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/22http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/78
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    6/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 6/16

    cells), vascular endothelial growth factor (VEGF, potentially produced by monocytes and endothelial cells), and

    complement (activated by virus-antibody complexes) (figure 2).

    Dengue virusinfected monocytic cells produce TNF-alpha and IL-8, and these affect endothelial cell

    permeability in vitro [92-94]. Elevated serum levels of TNF-alpha [95,96], IL-8 [97], IFN-gamma [98,99], IL-2

    [98], and free VEGF [89] have also been observed in patients with DHF. Other studies from Thailand have

    found reduced serum levels of the complement proteins C3 and C5 in children with DHF [ 100], with a

    corresponding increase in the serum concentrations of anaphylatoxins C3a and C5a [101].

    It is difficult to detect elevated cytokine levels in the circulation, because of the short half-life of these

    molecules. Analysis of more stable markers of immune activation has provided additional, although indirect,

    support for the immunopathogenesis model of plasma leakage. Several studies have shown that children with

    DHF have elevated circulating levels of the soluble forms of CD8 [98,99], CD4 [98], IL-2 receptors [98,99], and

    TNF receptors [96,99,102]. Increased plasma concentrations of soluble TNF receptor II were found to correlate

    with the subsequent development of shock in Vietnamese children with DHF [ 96] and with the magnitude of

    plasma leakage into the pleural space. The intensity of the immune response may ultimately be determined by

    the level of viral replication, however, as one study found that the plasma viremia titer was the strongest

    independent factor that correlated with plasma leakage [27].

    Blood and bone marrow Leukopenia, thrombocytopenia, and a hemorrhagic diathesis are the typical

    hematologic findings in dengue virus infections. Leukopenia is apparent early in illness and is of similar degree

    in DHF and dengue fever [103]. It is thought to represent a direct effect of dengue virus on the bone marrow.

    Bone marrow biopsies of children in Thailand with DHF revealed suppression of hematopoiesis early in the

    illness, with marrow recovery and hypercellularity in the late stage and during early clinical recovery [104]. In

    vitro studies have shown that dengue virus infects human bone marrow stromal cells and hematopoietic

    progenitor cells [105,106] and inhibits progenitor cell growth [107].

    Some degree of thrombocytopenia is common in both dengue fever and DHF, but marked thrombocytopenia

    (

  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    7/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 7/16

    Liver Elevations of serum aminotransferases that are usually mild are common in dengue virus infections

    [103]. Typical pathologic findings in the livers of fatal cases of dengue include hepatocellular necrosis and

    Councilman bodies with relatively little inflammatory cell infiltration, similar to the findings in early yellow fever

    virus infection [91]. The pathologic similarities between these two diseases and the relatively frequent isolation

    of dengue virus from liver tissues of fatal cases suggest that liver injury is directly mediated by dengue virus

    infection of hepatocytes and Kupffer cells. Dengue virus has been shown to infect and induce apoptosis in a

    human hepatoma cell line in vitro [114]. However, immune-mediated hepatocyte injury, for example, bystander

    destruction of uninfected hepatocytes by activated CD4+ T lymphocytes, is a potential alternative mechanism[41].

    Central nervous system Rare cases of encephalopathy have been attributed to dengue virus infections.

    True encephalitis has been reported, with detection of dengue virus in brain tissue [115,116], but this is clearly

    the exception in humans, whereas encephalitis is the only disease caused by dengue viruses in mice. In one

    series of 100 fatal cases of dengue, no evidence of central nervous system inflammation was found [ 91].

    INFORMATION FOR PATIENTS UpToDate offers two types of patient education materials, The Basics

    and Beyond the Basics. The Basics patient education pieces are written in plain language, at the 5 to 6

    grade reading level, and they answer the four or five key questions a patient might have about a given

    condition. These articles are best for patients who want a general overview and who prefer short, easy-to-read

    materials. Beyond the Basics patient education pieces are longer, more sophisticated, and more detailed.

    These articles are written at the 10 to 12 grade reading level and are best for patients who want in-depth

    information and are comfortable with some medical jargon.

