Part1_ThermoArab3

download Part1_ThermoArab3

of 137

Transcript of Part1_ThermoArab3

  • 7/27/2019 Part1_ThermoArab3

    1/137

    :

    ./.

    2013

  • 7/27/2019 Part1_ThermoArab3

    2/137

    2

    1..........................................................................................................................1............................................................................81............................................................91......................................................................................10

    2. ...............................................................................2..CCE AD LA.....................................................................112..E................................................................................................112..AE EIEEILIBI........................................112..DIEI AD I..................................................................122..DEI...................................................................142..EE.............................................................................................152..EEAEEH LA.......................................162..EEAE CALE..........................................162.........................................................................................192.................................................................................................192........................................................................20

    3. ...............................................................................3...................................................................................................233..KIEIC AD EIAL EEGIE........................................233..IEAL EEG...........................................................................243..K AD E..........................................................................253........................................................................263............................................................................273...............................................................................303..HEA................................................................................................303..:........................................................................................313.............................................................................32

    4. ..............................4...........................................................................................................364....................................................................................................364.................................................................42

  • 7/27/2019 Part1_ThermoArab3

    3/137

    3

    4.............................................................................424............................................................................444..................................................................464...........................................................48

    5. ..................................5.............................................................................................................535..........................................................................535..................................................................................535..............................................................545...............................................555..

    .........................................................59

    5........................................................................................595.......................................................................................615.........................................................................................655....................................................................655.............................................................................68

    6. ............................6...........................................................................................................756..CE F IEEIBILI......................................................756...............................................................................................766........................................................................................786.................................................................806.............................................................816.....................................................................................................816.............................................................................................................826..............................................................................................836...................................................................846...........................................................................86

    7................................................................................................7..CLAI IEALI..................................................................897..E......................................................................................917...................................................................92

  • 7/27/2019 Part1_ThermoArab3

    4/137

    4

    7................................................................................................967..AL ( EAC)DIFFEEIAL......................................................987.....................................................................997.................................................................1007......................................................................................1047............................................................................106

    8. ................................................................................8............................................................................................................1138..AI K AD IEEIBILI:.................................1138..AAILABILIEEG:...........................................................................1148...........................................................................1168...................................................................................117

    9..............................................................................................................................................................................................................................: .............................................)(.............

  • 7/27/2019 Part1_ThermoArab3

    5/137

    5

    .

    .

    Thermodynamics 1 Basic concepts

    Pure substance Ideal gases First law and

    Second law of thermodynamics. EntropyExergy or Availability.

    Thermodynamics 2 .

    Power cycles Refrigeration cycles. .

    Chemical thermodynamics Chemical equilibrium

    Maxwell thermodynamic relations .

    . .

    .

    . )

    ( .

    ) ( .

    .

    .

    :

  • 7/27/2019 Part1_ThermoArab3

    6/137

    6

    . ) (

    )Power point presentation( .

    .

    .

    .

    E-Learning

    .

    .

    Entropy.

    Clausius inequality . .

    . .

    Caratheodory . .

    . . Statistical

    thermodynamics. .

    ) ( .

    .

    .

  • 7/27/2019 Part1_ThermoArab3

    7/137

    7

    .

    . .

    . .

    . .

    . irreversible ) ( .

    . . .

    Principle of entropy increase :dSirrev > 0. .

    . .

    :dSirrev/dt > 0 . . WdW .

    state property dW. )d d( .

    . :dtW&. W&

    :vF =W&

    . dt . dtW& . ) W dtW&(

    W. . QdQ dtQ&.

    .

    . .

  • 7/27/2019 Part1_ThermoArab3

    8/137

    8

    1.

    1.. ) (Thermodynamics .

    .

    :Heat) ( Kinetic and Potential Energies (

    Internal Energy Evaporation andcondensation Electric Energy)(.

    Chemical Energy . .

    Fuel combustion EnginesRefrigerators

    Enthalpy) ( TurbinesPumpsCompressors BoilersCondensersCooling towers

    Steam Power Plants Nuclear Power Plants. .

    .

    Environmental Impact New and Renewable Energy

    Sources Energy Conservation . 1-1.

    ) ( : .

    ) .( .

    ) (Heat Transfer . Fluid Mechanics Theory of Machines

    ) (. .

    ) (. .

  • 7/27/2019 Part1_ThermoArab3

    9/137

    9

    : InternalCombustion Engines Power Plants Refrigeration and Air

    Conditioning Hydraulic Machines .

    1.. .

    Macroscopic a continuum of mater Internal structure. ) (

    .

    1-1

    Microscopic molecules . Global Properties )

    ( . ) Statistical

    Thermodynamics( .

    .

  • 7/27/2019 Part1_ThermoArab3

    10/137

    10

    .

    1.. . )2(

    )3(. )4(

    . )5()6( )78( .

    .

  • 7/27/2019 Part1_ThermoArab3

    11/137

    11

    2.

