Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum...

102
Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert [email protected] Laboratoire de l’accélérateur linéaire (CNRS) Cours de l’École Normale Supérieure 24, rue Lhomond, Paris February 1st, 2018 1 / 32

Transcript of Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum...

Page 1: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Particle PhysicsThe Standard Model

Hadrons and Quantum Chromodynamics (I)

Frédéric Machefert

[email protected]

Laboratoire de l’accélérateur linéaire (CNRS)

Cours de l’École Normale Supérieure24, rue Lhomond, Paris

February 1st, 2018

1 / 32

Page 2: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Part IV

Hadrons and Quantum Chromodynamics (I)

2 / 32

Page 3: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

1 HadronsHistorySU(2) IsospinSU(3) Flavor

2 QCDFragmentation

3 / 32

Page 4: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• Remember the particle zoo

• charged leptons and photon

• add u, d SU(2)-Isospin

• add s SU(3)-Flavour

• add gluon (g)

• add the other quarks

Definition

Quarks u, d, c, s, t, bsometimes also called partons

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

W±,Z

H

4 / 32

Page 5: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• Remember the particle zoo

• charged leptons and photon

• add u, d SU(2)-Isospin

• add s SU(3)-Flavour

• add gluon (g)

• add the other quarks

Definition

Quarks u, d, c, s, t, bsometimes also called partons

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

W±,Z

H

4 / 32

Page 6: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• Remember the particle zoo

• charged leptons and photon

• add u, d SU(2)-Isospin

• add s SU(3)-Flavour

• add gluon (g)

• add the other quarks

Definition

Quarks u, d, c, s, t, bsometimes also called partons

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

W±,Z

H

4 / 32

Page 7: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• Remember the particle zoo

• charged leptons and photon

• add u, d SU(2)-Isospin

• add s SU(3)-Flavour

• add gluon (g)

• add the other quarks

Definition

Quarks u, d, c, s, t, bsometimes also called partons

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

W±,Z

H

4 / 32

Page 8: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• Remember the particle zoo

• charged leptons and photon

• add u, d SU(2)-Isospin

• add s SU(3)-Flavour

• add gluon (g)

• add the other quarks

Definition

Quarks u, d, c, s, t, bsometimes also called partons

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

W±,Z

H

4 / 32

Page 9: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• Remember the particle zoo

• charged leptons and photon

• add u, d SU(2)-Isospin

• add s SU(3)-Flavour

• add gluon (g)

• add the other quarks

Definition

Quarks u, d, c, s, t, bsometimes also called partons

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

W±,Z

H

4 / 32

Page 10: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• Remember the particle zoo

• charged leptons and photon

• add u, d SU(2)-Isospin

• add s SU(3)-Flavour

• add gluon (g)

• add the other quarks

Definition

Quarks u, d, c, s, t, bsometimes also called partons

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

νeL

eL

) (

νµL

µL

) (

ντL

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

W±,Z

H

4 / 32

Page 11: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Properties of the u

m0 = 2.5 ± 0.7MeV(2GeV )

Properties of the c

m0 = 1.27GeV

τ = (1.040 · 10−12)s cd

cτ = 311.8µm

Properties of the t

m0 = 172.9 ± 1.0GeV

τ ∼ 10−23 s

cτ ∼ 10−15 m

Properties of the d

m0 = 5.0 ± 0.8MeV(2GeV )

Properties of the s

m0 = 100 ± 25MeV

τ = (1.24 · 10−8)s us

cτ = 3.7m 1st

Properties of the b

m0 = 4.19 ± 0.12GeV (MS)

τ = (1.6 · 10−12)s ub

cτ = 492µm5 / 32

Page 12: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Properties of the u

m0 = 2.5 ± 0.7MeV(2GeV )

Properties of the c

m0 = 1.27GeV

τ = (1.040 · 10−12)s cd

cτ = 311.8µm

Properties of the t

m0 = 172.9 ± 1.0GeV

τ ∼ 10−23 s

cτ ∼ 10−15 m

Properties of the d

m0 = 5.0 ± 0.8MeV(2GeV )

Properties of the s

m0 = 100 ± 25MeV

τ = (1.24 · 10−8)s us

cτ = 3.7m 1st

Properties of the b

m0 = 4.19 ± 0.12GeV (MS)

τ = (1.6 · 10−12)s ub

cτ = 492µm5 / 32

Page 13: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Properties of the u

m0 = 2.5 ± 0.7MeV(2GeV )

Properties of the c

m0 = 1.27GeV

τ = (1.040 · 10−12)s cd

cτ = 311.8µm

Properties of the t

m0 = 172.9 ± 1.0GeV

τ ∼ 10−23 s

cτ ∼ 10−15 m

Properties of the d

m0 = 5.0 ± 0.8MeV(2GeV )

Properties of the s

m0 = 100 ± 25MeV

τ = (1.24 · 10−8)s us

cτ = 3.7m 1st

Properties of the b

m0 = 4.19 ± 0.12GeV (MS)

τ = (1.6 · 10−12)s ub

cτ = 492µm5 / 32

Page 14: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

History

History

• 1947: Discovery of the charged pion in cosmic rays

• 1947: V particles (kink plus nothing then Vertex with 2 tracks)

• 1950: neutral pion

• 1960s: lots of new hadronic particles

• attempt to order the zoo

• introduce additional quantum numbers, substructure

• makes only sense if predictions arise from these attempts to order (ifnumber of parameters is equal to the number of particles to bedescribed it is a waste of time)

6 / 32

Page 15: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

SU(2)

• SU(2): 2 × 2 matrix

• UU† = 12, det(U) = 1

• U = 1+ i∑3

a=1 δφaτa

2 with τa = σa

Pions: 140MeV, Spin-0

• I = 1 → ±1, 0

• I3|π+〉 = |π+〉• I3|π−〉 = −|π−〉• Kemmer predicted a neutral

particle:

• I3|π0〉 = 0|π0〉

Nucleons: 1GeV, Spin- 12

• electron spin: ± 12

• new QN: Isospin I (behavesspin-like)

• mp ≈ mn

• I = 12

• I3|p〉 = 12 |p〉

• I3|n〉 = − 12 |n〉

Order with Spin and Isospin: 5particles described with quantumnumber

7 / 32

Page 16: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

SU(2)

• SU(2): 2 × 2 matrix

• UU† = 12, det(U) = 1

• U = 1+ i∑3

a=1 δφaτa

2 with τa = σa

Pions: 140MeV, Spin-0

• I = 1 → ±1, 0

• I3|π+〉 = |π+〉• I3|π−〉 = −|π−〉• Kemmer predicted a neutral

particle:

• I3|π0〉 = 0|π0〉

Nucleons: 1GeV, Spin- 12

• electron spin: ± 12

• new QN: Isospin I (behavesspin-like)

• mp ≈ mn

• I = 12

• I3|p〉 = 12 |p〉

• I3|n〉 = − 12 |n〉

Order with Spin and Isospin: 5particles described with quantumnumber

7 / 32

Page 17: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

SU(2)

• SU(2): 2 × 2 matrix

• UU† = 12, det(U) = 1

• U = 1+ i∑3

a=1 δφaτa

2 with τa = σa

Pions: 140MeV, Spin-0

• I = 1 → ±1, 0

• I3|π+〉 = |π+〉• I3|π−〉 = −|π−〉• Kemmer predicted a neutral

particle:

• I3|π0〉 = 0|π0〉

Nucleons: 1GeV, Spin- 12

• electron spin: ± 12

• new QN: Isospin I (behavesspin-like)

• mp ≈ mn

• I = 12

• I3|p〉 = 12 |p〉

• I3|n〉 = − 12 |n〉

Order with Spin and Isospin: 5particles described with quantumnumber

7 / 32

Page 18: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

SU(2)

• SU(2): 2 × 2 matrix

• UU† = 12, det(U) = 1

• U = 1+ i∑3

a=1 δφaτa

2 with τa = σa

Pions: 140MeV, Spin-0

• I = 1 → ±1, 0

• I3|π+〉 = |π+〉• I3|π−〉 = −|π−〉• Kemmer predicted a neutral

particle:

• I3|π0〉 = 0|π0〉

Nucleons: 1GeV, Spin- 12

• electron spin: ± 12

• new QN: Isospin I (behavesspin-like)

• mp ≈ mn

• I = 12

• I3|p〉 = 12 |p〉

• I3|n〉 = − 12 |n〉

Order with Spin and Isospin: 5particles described with quantumnumber

7 / 32

Page 19: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

Baryons

• System of three quarks

• |p〉 = |uud〉• |n〉 = |udd〉

Mesons

• System of quark anti-quark

• |π+〉 = −|ud〉• |π0〉 = 1√

2(|uu〉 − |dd〉)

• |π−〉 = |du〉

Hypercharge

Q = I3 +12

Y

therefore:

Y = 2(Q − I3)Y (u) = 2( 2

3 − 12 )

= 13

Y (d) = 13

Y (u) = −Y (u)

Y (d) = −Y (d)

for the anti-quarks both charge ANDisospin change signs

8 / 32

Page 20: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

Baryons

• System of three quarks

• |p〉 = |uud〉• |n〉 = |udd〉

Mesons

• System of quark anti-quark

• |π+〉 = −|ud〉• |π0〉 = 1√

2(|uu〉 − |dd〉)

• |π−〉 = |du〉

Hypercharge

Q = I3 +12

Y

therefore:

Y = 2(Q − I3)Y (u) = 2( 2

3 − 12 )

= 13

Y (d) = 13

Y (u) = −Y (u)

Y (d) = −Y (d)

for the anti-quarks both charge ANDisospin change signs

8 / 32

Page 21: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

Baryons

• System of three quarks

• |p〉 = |uud〉• |n〉 = |udd〉

Mesons

• System of quark anti-quark

• |π+〉 = −|ud〉• |π0〉 = 1√

2(|uu〉 − |dd〉)

• |π−〉 = |du〉

Hypercharge

Q = I3 +12

Y

therefore:

Y = 2(Q − I3)Y (u) = 2( 2

3 − 12 )

= 13

Y (d) = 13

Y (u) = −Y (u)

Y (d) = −Y (d)

for the anti-quarks both charge ANDisospin change signs

8 / 32

Page 22: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

Proof.

(

u′

d ′

)

=

(

cos θ − sin θsin θ cos θ

)(

u

d

)

Charge conjugation:(

u′

d′

)

=

(

cos θ − sin θsin θ cos θ

)(

u

d

)

Respect Charge ordering (index 1 ↔ 2):(

d′

u′

)

=

(

cos θ sin θ− sin θ cos θ

)(

d

u

)

Rewrite to obtain the same rotation matrix as for particles:(

−d′

u′

)

=

(

cos θ − sin θsin θ cos θ

)(

−d

u

)

9 / 32

Page 23: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

Proof.

(

u′

d ′

)

=

(

cos θ − sin θsin θ cos θ

)(

u

d

)

Charge conjugation:(

u′

d′

)

=

(

cos θ − sin θsin θ cos θ

)(

u

d

)

Respect Charge ordering (index 1 ↔ 2):(

d′

u′

)

=

(

cos θ sin θ− sin θ cos θ

)(

d

u

)

Rewrite to obtain the same rotation matrix as for particles:(

−d′

u′

)

=

(

cos θ − sin θsin θ cos θ

)(

−d

u

)

9 / 32

Page 24: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

Proof.

(

u′

d ′

)

=

(

cos θ − sin θsin θ cos θ

)(

u

d

)

Respect Charge ordering (index 1 ↔ 2):(

d′

u′

)

=

(

cos θ sin θ− sin θ cos θ

)(

d

u

)

Rewrite to obtain the same rotation matrix as for particles:(

−d′

u′

)

=

(

cos θ − sin θsin θ cos θ

)(

−d

u

)

9 / 32

Page 25: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

Proof.

(

u′

d ′

)

=

(

cos θ − sin θsin θ cos θ

)(

u

d

)

Respect Charge ordering (index 1 ↔ 2):(

d′

u′

)

=

(

cos θ sin θ− sin θ cos θ

)(

d

u

)

Rewrite to obtain the same rotation matrix as for particles:(

−d′

u′

)

=

(

cos θ − sin θsin θ cos θ

)(

−d

u

)

9 / 32

Page 26: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(2) Isospin

SU(2) Flavor

Singlet State

1√2(dd + uu)

Triplet State

−du

1√2(−dd + uu)

ud

• irreducible representations:2∗ × 2 = 1 ⊕ 3

• exchange: u ↔ d

• symmetric singlet• antisymmetric triplet

• need 3 generators for SU(2)symmetry: triplet

10 / 32

Page 27: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Something strange was observed

• 1953: production of V 0s in accelerators

• π−p → KΛ → π+π−pπ−

• σ ∼ 1mb ≈ 10−31m2 ≈ (10−15m)2 = (fm)2

• cross section of the order of the geometrical hadron radius

• τ ∼ 10−10s

• or: strong interaction τ = 1fm

3·108m/s≈ 10−23s

• new QN: strangeness (conserved by strong interaction) S(K) = +1,S(Λ) = −1

• modern formulation: introduce a new quark: s

• introduce a QN: S (strangeness)

11 / 32

Page 28: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

• The hypercharge is redefined: Y = S + B

• Gell-Mann-Nishijima: Q = I3 +12 Y

B: Baryon number

quarks: 13

anti-quarks: − 13

Mesons (quark-anti-quark systems): 0Baryons (3 quark system): 1

I I3 Y S B Q

u 12

12

13 0 1

323

d 12 − 1

213 0 1

3 − 13

s 0 0 − 23 −1 1

3 − 13 I3

Y

12 / 32

Page 29: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3)

• |u〉, |d〉, |s〉

• |u〉 =

100

, |d〉 =

010

,

|s〉 =

001

• UU† = 13, det(U) = 1

• U = 1 + i∑8

a=1 δφaλa

2

• 3 × 3 × 2 − 9 − 1 = 8 generators

• Isospin SU(2), hypercharge (anumber) U(1) gives SU(2)×U(1)

• Gell-Mann-Ne’eman: SU(3) canbe decomposed intoSU(2)× U(1)

13 / 32

Page 30: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Gell-Mann Matrices:

λ1 = λ2 = λ3 = λ4 =

0 1 01 0 00 0 0

0 −i 0i 0 00 0 0

1 0 00 −1 00 0 0

0 0 10 0 01 0 0

λ5 = λ6 = λ7 = λ8 =

0 0 −i

0 0 0i 0 0

0 0 00 0 10 1 0

0 0 00 0 −i

0 i 0

1√3

0 00 1√

30

0 0 −2√3

• λ1, λ2, λ3: Pauli matrices of SU(2)

•12λ3: I3

•1√3λ8: hypercharge

• λ4, λ5 (Pauli equivalent): u and s

• λ6, λ7 (Pauli equivalent): d and s

14 / 32

Page 31: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Mesons

uds combined with uds

Singlet

1√3(uu + dd + ss)

Oktuplet: eight-fold way

−du

1√2(−dd + uu)

ud

sd

−ds

Oktuplet cont’d

us

su

1√6(uu + dd − 2ss)

15 / 32

Page 32: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Mesons

uds combined with uds

Singlet

1√3(uu + dd + ss)

Oktuplet: eight-fold way

−du

1√2(−dd + uu)

ud

sd

−ds

Oktuplet cont’d

us

su

1√6(uu + dd − 2ss)

15 / 32

Page 33: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Mesons

uds combined with uds

Singlet

1√3(uu + dd + ss)

Oktuplet: eight-fold way

−du

1√2(−dd + uu)

ud

sd

−ds

Oktuplet cont’d

us

su

1√6(uu + dd − 2ss)

15 / 32

Page 34: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Mesons

uds combined with uds

Singlet

1√3(uu + dd + ss)

Oktuplet: eight-fold way

−du

1√2(−dd + uu)

ud

sd

−ds

Oktuplet cont’d

us

su

1√6(uu + dd − 2ss)

15 / 32

Page 35: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Multiplets: Mesons

• η1 ∼ 1√3(uu + dd + ss)

• η8 ∼ 1√6(uu + dd − 2ss)

I3

YKK+

π+

K

K−

π−π0

η8

Ladder operators with Gell-Mann Matrices

I± = 12 (λ1 ± iλ2) ∆I3 = ±1 d ↔ u

V± = 12 (λ4 ± iλ5) ∆I3 = ± 1

2 ∆Y = ±1 s ↔ u

U± = 12 (λ6 ± iλ7) ∆I3 = ∓ 1

2 ∆Y = ±1 s ↔ d

16 / 32

Page 36: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Multiplets: Mesons

• η1 ∼ 1√3(uu + dd + ss)

• η8 ∼ 1√6(uu + dd − 2ss)

I3

YKK+

π+

K

K−

π−π0

η8

Ladder operators with Gell-Mann Matrices

I± = 12 (λ1 ± iλ2) ∆I3 = ±1 d ↔ u

V± = 12 (λ4 ± iλ5) ∆I3 = ± 1

2 ∆Y = ±1 s ↔ u

U± = 12 (λ6 ± iλ7) ∆I3 = ∓ 1

2 ∆Y = ±1 s ↔ d

16 / 32

Page 37: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

I3

YKK+

π+

K

K−

π−π0

η8

2 meson octets

• same flavor content

• Pseudo-scalar meson spectrum

• Vector meson spectrum

I3

YK∗K∗+

ρ+

K∗

K∗−

ρ− ρ0

ω

17 / 32

Page 38: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

I3

YKK+

π+

K

K−

π−π0

η8

2 meson octets

• same flavor content

• Pseudo-scalar meson spectrum

• Vector meson spectrum

I3

YK∗K∗+

ρ+

K∗

K∗−

ρ− ρ0

ω

17 / 32

Page 39: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Baryons

Di-quarks

uu

dd

ss1√2(ud + du)

1√2(us + su)

1√2(ds + sd)

1√2(ud − du)

1√2(us − su)

1√2(ds − sd)

Decomposition

• 6 symmetric states and 3anti-symmetric states

• IS3 (ud − du) = 0

• IS3 (ud + du) = 0

• Y S(ud − du) = 23 = Y S(s)

• 3 × 3 = 6 ⊕ 3∗

• 3 × 3 × 3 = (6 ⊕ 3∗)× 3 =6 × 3 ⊕ 3∗ × 3

• from the mesons we know:3∗ × 3 = 1 ⊕ 8

• 6 × 3 = 8 ⊕ 10

18 / 32

Page 40: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Baryons

Di-quarks

uu

dd

ss1√2(ud + du)

1√2(us + su)

1√2(ds + sd)

1√2(ud − du)

1√2(us − su)

1√2(ds − sd)

Decomposition

• 6 symmetric states and 3anti-symmetric states

• IS3 (ud − du) = 0

• IS3 (ud + du) = 0

• Y S(ud − du) = 23 = Y S(s)

• 3 × 3 = 6 ⊕ 3∗

• 3 × 3 × 3 = (6 ⊕ 3∗)× 3 =6 × 3 ⊕ 3∗ × 3

• from the mesons we know:3∗ × 3 = 1 ⊕ 8

• 6 × 3 = 8 ⊕ 10

18 / 32

Page 41: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Baryons

Di-quarks

uu

dd

ss1√2(ud + du)

1√2(us + su)

1√2(ds + sd)

1√2(ud − du)

1√2(us − su)

1√2(ds − sd)

Decomposition

• 6 symmetric states and 3anti-symmetric states

• IS3 (ud − du) = 0

• IS3 (ud + du) = 0

• Y S(ud − du) = 23 = Y S(s)

• 3 × 3 = 6 ⊕ 3∗

• 3 × 3 × 3 = (6 ⊕ 3∗)× 3 =6 × 3 ⊕ 3∗ × 3

• from the mesons we know:3∗ × 3 = 1 ⊕ 8

• 6 × 3 = 8 ⊕ 10

18 / 32

Page 42: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Baryons

Di-quarks

uu

dd

ss1√2(ud + du)

1√2(us + su)

1√2(ds + sd)

1√2(ud − du)

1√2(us − su)

1√2(ds − sd)

Decomposition

• 6 symmetric states and 3anti-symmetric states

• IS3 (ud − du) = 0

• IS3 (ud + du) = 0

• Y S(ud − du) = 23 = Y S(s)

• 3 × 3 = 6 ⊕ 3∗

• 3 × 3 × 3 = (6 ⊕ 3∗)× 3 =6 × 3 ⊕ 3∗ × 3

• from the mesons we know:3∗ × 3 = 1 ⊕ 8

• 6 × 3 = 8 ⊕ 10

18 / 32

Page 43: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Baryons

Di-quarks

uu

dd

ss1√2(ud + du)

1√2(us + su)

1√2(ds + sd)

1√2(ud − du)

1√2(us − su)

1√2(ds − sd)

Decomposition

• 6 symmetric states and 3anti-symmetric states

• IS3 (ud − du) = 0

• IS3 (ud + du) = 0

• Y S(ud − du) = 23 = Y S(s)

• 3 × 3 = 6 ⊕ 3∗

• 3 × 3 × 3 = (6 ⊕ 3∗)× 3 =6 × 3 ⊕ 3∗ × 3

• from the mesons we know:3∗ × 3 = 1 ⊕ 8

• 6 × 3 = 8 ⊕ 10

18 / 32

Page 44: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Baryons

Di-quarks

uu

dd

ss1√2(ud + du)

1√2(us + su)

1√2(ds + sd)

1√2(ud − du)

1√2(us − su)