    Here are the patient education articles that are relevant to this topic. We encourage you to print or e-mail these

    topics to your patients. (You can also locate patient education articles on a variety of subjects by searching on

    patient info and the keyword(s) of interest.)

    SUMMARY AND RECOMMENDATIONS

    th th

    th th

    Basics topic (see "Patient information: Dengue fever (The Basics)")

    Dengue viruses are small, enveloped viruses that are members of the family Flaviviridae genus

    Flavivirus. Viral replication involves the following steps: attachment to the cell surface, cellular entry,

    translation of viral proteins, replication of the viral RNA genome, formation of virions by encapsidation,

    and cellular release. (See 'The dengue viral replication cycle' above.)

    Dengue virus is introduced into the skin by the bite of an infected mosquito, most commonlyAedes

    aegypti. (See 'Early events' above.)

    Viremia is detectable in humans 6 to 18 hours before the onset of symptoms and ends as the fever

    resolves. (See 'Dissemination' above.)

    Both innate and adaptive immune responses induced by dengue virus infection are likely to play a role inthe clearance of infection. (See 'Immune response and viral clearance' above.)

    Infection with one of the four serotypes of dengue virus (primary infection) provides lifelong immunity to

    infection with a virus of the same serotype [14]. However, immunity to the other dengue serotypes is

    transient, and individuals can subsequently be infected with another dengue serotype (secondary

    infection). (See 'Primary versus secondary infection' above.)

    Antibodies to proteins on the dengue virus surface can cause increased infection of cells bearing

    immunoglobulin receptors, a phenomenon known as antibody-dependent enhancement of infection (ADE).

    (See 'Immune response and viral clearance' above.)

    The severity of dengue disease has been correlated with both the level and quality of the dengue virusspecific T lymphocyte responses. (See 'Primary versus secondary infection' above.)

    Although dengue hemorrhagic fever (DHF) can occur during infection with any of the four dengue

    serotypes, several prospective studies have suggested that the risk is highest with dengue-2 viruses.

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/115,116http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/dengue-fever-the-basics?source=see_linkhttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/103http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/41http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/91http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/114http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/14http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/91
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    8/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=search 8/16

    Use of UpToDate is subject to the Subscription and License Agreement.

    REFERENCES

    1. Rico-Hesse R. Dengue virus evolution and virulence models. Clin Infect Dis 2007 44:1462.

    2. Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev 1990 3:376.

    3. Anderson R, King AD, Innis BL. Correlation of E protein binding with cell susceptibility to dengue 4 virusinfection. J Gen Virol 1992 73 ( Pt 8):2155.

    4. Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelopeglycoprotein. Proc Natl Acad Sci U S A 2003 100:6986.

    5. Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein aftermembrane fusion. Nature 2004 427:313.

    6. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat RevMicrobiol 2005 3:13.

    7. Chen Y, Maguire T, Hileman RE, et al. Dengue virus infectivity depends on envelope protein binding totarget cell heparan sulfate. Nat Med 1997 3:866.

    8. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, et al. DC-SIGN (CD209) mediates dengue virusinfection of human dendritic cells. J Exp Med 2003 197:823.

    9. Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. ClinInfect Dis 1994 19:500.

    10. Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus byfurin. J Virol 1997 71:8475.

    11. Marchette NJ, Halstead SB, Falkler WA Jr, et al. Studies on the pathogenesis of dengue infection inmonkeys. 3. Sequential distribution of virus in primary and heterologous infections. J Infect Dis 1973128:23.

    12. Wu SJ, Grouard-Vogel G, Sun W, et al. Human skin Langerhans cells are targets of dengue virusinfection. Nat Med 2000 6:816.

    13. Kyle JL, Beatty PR, Harris E. Dengue virus infects macrophages and dendritic cells in a mouse model ofinfection. J Infect Dis 2007 195:1808.

    14. SABIN AB. Research on dengue during World War II. Am J Trop Med Hyg 1952 1:30.

    15. Vaughn DW, Green S, Kalayanarooj S, et al. Dengue in the early febrile phase: viremia and antibodyresponses. J Infect Dis 1997 176:322.

    16. Scott RM, Nisalak A, Cheamudon U, et al. Isolation of dengue viruses from peripheral blood leukocytesof patients with hemorrhagic fever. J Infect Dis 1980 141:1.