    2.. . ) (

    Concepts. Laws .

    Pressure Temperature .

    Equation of state. )Simulation or

    Modeling) . ) ()

    (. .

    .

    2..System .

    Surroundings or Neighborhood Boundaries. .

    . ) ( .

    . . Closed System Control mass.

    Open System Control volume. Isolated System .

    2.. State .

    .

  • 7/27/2019 Part1_ThermoArab3

    12/137

    12

    State Properties .

    Internal state ) ( External state )

    (. Extensive properties )

    ..(Intensive properties ) ...(

    x. xx/2 .

    .

    . Specific Properties . Specific Volume

    ) ( . Electric charge density

    . System in equilibrium.

    Spontaneously .

    ) Mechanical

    equilibrium( Thermal equilibrium(. Chemical equilibrium . ) (

    .

    2.. Dimension. Units

    .

    . . Basic Dimension .

    . )S.I. Systme International(

    . :length mass time electric current intensity temperature

    quantity of matter luminous intensity)2-1(.

    kilo Mole.

  • 7/27/2019 Part1_ThermoArab3

    13/137

    13

    12 kg C. Avogadro's number NA )(

    Molecular weight .2-1

    SI Base Units

    QuantityUnit

    Name

    Unit

    Symbol

    Length meter m

    Mass kilogram kg

    Time second s

    Electric current ampere A Si Supplementary Units

    Thermodynamic temperature Kelvin K Quantity Name Symbol

    Amount of matter mole mol Plane angle Radian Rad

    Luminous intensity candela cd Solid angle steradian Sr

    :1 mol of O2= 0.032 kg of O2

    1 kmol of N2= 28. kg of N2

    1 kmol of H2= 2. kg of H2

    Number of moles nMass m :m= n. Derived Units)2-2(.

    Coherence . Force F Newton N

    ma:F = m. a

    1 N = 1 kg. 1 m/ s2

    ) Pound forcelbf( :F = m. a / gc

    gc .gc .

    2-2

    SI Unit

    Quantity Name Symbol

    Area square meter m

    Volume cubic meter m

    Speed, velocity meter per second m/s

    Acceleration meter par second squared m/s

    Density kilogram per cubic meter kg/m

    Specific volume cubic meter per kilogram m /kg

    Current density Ampere per square meter A/m

  • 7/27/2019 Part1_ThermoArab3

    14/137

    14

    Examples of Si Derived Units with Special Names

    Quantity Name Symbol

    Expression in

    Terms of Other

    Units

    Expression in

    Terms of Si

    Base Units

    Force Newton N m. kg/sPressure Pascal Pa N/m kg/(m.s )

    Frequency Hertz Hz 1/s 1/s

    Energy, work, heat Joule J N.m m . kg/s

    Power Watt W J/s m . kg/s

    Quantity of

    electricity

    Coulomb C A.s s. A

    Electric potential Volt V W/A m . kg/(s .A)

    Capacitance Farad F C/V s .

    A2/(m

    2.kg)

    Electric resistance Ohm

    V/A m .

    kg/(s3.A2)

    Conductance Siemens S A/V s .A /(m .kg)

    Magnetic flux Weber Wb V.s m . kg/(s .A)

    Magnetic flux density Tesla T Wb/m kg/(s . A)

    Inductance Henry H Wb/A m .kg/(s .

    A2)

    Luminous flux lumen Im cd.sr

    Illuminance lux lx cd.sr/m

    2.. Density .

    . V . m Density:= limV(m/V)

    . V :

    ) .( .

    Finite. 20C 25.

    Mass Density Molal Density ) ( ) Molecular Weight :( = /

    vSpecific Volume :v= 1 / Molal Specific Volume v:v = 1/

    Specific Weight w :w= g / gc

  • 7/27/2019 Part1_ThermoArab3

    15/137

  • 7/27/2019 Part1_ThermoArab3

    16/137

    16

    2.. Temperature T

    . ) ( .

    ) .( ....

    . .

    ) .(

    ) ( .

    ) ...( .

    Thermal Equilibrium. .

    :If A is in equilibrium with C; B is in equilibrium with C A is in equilibrium with B

    Zeroth Law . .

    . Thermometer

    Thermometric Property.

    2..

    Conventional .

    : Thermometric property

    .

    . .

  • 7/27/2019 Part1_ThermoArab3

    17/137

    .t = a x + b

    1948)2-3.( Ice point

    (t 0100(tf)32212 tf= 32 + (9/5) *tc

    .

    :T = a x

    2.

    Defining fixed pointsTriple point of hydrogen

    Normal boiling point of n

    Triple point of oxygen

    Normal boiling point of o

    Triple point of water

    Normal boiling point of w

    Normal freezing point of t

    Normal freezing point of

    Normal freezing point of s

    Normal freezing point of

    17

    .

    . x :

    a , fixed points

    Celsiu 1Steam p. )Fahrenheit Scale

    :tc= (5/9) *(tf 32)

    )2.(

    T x .