1√2(ds − sd)

Decomposition

• 6 symmetric states and 3anti-symmetric states

• IS3 (ud − du) = 0

• IS3 (ud + du) = 0

• Y S(ud − du) = 23 = Y S(s)

• 3 × 3 = 6 ⊕ 3∗

• 3 × 3 × 3 = (6 ⊕ 3∗)× 3 =6 × 3 ⊕ 3∗ × 3

• from the mesons we know:3∗ × 3 = 1 ⊕ 8

• 6 × 3 = 8 ⊕ 10

18 / 32

Page 45: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(3) Baryons

Di-quarks

uu

dd

ss1√2(ud + du)

1√2(us + su)

1√2(ds + sd)

1√2(ud − du)

1√2(us − su)

1√2(ds − sd)

Decomposition

• 6 symmetric states and 3anti-symmetric states

• IS3 (ud − du) = 0

• IS3 (ud + du) = 0

• Y S(ud − du) = 23 = Y S(s)

• 3 × 3 = 6 ⊕ 3∗

• 3 × 3 × 3 = (6 ⊕ 3∗)× 3 =6 × 3 ⊕ 3∗ × 3

• from the mesons we know:3∗ × 3 = 1 ⊕ 8

• 6 × 3 = 8 ⊕ 10

18 / 32

Page 46: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Multiplets: Baryons

• uds:

• 3 × 3 × 3 = 1 + 8 + 8 + 10

• Λ and Σ: uds, but isopin singletversus triplet I3

Yn p

Σ+

Ξ0Ξ−

Σ−Σ0

Λ

I−|u〉 = |d〉I−|d〉 = 0I−|p〉 = I−|u〉|u〉|d〉

= I−(|u〉)|u〉|d〉+ |u〉I−(|u〉)|d〉+ |u〉|u〉I−|d〉∼ |d〉|u〉|d〉+ |u〉|d〉|d〉

19 / 32

Page 47: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Multiplets: Baryons

• uds:

• 3 × 3 × 3 = 1 + 8 + 8 + 10

• Λ and Σ: uds, but isopin singletversus triplet I3

Yn p

Σ+

Ξ0Ξ−

Σ−Σ0

Λ

I−|u〉 = |d〉I−|d〉 = 0I−|p〉 = I−|u〉|u〉|d〉

= I−(|u〉)|u〉|d〉+ |u〉I−(|u〉)|d〉+ |u〉|u〉I−|d〉∼ |d〉|u〉|d〉+ |u〉|d〉|d〉

19 / 32

Page 48: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Multiplets: Baryons

• uds:

• 3 × 3 × 3 = 1 + 8 + 8 + 10

• Λ and Σ: uds, but isopin singletversus triplet I3

Yn p

Σ+

Ξ0Ξ−

Σ−Σ0

Λ

I−|u〉 = |d〉I−|d〉 = 0I−|p〉 = I−|u〉|u〉|d〉

= I−(|u〉)|u〉|d〉+ |u〉I−(|u〉)|d〉+ |u〉|u〉I−|d〉∼ |d〉|u〉|d〉+ |u〉|d〉|d〉

19 / 32

Page 49: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Multiplets: Baryons

• uds:

• 3 × 3 × 3 = 1 + 8 + 8 + 10

• Λ and Σ: uds, but isopin singletversus triplet I3

Yn p

Σ+

Ξ0Ξ−

Σ−Σ0

Λ

I−|u〉 = |d〉I−|d〉 = 0I−|p〉 = I−|u〉|u〉|d〉

= I−(|u〉)|u〉|d〉+ |u〉I−(|u〉)|d〉+ |u〉|u〉I−|d〉∼ |d〉|u〉|d〉+ |u〉|d〉|d〉

19 / 32

Page 50: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Multiplets: Baryons

• uds:

• 3 × 3 × 3 = 1 + 8 + 8 + 10

• Λ and Σ: uds, but isopin singletversus triplet I3

Yn p

Σ+

Ξ0Ξ−

Σ−Σ0

Λ

I−|u〉 = |d〉I−|d〉 = 0I−|p〉 = I−|u〉|u〉|d〉

= I−(|u〉)|u〉|d〉+ |u〉I−(|u〉)|d〉+ |u〉|u〉I−|d〉∼ |d〉|u〉|d〉+ |u〉|d〉|d〉

19 / 32

Page 51: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Baryons

• ∆++ = |uuu〉• Ω− = |sss〉• Ω− predicted before discovery

Dekuplet

• symmetric flavor wave functions

• ladder operators keep wavefunctions symmetric

• 10 different states

I3

Y∆− ∆0 ∆+ ∆++

Σ⋆− Σ⋆0 Σ⋆+

Ξ⋆− Ξ⋆0

Ω−

SU(3)− Flavor beyond order: relate cross sections via clebsch gordoncoefficients

20 / 32

Page 52: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Baryons

• ∆++ = |uuu〉• Ω− = |sss〉• Ω− predicted before discovery

Dekuplet

• symmetric flavor wave functions

• ladder operators keep wavefunctions symmetric

• 10 different states

I3

Y∆− ∆0 ∆+ ∆++

Σ⋆− Σ⋆0 Σ⋆+

Ξ⋆− Ξ⋆0

Ω−

SU(3)− Flavor beyond order: relate cross sections via clebsch gordoncoefficients

20 / 32

Page 53: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Baryons

• ∆++ = |uuu〉• Ω− = |sss〉• Ω− predicted before discovery

Dekuplet

• symmetric flavor wave functions

• ladder operators keep wavefunctions symmetric

• 10 different states

I3

Y∆− ∆0 ∆+ ∆++

Σ⋆− Σ⋆0 Σ⋆+

Ξ⋆− Ξ⋆0

Ω−

SU(3)− Flavor beyond order: relate cross sections via clebsch gordoncoefficients

20 / 32

Page 54: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Gell-Mann Okubo

Physical state

• mΩ−/m∆++ = 1672/1230

• mass is a perturbation to SU(3)F

• m(η)obs = 548MeV

• m(η′)obs = 959MeV

• m(η8)predicted = 620MeV

• physical states do not have tofollow SU(3)F

• η and η8 close in mass

• physical states: η, η′ withcos θ = 0.96

η and η′

〈uu|M|uu〉 = 2mu

η8 = 1√6(uu + dd − 2ss)

m(η8) = 16 (〈uu|M|uu〉+〈dd|M|dd〉+4〈ss|M|ss〉)

≈ 13 (2mu + 4ms)

4m(K+) − m(π+)= 4(mu + ms)− 2mu

= 2mu + 4ms

= 3m(η8)

21 / 32

Page 55: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Gell-Mann Okubo

Physical state

• mΩ−/m∆++ = 1672/1230

• mass is a perturbation to SU(3)F

• m(η)obs = 548MeV

• m(η′)obs = 959MeV

• m(η8)predicted = 620MeV

• physical states do not have tofollow SU(3)F

• η and η8 close in mass

• physical states: η, η′ withcos θ = 0.96

η and η′

〈uu|M|uu〉 = 2mu

η8 = 1√6(uu + dd − 2ss)

m(η8) = 16 (〈uu|M|uu〉+〈dd|M|dd〉+4〈ss|M|ss〉)

≈ 13 (2mu + 4ms)