    17. King AD, Nisalak A, Kalayanrooj S, et al. B cells are the principal circulating mononuclear cells infectedby dengue virus. Southeast Asian J Trop Med Public Health 1999 30:718.

    18. Durbin AP, Vargas MJ, Wanionek K, et al. Phenotyping of peripheral blood mononuclear cells duringacute dengue illness demonstrates infection and increased activation of monocytes in severe casescompared to classic dengue fever. Virology 2008 376:429.

    19. Rosen L, Khin MM, U T. Recovery of virus from the liver of children with fatal dengue: reflections on thepathogenesis of the disease and its possible analogy with that of yellow fever. Res Virol 1989 140:351.

    20. Boonpucknavig S, Boonpucknavig V, Bhamarapravati N, Nimmannitya S. Immunofluorescence study ofskin rash in patients with dengue hemorrhagic fever. Arch Pathol Lab Med 1979 103:463.

    21. Hall WC, Crowell TP, Watts DM, et al. Demonstration of yellow fever and dengue antigens in formalin-

    (See 'Factors influencing disease severity' above.)

    Epidemiologic studies have shown that the risk of severe disease is significantly higher during a

    secondary dengue virus infection than during a primary infection. (See 'Prior dengue exposure' above.)

    The risk for DHF appears to decline with age, especially after age 11 years. (See 'Age' above.)

    Plasma leakage, due to an increase in capillary permeability, is a cardinal feature of DHF but is absent in

    dengue fever (DF). The enhanced capillary permeability appears to be due to endothelial cell dysfunction

    rather than injury. (See 'Pathophysiology of disease manifestations' above.)

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/21http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/17http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/licensehttp://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/16http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/6http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/9http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/18http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/5http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/20http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/3http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/8http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/14http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/10http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/12http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/1http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/11http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/19http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/13http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/15http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/7http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/4http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/2http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/21
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    9/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection?topicKey=ID%2F3029&elapsedTimeMs=4&source=search 9/16

    fixed paraffin-embedded human liver by immunohistochemical analysis. Am J Trop Med Hyg 199145:408.

    22. Jessie K, Fong MY, Devi S, et al. Localization of dengue virus in naturally infected human tissues, byimmunohistochemistry and in situ hybridization. J Infect Dis 2004 189:1411.

    23. Fresh JW, Reyes V, Clarke EJ, Uylangco CV. Philippine hemorrhagic fever: a clinical, laboratory, andnecropsy study. J Lab Clin Med 1969 73:451.

    24. Schmidt AC. Response to dengue fever--the good, the bad, and the ugly? N Engl J Med 2010 363:484.

    25. Kurane I, Janus J, Ennis FA. Dengue virus infection of human skin fibroblasts in vitro production of IFN-

    beta, IL-6 and GM-CSF. Arch Virol 1992 124:21.

    26. Kurane I, Ennis FA. Production of interferon alpha by dengue virus-infected human monocytes. J GenVirol 1988 69 ( Pt 2):445.

    27. Libraty DH, Endy TP, Houng HS, et al. Differing influences of virus burden and immune activation ondisease severity in secondary dengue-3 virus infections. J Infect Dis 2002 185:1213.

    28. Kurane I, Hebblewaite D, Brandt WE, Ennis FA. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Virol 1984 52:223.

    29. Muoz-Jordan JL, Snchez-Burgos GG, Laurent-Rolle M, Garca-Sastre A. Inhibition of interferonsignaling by dengue virus. Proc Natl Acad Sci U S A 2003 100:14333.

    30. Jones M, Davidson A, Hibbert L, et al. Dengue virus inhibits alpha interferon signaling by reducing

    STAT2 expression. J Virol 2005 79:5414.31. Simmons CP, Popper S, Dolocek C, et al. Patterns of host genome-wide gene transcript abundance in

    the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis 2007 195:1097.

    32. Schlesinger JJ, Brandriss MW, Walsh EE. Protection of mice against dengue 2 virus encephalitis byimmunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol 1987 68 ( Pt 3):853.

