Particle identification of RI beam in Sn region with the ...

31
Particle identification of RI beam in Sn region with the SAMURAI spectrometer RIKEN Nishina Center Masaki Sasano Many slides are taken from a presentation by J. Yasuda in EMIS2015, May 15, 2015

Transcript of Particle identification of RI beam in Sn region with the ...

Particle identification of RI beam

in Sn region with the SAMURAI spectrometer

RIKEN Nishina Center

Masaki Sasano

Many slides are taken from a presentation by J. Yasuda in

EMIS2015, May 15, 2015

Collaborators

M. Sasano, H. Baba, W. Chao, M. Dozono, N. Fukuda, N. Inabe, T. Isobe, D. Kamaeda,

T. Kubo, M. Kurata-Nishimura, E. Milman, T. Motobayashi, H. Otsu, V. Panin, W. Powell, M. Sako,

H. Sato, Y. Shimizu, H. Sakai, L. Stuhl, H. Suzuki, T. Suwat, H. Takeda, T. Uesaka, K. Yoneda,

J. Zenihiro,

T. Kobayashi, T. Sumikama, T. Tako,

T. Nakamura, Y. Kondo, Y. Togano, M. Shikata, J. Tsubota,

K. Yako, S. Shimoura, S. Ota, S. Kawase, Y. Kubota, M. Takaki, S. Michimasa, K. Kisamori,

C.S. Lee, H. Tokieda, M. Kobayashi, S. Koyama,

J. Yasuda, T. Wakasa, S. Sakaguchi,

T. Murakami, N. Nakatsuka, M. Kaneko,

Y. Matsuda,

D. Mucher, S. Reichert,

R.G.T. Zegers, E.D. Bazin, N. Kobayashi,

G. Jhang, J.W. Lee

A. Krasznahorkay

Outline

• Background of 132Sn(p,n) study

• Experimental setup for 132Sn(p,n) reaction at 250 MeV/u

• Particle identification (PID) analysis by SAMURAI

• How charge state appears in the PID plot

• Future prospects and ideas

Charge-Exchange (CE) reactions

β-decay

CE

A,Z A,Z±1

en

erg

y

Ca

nn

ot a

cce

ss b

y β

-de

ca

y (p,n), (3He,t), (n,p), (t,3He), …

n p

𝝈 𝒕±

𝝈 𝒕±

NN

Giant

resonance

T=1, S=1,L=0 induced by 𝝈 𝒕±strength : B(GT)

Charge exchange reactions

Need to handle RI beams with intermediate energies

from 100 to 300 MeV

Overview of (p,n) studies for RI beam

@NSCL, MSU

S80056Ni

12Be8He

@RIKEN RIBF

SHARAQ

K.Yako et al.,

H. Sakai et al.,

132Sn (the data of today’s talk)

double magic nuclei far from stabilityperformed @RIBF SAMURAI, April 2014

PRL121 (2018) 132501.

M.Sasano et al.,

11Li, 14Be, L. Stuhl et al. @ SAMURAI

Charge state population for Sn beams

0

0.1

0.2

0 500 1000 1500 2000 2500

rati

o

Kinetic energy [MeV]

Z-Q=1 state ratio

(p,n) measurement with WINDS + SAMURAI

• Beam

• High Intensity : >10^4 pps

• Intermediate kinetic energy : 200~300 MeV/u

• can access to far from the stability line

• Neutron detection

• WINDS(Wide angle Inverse kinematics Neutron

Detectors for SHARAQ) : 73 scintillators

• cover wide angular range

• Residue tag

• SAMURAI

• Large acceptance

• measure all decay particle in one setting

BigRIPS

WINDS

SAMURAI

132Sn beam production

• Beam energy after F7: 270 MeV/u

•Total beam Intensity

• 1.4 x 10^4 pps

•PID by BigRIPS

• σZ = 0.24

• σA/Q = 0.0014

•Purity

• 132Sn : 40%

purity [%]