4m(K+) − m(π+)= 4(mu + ms)− 2mu

= 2mu + 4ms

= 3m(η8)

21 / 32

Page 56: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Gell-Mann Okubo

Physical state

• mΩ−/m∆++ = 1672/1230

• mass is a perturbation to SU(3)F

• m(η)obs = 548MeV

• m(η′)obs = 959MeV

• m(η8)predicted = 620MeV

• physical states do not have tofollow SU(3)F

• η and η8 close in mass

• physical states: η, η′ withcos θ = 0.96

η and η′

〈uu|M|uu〉 = 2mu

η8 = 1√6(uu + dd − 2ss)

m(η8) = 16 (〈uu|M|uu〉+〈dd|M|dd〉+4〈ss|M|ss〉)

≈ 13 (2mu + 4ms)

4m(K+) − m(π+)= 4(mu + ms)− 2mu

= 2mu + 4ms

= 3m(η8)

21 / 32

Page 57: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Gell-Mann Okubo

Physical state

• mΩ−/m∆++ = 1672/1230

• mass is a perturbation to SU(3)F

• m(η)obs = 548MeV

• m(η′)obs = 959MeV

• m(η8)predicted = 620MeV

• physical states do not have tofollow SU(3)F

• η and η8 close in mass

• physical states: η, η′ withcos θ = 0.96

η and η′

〈uu|M|uu〉 = 2mu

η8 = 1√6(uu + dd − 2ss)

m(η8) = 16 (〈uu|M|uu〉+〈dd|M|dd〉+4〈ss|M|ss〉)

≈ 13 (2mu + 4ms)

4m(K+) − m(π+)= 4(mu + ms)− 2mu

= 2mu + 4ms

= 3m(η8)

21 / 32

Page 58: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

Gell-Mann Okubo

Physical state

• mΩ−/m∆++ = 1672/1230

• mass is a perturbation to SU(3)F

• m(η)obs = 548MeV

• m(η′)obs = 959MeV

• m(η8)predicted = 620MeV

• physical states do not have tofollow SU(3)F

• η and η8 close in mass

• physical states: η, η′ withcos θ = 0.96

η and η′

〈uu|M|uu〉 = 2mu

η8 = 1√6(uu + dd − 2ss)

m(η8) = 16 (〈uu|M|uu〉+〈dd|M|dd〉+4〈ss|M|ss〉)

≈ 13 (2mu + 4ms)

4m(K+) − m(π+)= 4(mu + ms)− 2mu

= 2mu + 4ms

= 3m(η8)

21 / 32

Page 59: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(6)

u

d

s

u ↑u ↓d ↑d ↓s ↑s ↓

SU(6)

• describes Spin × Flavor

• symmetric subset: 56

• S = 12 octet and S = 3

2 decuplet

• all particles, why?

Spin for baryons

↑↑↑1√3(↑↑↓ + ↑↓↑ + ↓↑↑)

1√3(↓↓↑ + ↓↑↓ + ↑↓↓)

↓↓↓1√6(2 ↓↓↑ − ↑↓↓ − ↓↑↓)

1√6(2 ↑↑↓ − ↑↓↑ − ↓↑↑)

1√2(↑↓↓ − ↓↑↓)

1√2(↑↓↑ − ↓↑↑)

• symmetric

• mixed symmetric

22 / 32

Page 60: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(6)

u

d

s

u ↑u ↓d ↑d ↓s ↑s ↓

SU(6)

• describes Spin × Flavor

• symmetric subset: 56

• S = 12 octet and S = 3

2 decuplet

• all particles, why?

Spin for baryons

↑↑↑1√3(↑↑↓ + ↑↓↑ + ↓↑↑)

1√3(↓↓↑ + ↓↑↓ + ↑↓↓)

↓↓↓1√6(2 ↓↓↑ − ↑↓↓ − ↓↑↓)

1√6(2 ↑↑↓ − ↑↓↑ − ↓↑↑)

1√2(↑↓↓ − ↓↑↓)

1√2(↑↓↑ − ↓↑↑)

• symmetric

• mixed symmetric

22 / 32

Page 61: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(6)

u

d

s

u ↑u ↓d ↑d ↓s ↑s ↓

SU(6)

• describes Spin × Flavor

• symmetric subset: 56

• S = 12 octet and S = 3

2 decuplet

• all particles, why?

• EM: violates I, but preserves I3:π0 → γγ, 1 → 0, 0 → 0

22 / 32

Page 62: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

SU(3) Flavor

SU(6)

u

d

s

u ↑u ↓d ↑d ↓s ↑s ↓

SU(6)

• describes Spin × Flavor

• symmetric subset: 56

• S = 12 octet and S = 3

2 decuplet

• all particles, why?

• EM: violates I, but preserves I3:π0 → γγ, 1 → 0, 0 → 0

charm, bottom, top

• New QN for each quark

• conserved in SI

• No extension to SU(4) (massdifference too large)

22 / 32

Page 63: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• What glue holds the hadronstogether?

• Are quarks math or particles?

• photon carrier of EM-interactions

• gluon

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

eL

) (

µL

) (

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

23 / 32

Page 64: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

• What glue holds the hadronstogether?

• Are quarks math or particles?

• photon carrier of EM-interactions

• gluon

(

uL

dL

) (

cL

sL

) (

tL

bL

)

(

eL

) (

µL

) (

τ L

)

uR cR tR

dR sR bR

eR µR τR

γg

23 / 32

Page 65: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

QCD

1972,1973 Gell-Mann, Fritzsch, Leutwyler : SU(3)− Color

L0 = ψ(x)(iγµ∂µ − m)ψ(x)

extend to 6 quarks (u, d, c, s, t, b):

L0 =6

j=1

ψj(x)(iγµ∂µ − m)ψj(x)

extend to three colors

L0 =6

j=1

c

ψjc(x)(iγ

µ∂µ − m)ψjc(x)

define:

qj =

ψjR(x)

ψjG(x)

ψjB(x)

leads to:

L0 =

6∑

j=1

qj(iγµ∂µ − m)qj

invariant under a global transformationU (color-index) with UU† = 13 anddet(U) = 1

24 / 32

Page 66: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

QCD

1972,1973 Gell-Mann, Fritzsch, Leutwyler : SU(3)− Color

L0 = ψ(x)(iγµ∂µ − m)ψ(x)

extend to 6 quarks (u, d, c, s, t, b):

L0 =6

j=1

ψj(x)(iγµ∂µ − m)ψj(x)

extend to three colors

L0 =6

j=1

c

ψjc(x)(iγ

µ∂µ − m)ψjc(x)

define:

qj =

ψjR(x)

ψjG(x)

ψjB(x)

leads to:

L0 =

6∑

j=1

qj(iγµ∂µ − m)qj

invariant under a global transformationU (color-index) with UU† = 13 anddet(U) = 1

24 / 32

Page 67: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

QCD

1972,1973 Gell-Mann, Fritzsch, Leutwyler : SU(3)− Color

L0 = ψ(x)(iγµ∂µ − m)ψ(x)

extend to 6 quarks (u, d, c, s, t, b):

L0 =6

j=1

ψj(x)(iγµ∂µ − m)ψj(x)

extend to three colors

L0 =6

j=1

c

ψjc(x)(iγ

µ∂µ − m)ψjc(x)

define:

qj =

ψjR(x)