    33. He RT, Innis BL, Nisalak A, et al. Antibodies that block virus attachment to Vero cells are a majorcomponent of the human neutralizing antibody response against dengue virus type 2. J Med Virol 199545:451.

    34. Kaufman BM, Summers PL, Dubois DR, Eckels KH. Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. Am J Trop Med Hyg 1987 36:427.

    35. Kaufman BM, Summers PL, Dubois DR, et al. Monoclonal antibodies for dengue virus prM glycoproteinprotect mice against lethal dengue infection. Am J Trop Med Hyg 1989 41:576.

    36. Pierson TC, Diamond MS. Molecular mechanisms of antibody-mediated neutralisation of flavivirusinfection. Expert Rev Mol Med 2008 10:e12.

    37. Halstead SB. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferredantibody. J Infect Dis 1979 140:527.

    38. Goncalvez AP, Engle RE, St Claire M, et al. Monoclonal antibody-mediated enhancement of denguevirus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A 2007104:9422.

    39. Balsitis SJ, Williams KL, Lachica R, et al. Lethal antibody enhancement of dengue disease in mice isprevented by Fc modification. PLoS Pathog 2010 6:e1000790.

    40. Dejnirattisai W, Jumnainsong A, Onsirisakul N, et al. Cross-reacting antibodies enhance dengue virusinfection in humans. Science 2010 328:745.

    41. Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol 1999 73:3623.

    42. Mathew A, Kurane I, Rothman AL, et al. Dominant recognition by human CD8+ cytotoxic T lymphocytesof dengue virus nonstructural proteins NS3 and NS1.2a. J Clin Invest 1996 98:1684.

    43. Kontny U, Kurane I, Ennis FA. Gamma interferon augments Fc gamma receptor-mediated dengue virusinfection of human monocytic cells. J Virol 1988 62:3928.

    44. Anderson KB, Gibbons RV, Cummings DA, et al. A shorter time interval between first and seconddengue infections is associated with protection from clinical illness in a school-based cohort in Thailand.J Infect Dis 2014 209:360.

    45. Montoya M, Gresh L, Mercado JC, et al. Symptomatic versus inapparent outcome in repeat dengue virusinfections is influenced by the time interval between infections and study year. PLoS Negl Trop Dis2013 7:e2357.

    46. Halstead SB, Shotwell H, Casals J. Studies on the pathogenesis of dengue infection in monkeys. II.Clinical laboratory responses to heterologous infection. J Infect Dis 1973 128:15.

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/21http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/23http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/43http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/29http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/40http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/32http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/39http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/44http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/37http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/22http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/26http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/35http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/28http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/30http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/42http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/41http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/45http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/27http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/31http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/33http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/38http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/24http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/46http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/34http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/25http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/36http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/21
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    10/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=searc 10/16

    47. Vaughn DW, Green S, Kalayanarooj S, et al. Dengue viremia titer, antibody response pattern, and virusserotype correlate with disease severity. J Infect Dis 2000 181:2.

    48. Murgue B, Roche C, Chungue E, Deparis X. Prospective study of the duration and magnitude ofviraemia in children hospitalised during the 1996-1997 dengue-2 outbreak in French Polynesia. J MedVirol 2000 60:432.

    49. Wang WK, Chen HL, Yang CF, et al. Slower rates of clearance of viral load and virus-containing immunecomplexes in patients with dengue hemorrhagic fever. Clin Infect Dis 2006 43:1023.

    50. Kuberski T, Rosen L, Reed D, Mataika J. Clinical and laboratory observations on patients with primary

    and secondary dengue type 1 infections with hemorrhagic manifestations in Fiji. Am J Trop Med Hyg1977 26:775.

    51. Sudiro TM, Zivny J, Ishiko H, et al. Analysis of plasma viral RNA levels during acute dengue virusinfection using quantitative competitor reverse transcription-polymerase chain reaction. J Med Virol 200163:29.

    52. Srikiatkhachorn A, Wichit S, Gibbons RV, et al. Dengue viral RNA levels in peripheral bloodmononuclear cells are associated with disease severity and preexisting dengue immune status. PLoSOne 2012 7:e51335.

