Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of...

21
I. Holod 7 th IAEA TM Frascati, March 46, 2015 Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIIID Tokamak Pedestal I. Holod, D. Fulton, X. Liu, and Z. Lin Department of Physics and Astronomy University of California, Irvine, CA 92697, USA

Transcript of Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of...

Page 1: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Gyrokinetic Particle Simulations of Kinetic  Ballooning Mode in DIII‐D Tokamak 

Pedestal

I. Holod, D. Fulton, X. Liu, and Z. Lin

Department of Physics and Astronomy

University of California, Irvine, CA 92697, USA

Page 2: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Outline

►Objectives► Electrostatic turbulence in DIII‐D pedestal► Electromagnetic instabilities► Towards simulation of RMP effects

Page 3: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Objectives of GTC simulations

►What is turbulent transport in tokamak H‐mode  pedestal?

► Does KBM exist in the pedestal and what role it  plays?

Existence of KBM in DIII‐D pedestal is not conclusively  established by recent simulations [E.Wang, et. al. NF 52, 

103015 (2012)]

Page 4: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Gyrokinetic Toroidal Code (GTC)

GTC provides first‐principles, integrated simulation  capability for nonlinear interactions of kinetic‐MHD  processes, i.e., microturbulence, EP, MHD, and 

neoclassical transport►

GTC current capability for kinetic‐MHD simulation:●

General global 3D toroidal geometry and experimental profiles●

Microturbulence and EP: gyrokinetic thermal/fast ions, drift‐ kinetic electrons and electromagnetic fluctuations

MHD: kink, resistive and collisionless tearing modes●

Neoclassical transport: momentum/energy conserving   collision operators

RF: fully kinetic (Vlasov) ions●

Excellent scalability. Ported to GPU (Titan) & MIC (Tianhe‐2)

http://phoenix.ps.uci.edu/GTC

Page 5: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

GTC simulation of DIII‐D

plasma pedestal (shot #131997.3011) 

Global gyrokinetic simulations of DIII‐D shot #131997 at time  3011 ms (DOE Joint Research Target FY2011) using GTC code

Realistic magnetic equilibrium and profiles from EFIT and VMEC

GTC spline

mesh

q‐profile

Page 6: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Simulation profiles

Temperature and density gradients from the maximum  gradient region at N

=0.98 and pedestal top region N

=0.95  extended throughout simulation domain (N

=0.9‐1.0)

e

profile in the pedestal region

Page 7: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Electrostatic instability

Peak gradient region (N

=0.98): Trapped Electron Mode  instability with unusual mode structure peaked at =±/2 off 

the outer midplane

[D. Fulton, et al., PoP’14)]

Linear growth rate monotonically  increases with toroidal mode number n

Electron collisions decrease the growth  rate by 50%

Pedestal top region (N

=0.95): Ion  Temperature Gradient

instability

Similar results from GTC simulation of HL‐ 2A and EAST pedestal

Poloidal snapshot of n=20 electrostatic mode (N

=0.98)

Page 8: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Electrostatic turbulence►

Peak gradient region (N

=0.98)●

Heat flux dominated by electrons●

Turbulence saturation level is regulated by GAMs●

Ion‐ion collisions damp GAM►

Pedestal top region (N

=0.95)●

Heat flux dominated by ions

N

=0.98 N

=0.95

Page 9: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Nonlinear turbulent spectrum is peaked around k

i

0.15  (TEM) and 0.25 (ITG) corresponding to n20 toroidal mode  number

Poloidal k‐spectrum of electrostatic turbulence

k

-spectrum of electrostatic fluctuations at nonlinearly saturated state

Page 10: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Kinetic Ballooning Mode (KBM) is dominant●

Ballooning structure●

Mode is rotating in the ion diamagnetic direction●

Instability exists with or without kinetic electron effect

Electromagnetic instability: peak gradient region

A||

Page 11: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Linear properties of KBM

Linear growth rate increases at  e 

>0.15%►

n=20 KBM instability barely exceeds  TEM growth rate at e

0.15%  (experimental value)

Maximum growth rate at toroidal  mode number n=20‐30 (k

i

0.15‐ 0.25)

n=20

Page 12: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Ion Temperature Gradient (ITG)?●

Ballooning structure rotating in the ion diamagnetic direction●

Kinetic electrons significantly affect linear growth rate 

Electromagnetic instability: pedestal top region

A||

Page 13: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Mode identification (pedestal top)

ITG e

‐stabilization►

ITG‐KBM transition at e

0.7% above experimental value e

0.4%

n=20

Page 14: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Summary of microturbulence studies