ψjG(x)

ψjB(x)

leads to:

L0 =

6∑

j=1

qj(iγµ∂µ − m)qj

invariant under a global transformationU (color-index) with UU† = 13 anddet(U) = 1

24 / 32

Page 68: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

QCD

1972,1973 Gell-Mann, Fritzsch, Leutwyler : SU(3)− Color

L0 = ψ(x)(iγµ∂µ − m)ψ(x)

extend to 6 quarks (u, d, c, s, t, b):

L0 =6

j=1

ψj(x)(iγµ∂µ − m)ψj(x)

extend to three colors

L0 =6

j=1

c

ψjc(x)(iγ

µ∂µ − m)ψjc(x)

define:

qj =

ψjR(x)

ψjG(x)

ψjB(x)

leads to:

L0 =

6∑

j=1

qj(iγµ∂µ − m)qj

invariant under a global transformationU (color-index) with UU† = 13 anddet(U) = 1

24 / 32

Page 69: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

QCD

1972,1973 Gell-Mann, Fritzsch, Leutwyler : SU(3)− Color

L0 = ψ(x)(iγµ∂µ − m)ψ(x)

extend to 6 quarks (u, d, c, s, t, b):

L0 =6

j=1

ψj(x)(iγµ∂µ − m)ψj(x)

extend to three colors

L0 =6

j=1

c

ψjc(x)(iγ

µ∂µ − m)ψjc(x)

define:

qj =

ψjR(x)

ψjG(x)

ψjB(x)

leads to:

L0 =

6∑

j=1

qj(iγµ∂µ − m)qj

invariant under a global transformationU (color-index) with UU† = 13 anddet(U) = 1

24 / 32

Page 70: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The free Lagrangian (L0)

Remember QED:

GaugeGroup U(1)Gaugebosons 1Lorentz − Vector Aµ(x)Field − Tensor Fµν = ∂µAν(x)− ∂νAµ(x)

QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x)− ∂νGaµ(x)− gSfabcGb

µ(x)Gcν(x)

Structure constants of SU(3) (totally anti-symmetric):

[λa

2,λb

2] = ifabc

λc

2

The additional term is characteristic of a non-Abelian theory

25 / 32

Page 71: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The free Lagrangian (L0)

Remember QED:

GaugeGroup U(1)Gaugebosons 1Lorentz − Vector Aµ(x)Field − Tensor Fµν = ∂µAν(x)− ∂νAµ(x)

QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x)− ∂νGaµ(x)− gSfabcGb

µ(x)Gcν(x)

Structure constants of SU(3) (totally anti-symmetric):

[λa

2,λb

2] = ifabc

λc

2

The additional term is characteristic of a non-Abelian theory

25 / 32

Page 72: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The free Lagrangian (L0)

Remember QED:

GaugeGroup U(1)Gaugebosons 1Lorentz − Vector Aµ(x)Field − Tensor Fµν = ∂µAν(x)− ∂νAµ(x)

QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x)− ∂νGaµ(x)− gSfabcGb

µ(x)Gcν(x)

Structure constants of SU(3) (totally anti-symmetric):

[λa

2,λb

2] = ifabc

λc

2

The additional term is characteristic of a non-Abelian theory

25 / 32

Page 73: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The free Lagrangian (L0)

Remember QED:

GaugeGroup U(1)Gaugebosons 1Lorentz − Vector Aµ(x)Field − Tensor Fµν = ∂µAν(x)− ∂νAµ(x)

QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x)− ∂νGaµ(x)− gSfabcGb

µ(x)Gcν(x)

Structure constants of SU(3) (totally anti-symmetric):

[λa

2,λb

2] = ifabc

λc

2

The additional term is characteristic of a non-Abelian theory

25 / 32

Page 74: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The free Lagrangian (L0)

Remember QED:

GaugeGroup U(1)Gaugebosons 1Lorentz − Vector Aµ(x)Field − Tensor Fµν = ∂µAν(x)− ∂νAµ(x)

QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x)− ∂νGaµ(x)− gSfabcGb

µ(x)Gcν(x)

Structure constants of SU(3) (totally anti-symmetric):

[λa

2,λb

2] = ifabc

λc

2

The additional term is characteristic of a non-Abelian theory

25 / 32

Page 75: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The free Lagrangian (L0)

Remember QED:

GaugeGroup U(1)Gaugebosons 1Lorentz − Vector Aµ(x)Field − Tensor Fµν = ∂µAν(x)− ∂νAµ(x)

QCD:

GaugeGroup SU(3)Gaugebosons 8Lorentz − Vectors Ga

µ(x)

Field − Tensor Gaµν = ∂µGa

ν(x)− ∂νGaµ(x)− gSfabcGb

µ(x)Gcν(x)

Structure constants of SU(3) (totally anti-symmetric):

[λa

2,λb

2] = ifabc

λc

2

The additional term is characteristic of a non-Abelian theory

25 / 32

Page 76: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Define a hermitian matrix with the gluon Lorentz-Vectors (λa are hermitian,Ga

µ(x) is real):

Gµ(x) = Gaµ(x)

λa

2= (Ga

µ(x))†λ

†a

2= G

†µ(x)

Define a Field Tensor:

Gµν(x)= ∂µGν(x)− ∂νGµ(x) + igS[Gµ(x),Gν(x)]

= ∂µ(Gaν(x)

λa

2 )− ∂ν(Gaµ(x)

λa

2 ) + igS[Gbµ(x)

λb

2 ,Gcν(x)

λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 + igSGbµ(x)G

cν(x)[

λb

2 ,λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 − gSfbcaGbµ(x)G

cν(x)

λa

2

= (∂µGaν(x)− ∂νGa

µ(x))λa2 − gSfabcGb

µ(x)Gcν(x)

λa2

= Gaµν(x)

λa

2

26 / 32

Page 77: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Define a hermitian matrix with the gluon Lorentz-Vectors (λa are hermitian,Ga

µ(x) is real):

Gµ(x) = Gaµ(x)

λa

2= (Ga

µ(x))†λ

†a

2= G

†µ(x)

Define a Field Tensor:

Gµν(x)= ∂µGν(x)− ∂νGµ(x) + igS[Gµ(x),Gν(x)]

= ∂µ(Gaν(x)

λa

2 )− ∂ν(Gaµ(x)

λa

2 ) + igS[Gbµ(x)

λb

2 ,Gcν(x)

λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 + igSGbµ(x)G

cν(x)[

λb

2 ,λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 − gSfbcaGbµ(x)G

cν(x)

λa

2

= (∂µGaν(x)− ∂νGa

µ(x))λa2 − gSfabcGb

µ(x)Gcν(x)

λa2

= Gaµν(x)

λa

2

26 / 32

Page 78: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Define a hermitian matrix with the gluon Lorentz-Vectors (λa are hermitian,Ga

µ(x) is real):

Gµ(x) = Gaµ(x)

λa

2= (Ga

µ(x))†λ

†a

2= G

†µ(x)

Define a Field Tensor:

Gµν(x)= ∂µGν(x)− ∂νGµ(x) + igS[Gµ(x),Gν(x)]

= ∂µ(Gaν(x)

λa

2 )− ∂ν(Gaµ(x)

λa

2 ) + igS[Gbµ(x)