    53. Green S, Pichyangkul S, Vaughn DW, et al. Early CD69 expression on peripheral blood lymphocytesfrom children with dengue hemorrhagic fever. J Infect Dis 1999 180:1429.

    54. Mongkolsapaya J, Dejnirattisai W, Xu XN, et al. Original antigenic sin and apoptosis in the pathogenesis

    of dengue hemorrhagic fever. Nat Med 2003 9:921.55. Zivna I, Green S, Vaughn DW, et al. T cell responses to an HLA-B*07-restricted epitope on the dengue

    NS3 protein correlate with disease severity. J Immunol 2002 168:5959.

    56. Simmons CP, Dong T, Chau NV, et al. Early T-cell responses to dengue virus epitopes in Vietnameseadults with secondary dengue virus infections. J Virol 2005 79:5665.

    57. Friberg H, Bashyam H, Toyosaki-Maeda T, et al. Cross-reactivity and expansion of dengue-specific Tcells during acute primary and secondary infections in humans. Sci Rep 2011 1:51.

    58. Dung NT, Duyen HT, Thuy NT, et al. Timing of CD8+ T cell responses in relation to commencement ofcapillary leakage in children with dengue. J Immunol 2010 184:7281.

    59. Zivny J, DeFronzo M, Jarry W, et al. Partial agonist effect influences the CTL response to a

    heterologous dengue virus serotype. J Immunol 1999 163:2754.60. Mangada MM, Endy TP, Nisalak A, et al. Dengue-specific T cell responses in peripheral blood

    mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren. J Infect Dis2002 185:1697.

    61. Hatch S, Endy TP, Thomas S, et al. Intracellular cytokine production by dengue virus-specific T cellscorrelates with subclinical secondary infection. J Infect Dis 2011 203:1282.

    62. Burke DS, Nisalak A, Johnson DE, Scott RM. A prospective study of dengue infections in Bangkok. AmJ Trop Med Hyg 1988 38:172.

    63. Sangkawibha N, Rojanasuphot S, Ahandrik S, et al. Risk factors in dengue shock syndrome: aprospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 1984120:653.

    64. Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin MicrobiolRev 2009 22:564.

    65. Rico-Hesse R, Harrison LM, Salas RA, et al. Origins of dengue type 2 viruses associated with increasedpathogenicity in the Americas. Virology 1997 230:244.

    66. Watts DM, Porter KR, Putvatana P, et al. Failure of secondary infection with American genotype dengue2 to cause dengue haemorrhagic fever. Lancet 1999 354:1431.

    67. Pryor MJ, Carr JM, Hocking H, et al. Replication of dengue virus type 2 in human monocyte-derivedmacrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 inthe envelope glycoprotein. Am J Trop Med Hyg 2001 65:427.

    68. Cologna R, Rico-Hesse R. American genotype structures decrease dengue virus output from humanmonocytes and dendritic cells. J Virol 2003 77:3929.

    69. Guzmn MG, Kour G, Martnez E, et al. Clinical and serologic study of Cuban children with denguehemorrhagic fever/dengue shock syndrome (DHF/DSS). Bull Pan Am Health Organ 1987 21:270.

    70. Daz A, Kour G, Guzmn MG, et al. Description of the clinical picture of dengue hemorrhagicfever/dengue shock syndrome (DHF/DSS) in adults. Bull Pan Am Health Organ 1988 22:133.

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/52http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/68http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/65http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/54http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/50http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/48http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/58http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/59http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/63http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/55http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/69http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/47http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/56http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/53http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/70http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/57http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/51http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/62http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/61http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/60http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/49http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/67http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/64http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/66
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    11/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=searc 11/16

    71. Thein S, Aung MM, Shwe TN, et al. Risk factors in dengue shock syndrome. Am J Trop Med Hyg 199756:566.

    72. Kour G, Guzmn MG, Bravo J. Hemorrhagic dengue in Cuba: history of an epidemic. Bull Pan AmHealth Organ 1986 20:24.

    73. Guzmn MG, Kouri GP, Bravo J, et al. Dengue hemorrhagic fever in Cuba, 1981: a retrospectiveseroepidemiologic study. Am J Trop Med Hyg 1990 42:179.