132Sn 40.11

133Sn 9.47

131Sn 9.50

135Sb 3.88

134Sb 4.28

130in 3.24

129In 1.96Z A/Q

σZ = 0.24

4.1σ separation

σAOQ = 0.0014

5.0σ separation

A/Q

Z

PID plot

132Sn

134Sb

130In

135Sb

5σ separation

Experimental setup

SAMURAI

n

132Sn

270 MeV/nucleon

WINDS

Liq. H

60mm phi

11mmt

132Sb*

FDC2

drift chamber

ICF

ion chanber

HODS

plastic TED

crystal

decay-n

NEBULA

—> P

—> Z, beta

—> charge state

—> tag for

n-decay channel

T. Kobayashi et al., NIM B371, 294 (2013)

Nakamura’s & Otu’s talks on Monday

Damping of beam energies

0

50

100

150

200

250

300

(MeV)

Requirements on SAMURAI

• Large acceptance

• all decay channel with multi-nucleon emission can be

measured in one setting

• momentum spread ~2%

• Good PID resolution for heavy residue

• 5σ separation for A & Z in order to improve S/N

TOF analysis

• Plastic counter HODS & SBT1,2

• HODS : 6 plastic scintillation with size of 450 x 100 x 5 mm3

• SBT1,2 : 130 x 130 x 5 mm3

• FPL ~12.5 m

• Resolution estimation

• Empty cell & beam trigger

→ SBT1,2 timing resolution (average of SBT1,2)

→ σt = 17ps (w/ slew correction)

<—> σt = 46 ps (w/o slew correction)

→ TOF (SBT1,2-HODS) : σ = 63ps

TOF(SBT1,2—HODS)

@ Empty cel & Beam trigger

σ = 63ps

[ns]

SBT slew correction

SBT1 Qmean [ch]

TO

F (

SB

T1

-SB

T2)

[ns]

σ ~ 0.9 ns

—> σt ~ 0.5 ns

SAMURAI

SBT1,2

HODS

σ ~ 0.4 ns

—> σt ~ 0.2 ns

Momentum analysis

• Input parameter

• Upstream vector (X1, A1), Magnetic Field, Downstream

position (X2)

• A1 was derived by using 3 tracking detectors

High angular resolution σA ~0.3 mrad

<—> σA~0.8 mrad (just use 1 tracking chamber)

Resolution : P/σP = 1300

<—> P/σP = 800 (just use 1 tracking chamber for ini. p)

search Rigidity

B=2.56TX1,A1

X2

P/σP =1300

P/σP =800

∆Rigidity [MeV/c]

rigidity @BigRIPS

rig

idity @

SA

MU

RA

I

use 3 tracking detectors

FDC1

FDC2

BDC1,2

∆E analysis

• Energy loss at plastic scintillator HODS

• HODS thickness : ~ 6 mm

• Non-uniformity ~ 20%

• Energy loss ~ 6000 MeV

• Correct position dependence by using

FDC2 tracking information

➡ Resolution : σΔE/ΔE = 0.4%

HO

DS

lig

ht o

ut p

ut [c

h]

HOD y-postion [mm]

correct position dep.

Z=50

Z=49

Z=48Z=51

HODS light out put [ch]

4

5

6

7

0 125 250 375 500

4

5

6

7

0 125 250 375 500

4

5

6

7

0 125 250 375 500

4

5

6

7

0 125 250 375 500

4

5

6

7

0 125 250 375 5004

5

6

7

0 125 250 375 500

4

5

6

7

0 125 250 375 500

HODS thickness

Y position [mm]

Th

ickn

ess [m

m]

HODS#1 #2

#4#3

#5

#7

#6

—> Non-uniformity ~20%

HODS#5

Stability of dE counter (plastic scintillator)

•Gain attenuation

•especially for beam hit bar

•Normalization parameter for ∆E has been corrected for each RUN

PMT w/ booster will be help to solve this problem

RUN NUMBER

~20kHz HODS#4 HODS#5Beam hit bar Fragment hit bar

Lig

ht

outp

ut (c

h)

~2kHz

RUN NUMBER

~40h ~40h

Comparison between BigRIPS and SAMURAI

(unreacted events with empty cell)

132Sn

Sn isotope

Empty cell RUN

beam trigger

131Sn

134Sb

130In

A/Q

Z

132Sn

134Sb

130In

135Sb

5σ separation

σZ = 0.22 σA/Q =

0.0032σZ = 0.24 σA/Q =

0.0014

PID for (p,n) reaction residues

132Sn132Sb

131Sb+n

130Sb+2n

129Sb+3n

(p,n)6MeV

13.7MeV

19.3MeV

Z distribution

Tail component ~ 1%

Detector response

or effect of charge state equilibrium?