λb

2 ,Gcν(x)

λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 + igSGbµ(x)G

cν(x)[

λb

2 ,λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 − gSfbcaGbµ(x)G

cν(x)

λa

2

= (∂µGaν(x)− ∂νGa

µ(x))λa2 − gSfabcGb

µ(x)Gcν(x)

λa2

= Gaµν(x)

λa

2

26 / 32

Page 79: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Define a hermitian matrix with the gluon Lorentz-Vectors (λa are hermitian,Ga

µ(x) is real):

Gµ(x) = Gaµ(x)

λa

2= (Ga

µ(x))†λ

†a

2= G

†µ(x)

Define a Field Tensor:

Gµν(x)= ∂µGν(x)− ∂νGµ(x) + igS[Gµ(x),Gν(x)]

= ∂µ(Gaν(x)

λa

2 )− ∂ν(Gaµ(x)

λa

2 ) + igS[Gbµ(x)

λb

2 ,Gcν(x)

λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 + igSGbµ(x)G

cν(x)[

λb

2 ,λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 − gSfbcaGbµ(x)G

cν(x)

λa

2

= (∂µGaν(x)− ∂νGa

µ(x))λa2 − gSfabcGb

µ(x)Gcν(x)

λa2

= Gaµν(x)

λa

2

26 / 32

Page 80: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Define a hermitian matrix with the gluon Lorentz-Vectors (λa are hermitian,Ga

µ(x) is real):

Gµ(x) = Gaµ(x)

λa

2= (Ga

µ(x))†λ

†a

2= G

†µ(x)

Define a Field Tensor:

Gµν(x)= ∂µGν(x)− ∂νGµ(x) + igS[Gµ(x),Gν(x)]

= ∂µ(Gaν(x)

λa

2 )− ∂ν(Gaµ(x)

λa

2 ) + igS[Gbµ(x)

λb

2 ,Gcν(x)

λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 + igSGbµ(x)G

cν(x)[

λb

2 ,λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 − gSfbcaGbµ(x)G

cν(x)

λa

2

= (∂µGaν(x)− ∂νGa

µ(x))λa2 − gSfabcGb

µ(x)Gcν(x)

λa2

= Gaµν(x)

λa

2

26 / 32

Page 81: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Define a hermitian matrix with the gluon Lorentz-Vectors (λa are hermitian,Ga

µ(x) is real):

Gµ(x) = Gaµ(x)

λa

2= (Ga

µ(x))†λ

†a

2= G

†µ(x)

Define a Field Tensor:

Gµν(x)= ∂µGν(x)− ∂νGµ(x) + igS[Gµ(x),Gν(x)]

= ∂µ(Gaν(x)

λa

2 )− ∂ν(Gaµ(x)

λa

2 ) + igS[Gbµ(x)

λb

2 ,Gcν(x)

λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 + igSGbµ(x)G

cν(x)[

λb

2 ,λc

2 ]

= (∂µGaν(x)− ∂νGa

µ(x))λa

2 − gSfbcaGbµ(x)G

cν(x)

λa

2

= (∂µGaν(x)− ∂νGa

µ(x))λa2 − gSfabcGb

µ(x)Gcν(x)

λa2

= Gaµν(x)

λa

2

26 / 32

Page 82: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Free Lagrangian:

L0 = − 12 Tr(Gµν(x)G

µν(x))

= − 12 Tr((

a Gaµν(x)

λa

2 )(∑

b Gµνb(x)λb

2 ))

= − 12 Tr(

a,b Gaµν(x)G

µνb(x)λa2

λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x)Tr(λa

2λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x) 14 Tr(λaλb)

= − 12

a,b Gaµν(x)G

µνb(x) 14 2δab

= − 14 Ga

µν(x)Gµνa(x)

27 / 32

Page 83: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Free Lagrangian:

L0 = − 12 Tr(Gµν(x)G

µν(x))

= − 12 Tr((

a Gaµν(x)

λa

2 )(∑

b Gµνb(x)λb

2 ))

= − 12 Tr(

a,b Gaµν(x)G

µνb(x)λa2

λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x)Tr(λa

2λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x) 14 Tr(λaλb)

= − 12

a,b Gaµν(x)G

µνb(x) 14 2δab

= − 14 Ga

µν(x)Gµνa(x)

27 / 32

Page 84: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Free Lagrangian:

L0 = − 12 Tr(Gµν(x)G

µν(x))

= − 12 Tr((

a Gaµν(x)

λa

2 )(∑

b Gµνb(x)λb

2 ))

= − 12 Tr(

a,b Gaµν(x)G

µνb(x)λa2

λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x)Tr(λa

2λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x) 14 Tr(λaλb)

= − 12

a,b Gaµν(x)G

µνb(x) 14 2δab

= − 14 Ga

µν(x)Gµνa(x)

27 / 32

Page 85: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Free Lagrangian:

L0 = − 12 Tr(Gµν(x)G

µν(x))

= − 12 Tr((

a Gaµν(x)

λa

2 )(∑

b Gµνb(x)λb

2 ))

= − 12 Tr(

a,b Gaµν(x)G

µνb(x)λa2

λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x)Tr(λa

2λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x) 14 Tr(λaλb)

= − 12

a,b Gaµν(x)G

µνb(x) 14 2δab

= − 14 Ga

µν(x)Gµνa(x)

27 / 32

Page 86: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Free Lagrangian:

L0 = − 12 Tr(Gµν(x)G

µν(x))

= − 12 Tr((

a Gaµν(x)

λa

2 )(∑

b Gµνb(x)λb

2 ))

= − 12 Tr(

a,b Gaµν(x)G

µνb(x)λa2

λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x)Tr(λa

2λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x) 14 Tr(λaλb)

= − 12

a,b Gaµν(x)G

µνb(x) 14 2δab

= − 14 Ga

µν(x)Gµνa(x)

27 / 32

Page 87: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Free Lagrangian:

L0 = − 12 Tr(Gµν(x)G

µν(x))

= − 12 Tr((

a Gaµν(x)

λa

2 )(∑

b Gµνb(x)λb

2 ))

= − 12 Tr(

a,b Gaµν(x)G

µνb(x)λa2

λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x)Tr(λa

2λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x) 14 Tr(λaλb)

= − 12

a,b Gaµν(x)G

µνb(x) 14 2δab

= − 14 Ga

µν(x)Gµνa(x)

27 / 32

Page 88: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Free Lagrangian:

L0 = − 12 Tr(Gµν(x)G

µν(x))

= − 12 Tr((

a Gaµν(x)

λa

2 )(∑

b Gµνb(x)λb

2 ))

= − 12 Tr(

a,b Gaµν(x)G

µνb(x)λa2

λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x)Tr(λa

2λb

2 )

= − 12

a,b Gaµν(x)G

µνb(x) 14 Tr(λaλb)

= − 12

a,b Gaµν(x)G

µνb(x) 14 2δab

= − 14 Ga

µν(x)Gµνa(x)

27 / 32

Page 89: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Minimal substitution

∂λ → Dλ = ∂λ + igSGλ(x) + iqeAλ(x)

where q is the charge of the quark and e is the elementary charge (> 0).q = −1 for the electron.