    74. Kliks SC, Nimmanitya S, Nisalak A, Burke DS. Evidence that maternal dengue antibodies are importantin the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 1988 38:411.

    75. Simmons CP, Chau TN, Thuy TT, et al. Maternal antibody and viral factors in the pathogenesis ofdengue virus in infants. J Infect Dis 2007 196:416.

    76. Libraty DH, Acosta LP, Tallo V, et al. A prospective nested case-control study of Dengue in infants:rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med2009 6:e1000171.

    77. Thisyakorn U, Nimmannitya S. Nutritional status of children with dengue hemorrhagic fever. Clin InfectDis 1993 16:295.

    78. Halstead SB, Streit TG, Lafontant JG, et al. Haiti: absence of dengue hemorrhagic fever despitehyperendemic dengue virus transmission. Am J Trop Med Hyg 2001 65:180.

    79. de la C Sierra B, Kour G, Guzmn MG. Race: a risk factor for dengue hemorrhagic fever. Arch Virol

    2007 152:533.80. Chiewsilp P, Scott RM, Bhamarapravati N. Histocompatibility antigens and dengue hemorrhagic fever.

    Am J Trop Med Hyg 1981 30:1100.

    81. Stephens HA, Klaythong R, Sirikong M, et al. HLA-A and -B allele associations with secondary denguevirus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue

    Antigens 2002 60:309.

    82. Paradoa Prez ML, Trujillo Y, Basanta P. Association of dengue hemorrhagic fever with the HLAsystem. Haematologia (Budap) 1987 20:83.

    83. Loke H, Bethell DB, Phuong CX, et al. Strong HLA class I--restricted T cell responses in denguehemorrhagic fever: a double-edged sword? J Infect Dis 2001 184:1369.

    84. Fernndez-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z. TNF-alpha-308A allele, a

    possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens2004 64:469.

    85. Loke H, Bethell D, Phuong CX, et al. Susceptibility to dengue hemorrhagic fever in vietnam: evidence ofan association with variation in the vitamin d receptor and Fc gamma receptor IIa genes. Am J Trop MedHyg 2002 67:102.

    86. Sakuntabhai A, Turbpaiboon C, Casadmont I, et al. A variant in the CD209 promoter is associated withseverity of dengue disease. Nat Genet 2005 37:507.

    87. Kalayanarooj S, Gibbons RV, Vaughn D, et al. Blood group AB is associated with increased risk forsevere dengue disease in secondary infections. J Infect Dis 2007 195:1014.

    88. Sahaphong S, Riengrojpitak S, Bhamarapravati N, Chirachariyavej T. Electron microscopic study of thevascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 198011:194.

    89. Srikiatkhachorn A, Ajariyakhajorn C, Endy TP, et al. Virus-induced decline in soluble vascular endothelialgrowth receptor 2 is associated with plasma leakage in dengue hemorrhagic Fever. J Virol 200781:1592.

    90. Avirutnan P, Punyadee N, Noisakran S, et al. Vascular leakage in severe dengue virus infections: apotential role for the nonstructural viral protein NS1 and complement. J Infect Dis 2006 193:1078.

    91. Bhamarapravati N, Tuchinda P, Boonyapaknavik V. Pathology of Thailand haemorrhagic fever: a study of100 autopsy cases. Ann Trop Med Parasitol 1967 61:500.

    92. Anderson R, Wang S, Osiowy C, Issekutz AC. Activation of endothelial cells via antibody-enhanceddengue virus infection of peripheral blood monocytes. J Virol 1997 71:4226.

    93. Bosch I, Xhaja K, Estevez L, et al. Increased production of interleukin-8 in primary human monocytesand in human epithelial and endothelial cell lines after dengue virus challenge. J Virol 2002 76:5588.

    94. Talavera D, Castillo AM, Dominguez MC, et al. IL8 release, tight junction and cytoskeleton dynamicreorganization conducive to permeability increase are induced by dengue virus infection of microvascularendothelial monolayers. J Gen Virol 2004 85:1801.