→ Not so significant for this case

132Sn

132Sn on Liq.H target

slice this region

tail

~1%

Charge states in PID

• charge changing after F7

• Z>Q : ~10% (calculation by GLOBAL code)

PID plot for Sb isotope

131Sb51+ 132Sb51+

130Sb50+

charge state

A/Q

Z

Charge state separation

• Charge state

• 129Sb50+ : A/Q = 2.58

• 130Sb50+ : A/Q = 2.6

• AOQ(132Sb51+)-AOQ(129Sb50+)/σAQO ~ 2σ

• Coincidence with TED (id=21)

•Select lower total energy region

• A/Q =2.58,2.6 region are enhanced

‣ TED information is useful to separate Charge

state

129Sb50+?

130Sb 131Sb 132Sb

Z

A/Q

TE

D p

uls

e h

ight (c

h)

A/Q

130Sb50+?

129Sb50+?130Sb50+?

PID plot for Sb isotope

Pattern of charge states in PID for Sn region

Z

A/Q

132Sb(51+)

130Sn(50+)

130Sb(50+)

50

51

51+dZ

Energy losses in HODS

132Sb(51+)

130Sn(50+)

130Sb(50+)

@ the same rigidity

(5.54081 Tm)

6 mm

→ ~50% energy loss

→ Close to Bragg peak

Rebel w/o a cause:

The Chicken Race

As a function of thickness

Z

A/Q

132Sb(51+)

130Sn(50+)

130Sb(50+)

50

51

51+dZ

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15

dZ

Thickness of HODS plastic scintillator

(mm)

Better setup is…

132Sb(51+)

130Sn(50+)

130Sb(50+)

@ the same rigidity

(5.54081 Tm)

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15

Thickness of HODS plastic scintillator

(mm)

Uniformity of thickness must be controlled

PID

gate 1PID

gate 2,3

Future plan…

@NSCL, MSU

S80056Ni M.Sasano et al.,

Z ~ 90 region

Difficulties in Z~90 region @ 250 MeV/u

• A/Q separation is more difficult

→ Improve position and time resolution of detectors

for rigidity and tof analysis

• Short stopping range :

12.2 mm (CH2) → 20.4 mm (CH2)

→ Minimize the material thicknesses

Smaller reaction loss

• Large dE/dX

→ uniformity of the material thicknesses is required

• Charge state is dominant :

Q = Z – 1 is the main component

broader energy loss distribution

→ Measure Bragg curve itself

• Fission also occurs

→ Energy losses for Z ~ 30 to 50 region must be covered

Higher granularity to detect two fragments

Range counter

238U(Q+)

132Sn

70Zn

Si / SiC detectors

• Uniformity of Si wafer : ~ several 0.1%

• Strip detectors : 100 um strip size

→ dX ~ 30 um in sigma

Higher position and angular resolutions

• Thin (~50 um) layers for timing measurements

• Signal amplifications with electronics

→ Multi gain preamplifier

• Si wafer size available in market : 300/450(?) phi

Weak point : radiation damage

→SiC: stronger radiation hardicity (wafer size : 150 phi)

Higher granularity

50 um 300 um x ~20

Possible setup

• Vertical parallel

• Horizontal focus transport

SiC tracker

Si tracker / range counter

x

y

Summary

• PID plot is made for reaction residues from the 132Sn(p,n) reaction at

250 MeV/u using the SAMURAI spectrometer

• ~10% goes to charge states (Q<Z).

• Position of the charge state moves as a function of the HODS plastic

scintillator → Range counter

• Ultimate (?) solution: Si/SiC TOF/tracker/range counters

Thank you very much!