Electrostatic results:●

Peak gradient: trapped electron mode; Electron dominated  transport

Pedestal top: ion temperature gradient mode; Ion dominated  transport

Electromagnetic results:●

Peak gradient: kinetic ballooning mode is dominant for e

>0.15%●

Pedestal top: finite‐

ion temperature gradient mode

Page 15: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

RMP Effects on Pedestal Turbulence

Resonant magnetic perturbation (RMP) is applied to  control edge‐localized mode (ELM) in DIII‐D H‐mode  plasmas 

RMP significantly increases microturbulence in outer  regions, and leads to particle pump out and change 

in toroidal rotation►

How does RMP affect microturbulence? ►

We will use gyrokinetic particle simulation to  investigate possible direct effect of RMP on 

microturbulence

Page 16: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

RMP Effects on Pedestal Turbulence

Why RMP enhance microturbulence? ●

A conjecture: Stochastic magnetic fields of RMP could  suppress zonal flow generation due to increase of zonal 

flow dielectric constant by electron adiabatic response to  zonal flow

What is the mechanism for particle pump out and  change in rotation?

Require turbulence simulation with 3D equilibrium  and stochastic magnetic field

Page 17: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

3D capability in GTC►

GTC has recently been adapted to 3D equilibriums●

VMEC MHD equilibrium (Cylindrical) => GTC input file (Boozer)●

New capability is tested by simulating ITG and TAE in LHD  stellarator

n=10 ITG mode 

structure at =0, /20, 

/10

n = 3 TAE eigenmode

structure for Tfast

=180 keV

Page 18: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

GTC simulation of ITG  with island

GTC simulation of resistive tearing mode

Toward First‐Principles Integrated Simulation of Kinetic‐MHD►

Kinetic effects at microscopic scales and coupling of multiple physical processes 

are crucial for excitation and evolution of macroscopic MHD modes, e.g., NTM►

GTC extended for current‐driven

MHD instabilities and verified for kink mode [J. 

McClanehan, PoP 2014] and resistive tearing mode [D. Liu, PoP 2014]►

GTC simulation finds depression of bootstrap current and suppression of ITG due 

to flattening of pressure profile in the island center [Jiang, PoP 2014]

MHD

Page 19: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

δψψ

δδφ

0

0

)1(

0

)( lnnnn

nn

Te h

ee

e

heff

• Faraday’s law

δφφˆ||

efftA

c 01 b

δψψ

φδ

0

)0(

0

)0( ln fT

eff

e

effe

Lowest order (adiabatic) solution of electron DKE expansion in  =/k||

v||

Fluid‐kinetic hybrid electron model I

φφθ

δψ

effqt1

efftA

cE φˆδφˆ ||||

001 bb

• Parallel electric field

αψ)ζθ(ψ qB• Contravariant representation of the magnetic field

δαψαδψδ B

0bB ||δ A

Page 20: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

• Perturbed diamagnetic drift velocity PPmn ee

δδΩ ||0

0*

ˆ1 bv

0lnˆ0*0

0

00

0

||000

BnBn

BBun

Btn

EEee vvvb

δδ• Electron continuity equation

• Perturbed pressure

e

e

fmvddvmB

P

fBddvmB

P

δμπ

δ

δμμπ

δ

||||||

||

20

00

Fluid‐kinetic hybrid electron model II

• Inversed gyrokinetic Ampere’s law for current

iiiee unZc

Auenc ||||||

ππ 44 2

• High‐order electron kinetic response

0

0

0

0

0

0

00

0

0

1ff

Te

ff

ff

tfw

ff

ff

dtd e

Ee

ed

eeEe

ee)()()()( δφδδ

lnδδ vvv

Page 21: Particle Simulations of Kinetic Mode in DIII D Tokamak ... · Gyrokinetic Particle Simulations of Kinetic Ballooning Mode in DIII‐D Tokamak Pedestal I. Holod, D. Fulton, X. Liu,

I. Holod • 7th IAEA TM • Frascati, March 4‐6, 2015

Validity of gyrokinetic theory

Gyrokinetic ordering [A.M.Dimits, “Gyrokinetic equations  for strong‐gradient regions”, PoP 19, 022504, 2012]

Simulation parameters

1 RL

LTe

kvV p

P

ii

th

E ρΩωφ

ρ

23

20

30

30

212

10110110111064310697104841037110676

ei

TiTen

TiiTeini

TekRLRLRLLLL

φρΩω....ρ.ρ.ρ