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/73http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/94http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/72http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/88http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/82http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/92http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/79http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/74http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/77http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/80http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/71http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/83http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/90http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/78http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/87http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/81http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/75http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/89http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/76http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/91http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/85http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/93http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/86http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/84
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    12/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=searc 12/16

    95. Hober D, Poli L, Roblin B, et al. Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6(IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 1993 48:324.

    96. Bethell DB, Flobbe K, Cao XT, et al. Pathophysiologic and prognostic role of cytokines in denguehemorrhagic fever. J Infect Dis 1998 177:778.

    97. Juffrie M, van Der Meer GM, Hack CE, et al. Inflammatory mediators in dengue virus infection inchildren: interleukin-8 and its relationship to neutrophil degranulation. Infect Immun 2000 68:702.

    98. Kurane I, Innis BL, Nimmannitya S, et al. Activation of T lymphocytes in dengue virus infections. Highlevels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in

    sera of children with dengue. J Clin Invest 1991 88:1473.99. Green S, Vaughn DW, Kalayanarooj S, et al. Early immune activation in acute dengue illness is related

    to development of plasma leakage and disease severity. J Infect Dis 1999 179:755.

    100. Bokisch VA, Top FH Jr, Russell PK, et al. The potential pathogenic role of complement in denguehemorrhagic shock syndrome. N Engl J Med 1973 289:996.

    101. Malasit P. Complement and dengue haemorrhagic fever/shock syndrome. Southeast Asian J Trop MedPublic Health 1987 18:316.

    102. Hober D, Delannoy AS, Benyoucef S, et al. High levels of sTNFR p75 and TNF alpha in dengue-infectedpatients. Microbiol Immunol 1996 40:569.

    103. Kalayanarooj S, Vaughn DW, Nimmannitya S, et al. Early clinical and laboratory indicators of acute

    dengue illness. J Infect Dis 1997 176:313.104. BIERMAN HR, NELSON ER. HEMATODEPRESSIVE VIRUS DISEASES OF THAILAND. Ann Intern

    Med 1965 62:867.

    105. Rothwell SW, Putnak R, La Russa VF. Dengue-2 virus infection of human bone marrow: characterizationof dengue-2 antigen-positive stromal cells. Am J Trop Med Hyg 1996 54:503.

    106. Nakao S, Lai CJ, Young NS. Dengue virus, a flavivirus, propagates in human bone marrow progenitorsand hematopoietic cell lines. Blood 1989 74:1235.

    107. Murgue B, Cassar O, Guigon M, Chungue E. Dengue virus inhibits human hematopoietic progenitorgrowth in vitro. J Infect Dis 1997 175:1497.

    108. Mitrakul C, Poshyachinda M, Futrakul P, et al. Hemostatic and platelet kinetic studies in denguehemorrhagic fever. Am J Trop Med Hyg 1977 26:975.

    109. Cardier JE, Rivas B, Romano E, et al. Evidence of vascular damage in dengue disease: demonstrationof high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium 200613:335.

    110. Sosothikul D, Seksarn P, Pongsewalak S, et al. Activation of endothelial cells, coagulation andfibrinolysis in children with Dengue virus infection. Thromb Haemost 2007 97:627.

    111. Srichaikul T, Nimmanitaya S, Artchararit N, et al. Fibrinogen metabolism and disseminated intravascularcoagulation in dengue hemorrhagic fever. Am J Trop Med Hyg 1977 26:525.

    112. Chungue E, Poli L, Roche C, et al. Correlation between detection of plasminogen cross-reactiveantibodies and hemorrhage in dengue virus infection. J Infect Dis 1994 170:1304.

    113. Falconar AK. The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes

    on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potentialimplications in haemorrhagic fever pathogenesis. Arch Virol 1997 142:897.

    114. Marianneau P, Cardona A, Edelman L, et al. Dengue virus replication in human hepatoma cells activatesNF-kappaB which in turn induces apoptotic cell death. J Virol 1997 71:3244.

    115. Solomon T, Dung NM, Vaughn DW, et al. Neurological manifestations of dengue infection. Lancet 2000355:1053.

    116. Ramos C, Snchez G, Pando RH, et al. Dengue virus in the brain of a fatal case of hemorrhagic denguefever. J Neurovirol 1998 4:465.