L = − 12 Tr(Gµν(x)G

µν(x)) +∑6

j=1 qj(iγλDλ − mj))qj

= − 14 Ga

µν(x)Gµνa(x)

+∑6

j=1 qj(iγλ(∂λ + igSGaλ

λa

2 + iqeAλ(x)− mj))qj

Lagrangian is invariant under local transformations SU(3)C (not shown) andU(1)EM

Gµ(x) → U(x)Gµ(x)U†(x)− i

gS

U(x)∂µU†(x)

28 / 32

Page 90: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Minimal substitution

∂λ → Dλ = ∂λ + igSGλ(x) + iqeAλ(x)

where q is the charge of the quark and e is the elementary charge (> 0).q = −1 for the electron.

L = − 12 Tr(Gµν(x)G

µν(x)) +∑6

j=1 qj(iγλDλ − mj))qj

= − 14 Ga

µν(x)Gµνa(x)

+∑6

j=1 qj(iγλ(∂λ + igSGaλ

λa

2 + iqeAλ(x)− mj))qj

Lagrangian is invariant under local transformations SU(3)C (not shown) andU(1)EM

Gµ(x) → U(x)Gµ(x)U†(x)− i

gS

U(x)∂µU†(x)

28 / 32

Page 91: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Minimal substitution

∂λ → Dλ = ∂λ + igSGλ(x) + iqeAλ(x)

where q is the charge of the quark and e is the elementary charge (> 0).q = −1 for the electron.

L = − 12 Tr(Gµν(x)G

µν(x)) +∑6

j=1 qj(iγλDλ − mj))qj

= − 14 Ga

µν(x)Gµνa(x)

+∑6

j=1 qj(iγλ(∂λ + igSGaλ

λa

2 + iqeAλ(x)− mj))qj

Lagrangian is invariant under local transformations SU(3)C (not shown) andU(1)EM

Gµ(x) → U(x)Gµ(x)U†(x)− i

gS

U(x)∂µU†(x)

28 / 32

Page 92: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Minimal substitution

∂λ → Dλ = ∂λ + igSGλ(x) + iqeAλ(x)

where q is the charge of the quark and e is the elementary charge (> 0).q = −1 for the electron.

L = − 12 Tr(Gµν(x)G

µν(x)) +∑6

j=1 qj(iγλDλ − mj))qj

= − 14 Ga

µν(x)Gµνa(x)

+∑6

j=1 qj(iγλ(∂λ + igSGaλ

λa

2 + iqeAλ(x)− mj))qj

Lagrangian is invariant under local transformations SU(3)C (not shown) andU(1)EM

Gµ(x) → U(x)Gµ(x)U†(x)− i

gS

U(x)∂µU†(x)

28 / 32

Page 93: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The Ω− puzzle

• Ω− = |sss〉• J(Ω−) = 3

2

• Ω− = |s ↑ s ↑ s ↑〉• violates Pauli: fermions are

anti-symmetric

• deduce hidden quantum number:QCD

The Ω− solution

• Ω− = ǫijk si sjsk

Color

• |u〉 → |u〉, |u〉, |u〉• 〈u|u〉 = 〈u|u〉 = 0

29 / 32

Page 94: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The Ω− puzzle

• Ω− = |sss〉• J(Ω−) = 3

2

• Ω− = |s ↑ s ↑ s ↑〉• violates Pauli: fermions are

anti-symmetric

• deduce hidden quantum number:QCD

The Ω− solution

• Ω− = ǫijk si sjsk

Color

• |u〉 → |u〉, |u〉, |u〉• 〈u|u〉 = 〈u|u〉 = 0

29 / 32

Page 95: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The Ω− puzzle

• Ω− = |sss〉• J(Ω−) = 3

2

• Ω− = |s ↑ s ↑ s ↑〉• violates Pauli: fermions are

anti-symmetric

• deduce hidden quantum number:QCD

The Ω− solution

• Ω− = ǫijk si sjsk

Color

• |u〉 → |u〉, |u〉, |u〉• 〈u|u〉 = 〈u|u〉 = 0

29 / 32

Page 96: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The Ω− puzzle

• Ω− = |sss〉• J(Ω−) = 3

2

• Ω− = |s ↑ s ↑ s ↑〉• violates Pauli: fermions are

anti-symmetric

• deduce hidden quantum number:QCD

The Ω− solution

• Ω− = ǫijk si sjsk

Color

• |u〉 → |u〉, |u〉, |u〉• 〈u|u〉 = 〈u|u〉 = 0

29 / 32

Page 97: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The Ω− puzzle

• Ω− = |sss〉• J(Ω−) = 3

2

• Ω− = |s ↑ s ↑ s ↑〉• violates Pauli: fermions are

anti-symmetric

• deduce hidden quantum number:QCD

The Ω− solution

• Ω− = ǫijk si sjsk

Color

• |u〉 → |u〉, |u〉, |u〉• 〈u|u〉 = 〈u|u〉 = 0

29 / 32

Page 98: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

The Ω− puzzle

• Ω− = |sss〉• J(Ω−) = 3

2

• Ω− = |s ↑ s ↑ s ↑〉• violates Pauli: fermions are

anti-symmetric

• deduce hidden quantum number:QCD

The Ω− solution

• Ω− = ǫijk si sjsk

Color

• |u〉 → |u〉, |u〉, |u〉• 〈u|u〉 = 〈u|u〉 = 0

29 / 32

Page 99: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Final state

e−

e+

u

u

• e+e− → γ → uu

• if color is not measured: sum ofcolor

• σ ∼ NC = 3

• σ ∼ NC · q2

Initial state

• uu → γ → e+e−

• if color is not measured: average

• 〈u|u〉 = 1 〈u|u〉 = 1 〈u|u〉 = 1〈u|u〉 = 0 〈u|u〉 = 0 〈u|u〉 = 0〈u|u〉 = 0 〈u|u〉 = 0 〈u|u〉 = 0

• σ ∼ 39 = 1

3

30 / 32

Page 100: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Final state

e−

e+

u

u

• e+e− → γ → uu

• if color is not measured: sum ofcolor

• σ ∼ NC = 3

• σ ∼ NC · q2

Initial state

• uu → γ → e+e−

• if color is not measured: average

• 〈u|u〉 = 1 〈u|u〉 = 1 〈u|u〉 = 1〈u|u〉 = 0 〈u|u〉 = 0 〈u|u〉 = 0〈u|u〉 = 0 〈u|u〉 = 0 〈u|u〉 = 0

• σ ∼ 39 = 1

3

30 / 32

Page 101: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

qqg

u

ug

• gluon carries color and anti-colorcharge

• gqq vertex: ∼ gS (αS =g2

S

4π )electric charge irrelevant!

TGV and QGV

gg

g

Non-abelian theory: triple gluon vertex∼ gS

g

g

g

g

four gluon vertex ∼ g2S

31 / 32

Page 102: Particle Physics The Standard Model...Particle Physics The Standard Model Hadrons and Quantum Chromodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l’accélérateur

Hadrons QCD

Fragmentation

Fragmentation

• connection between hadrons and quarks?

• no colored particles observed

• Lund string fragmentation (V ∼ kr )

√s = 1 GeV

• |K+〉 = |us〉• mK+ = 0.494GeV

• e+e− → ss → K+K−

• more difficult at√

s ≫ 2m

32 / 32