    Topic 3029 Version 12.0

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/103http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/105http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/111http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/100http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/102http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/104http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/114http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/97http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/96http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/106http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/109http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/115http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/108http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/116http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/112http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/98http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/99http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/113http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/95http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/101http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/107http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-virus-infection/abstract/110
  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    13/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=searc 13/16

    GRAPHICS

    Acute dengue virus infection

    Hypothetical schema of events in acute dengue virus infection. The

    kinetics and general location of viral replication are diagrammed in relation

    to the presence of detectable viremia, general symptoms (fever, myalgias,

    headache, rash), and the period of risk for plasma leakage, shock, severe

    thrombocytopenia, and bleeding in dengue hemorrhagic fever (DHF).

    Nonspecific immune responses include the production of interferons (IFN)

    and natural killer (NK) cell activity. The kinetics of dengue virus-specific T

    lymphocyte activation and the production of dengue virus-specific

    antibodies occur later and are of lesser magnitude in primary infections

    (first exposure to dengue viruses) than in secondary infections (later

    infection with a second dengue virus serotype).

    Graphic 63173 Version 1.0

  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    14/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=searc 14/16

    Factors that influence the risk for dengue hemorrhagic fever

    Factor Low risk High risk

    Viral factors

    Viral serotype Den gu e-2 virus

    Viral genotype "Asian" genotypes

    Host factors

    Immunity Prior dengue virus infection

    Age Adult

    Nutrition Malnourished

    Genetics Black

    Graphic 58587 Version 1.0

  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    15/16

    12/23/2014 Pathogenesis of dengue virus infection

    http://www.uptodate.com.ezlibrary.ju.edu.jo/contents/pathogenesis-of-dengue-vir us-infection?topicKey=ID %2F3029&elapsedTimeMs= 4&source=searc 15/16

    Capillary leak in dengue virus infection

    Proposed model by which dengue virus (DV) produces a capillary leak syndrome.

    Monocytes (Mo) are thought to be the primary cellular target for DV. Serotype

    crossreactive antibodies (Ab), present at the time of second DV infection, bind to

    virions without neutralization and then enhance the entry of virus into monocytic

    cells expressing immunoglobulin receptors (FcR), as show in the left side of the

    picture. Serotype crossreactive memory T cells, also present at the time of

    secondary DV infection, recognize viral antigens in the context of class I and II

    major histocompatibility complex (MHC) molecules. These T cells produce

    cytokines, such as interferon-gamma (IFN) and tumor necrosis factors (TNF) alpha

    and beta, and lyse DV-infected monocytes. TNF-alpha is also produced in

    monocytes in response to DV infection and/or interactions with T cells. These

    cytokines have direct effects on endothelial cells (EC) to induce plasma leakage.Interferon-gamma activates monocytes to increase the expression of MHC

    molecules and immunoglobulin receptors and the production of TNF-alpha. The

    complement cascade, activated by virus-antibody complexes and by several

    cytokines, releases the complement anaphylatoxins C3a and C5a which further

    increase capillary permeability. Interleukin-2 may contribute by facilitating T cell

    proliferation.

    Graphic 75407 Version 2.0

  • 8/10/2019 Pathogenesis of Dengue Virus Infection

    16/16

    12/23/2014 Pathogenesis of dengue virus infection

    Disclosures:Alan L Rothman, MD Grant/Researc h/Clinical Trial Support: Sanofi-Pasteur (Denguevaccine [dengue vaccine]). Consultant/Advisory Boards: Sanofi-Pasteur (Dengue vaccine [dengue

    vaccine]). Martin S Hirsch, MD Nothing to disclose. Elinor L Baron, MD, DTMH Employee of

    UpToDate, Inc.

    Contributor disclosures are reviewed for conflicts of interest by the editorial group. When found, these

    are addressed by vetting through a multi-level review process, and through requirements forreferences to be provided to support the content. Appropriately referenced content is required of all

    authors and must conform to UpToDate standards of evidence.

    Conflict of interest policy

    Disclosures

    http://www.uptodate.com.ezlibrary.ju.edu.jo/home/conflict-interest-policy