    2.

    2-3

    T(K)13.81

    on 27.102

    54.361

    xygen 90.188

    273.16

    ater 373.15

    in 505.078

    inc 692.73

    ilver 1235.08

    old 1337.58

    2..1

    t

    b.

    s Scale1 oint

    2..2

    .

    2.

    t(C)-259.34

    -246.048

    -218.789

    -182.952

    0.01

    100.00

    231.928

    419.58

    961.93

    1064.43

  • 7/27/2019 Part1_ThermoArab3

    18/137

    18

    water triple point : ) .(

    Kelvin scale TK :273.16 Rankinscale TR :491.69. 0.01

    32.02 )2-4( :TK= tc+ 273.15TR= tf+ 459.67TK= (5/9) TR

    Absolute temperature.

    2-4

    Fixed point Celsius Fahrenheit Kelvin Rankine

    Absolute zero -273.15 -549.67 0.00 0.00

    Ice point 0.00 32.00 273.15 491.67Triple point of water 0.0100 32.02 273.16 491.69

    Steam point 100.00 212.00 373.15 671.67

    2..3

    2. . . R t:

    R = a + b t + c t2

    . a, b, c

    2..4

    )2.( Tc Th V :

    V = S(Th Tc). Seebeck coefficient S

    2..5

    . Stefan Boltzmann

    I T :I = a T4 Optical pyrometer

    ) Electric Filament(. ) ( .

    ) (

    .

  • 7/27/2019 Part1_ThermoArab3

    19/137

    19

    . . . .

    2.. Process

    . . .

    .

    . Quasi Static

    Process. Isochoric or Isometric orConstant Volume Isobaric or Constant Pressure

    )Isothermal or Constant Temperature( )Adiabatic( .Cycle .

    2.. Conservation of Mass

    )

    Relativistic phenomena.( ms Mass FlowRatem&:outins mmdtdm && =inm& outm& .

    . dA v. dt

    )2.( dAvdt. dt: vdt dA

    : = areacross dAm v&

    2. V . V :Am v=&

  • 7/27/2019 Part1_ThermoArab3

    20/137

    20

    5"

    Hg30

    si

    A B

    Steady State 1 2 :1v1A1= 2v2A2

    2.. Solved Examples 2: BASIC CONCEPTSExample 2. 1 A mass of 10 slugs is to be accelerated to 180 in/s2. Find the force necessary

    in poundal, lbf, N, Dyne and kgf.

    Answer:

    From Newton's Second Law we get F: F = ma

    / g

    c

    Where gc is a constant that depends on the units used (see the table below). The

    elementary units relations needed are:

    1 ft = 12 in, 1 in = 0.0254 m, 1 m = 100 cm

    1 slug = 32.174 lbm, 1 lbm = 0.4535 kg, 1 kg = 1000 g.

    mass

    unit

    accel.

    unit

    force

    unit gc m a F

    lbm ft/s Poundal 1.0 321.74 15.00 4826.10

    lbm ft/s lbf 32.174 321.74 15.00 150.00

    slug ft/s lbf 1.0 10.00 15.00 150.00

    kg m/s N 1.0 145.91 4.572 667.10

    g cm/s Dyne 1.0 145910 457.2 66.71 10

    kg m/s kgf 9.81 145.91 4.572 68.03

    Note that: 1 lbf = 32.174 poundal = 0.4535 kgf.

    1 kgf = 9.81 N, 1 N = 105Dyne.

    Example 2. 2

    A mass of 50 lbm is placed at an altitude where the acceleration of gravity is30 ft/s2. Find its weight in 1bf, N.

    Answer:

    Applying Newton's second law: F =ma

    / g

    c

    Weight w= 50 lbm * 30 ft/s2/ 32.174 = 46.62 lbf

    NB: The weight of 50 lbm is not always 50 lbf!

    To get the weight in N use: F = m a

    Weight w= (50*0.4535 kg) * (30*0.3048 m/s2) = 207.34 N

    Example 2. 3 If the atmospheric pressure is 1 atm, what arethe gage and absolute pressures of gases A and B in bar if

    manometer reading was 5" mercury and that of the pressuregauge is 30 psi?

    Answer:

    PB gage=g h= 13600*9.81* (5*0.0254 m)* 10-5

    = 0.169 bar

    PB abs= PB gage+ 1 atm= 0.169 +1.013 = 1.182 bar

    The Bourdon gage reading indicates the difference between the gas pressure to which it is

    connected and the gas pressure in which the gage is placed, i.e.:PA gage= PB gage+ 30 psi = 0.169+30/14.504=2.237 bar

    PA abs= PB abs+ 30 psi = 1.182+30/14.504 = 3.25 bar

    Or = PA gage+ 1 atm = 2.237 + 1.013 = 3.25 bar

  • 7/27/2019 Part1_ThermoArab3

    21/137

    21

    Example 2. 4 It is required to construct a liquid-in-glass thermometer of Celsiustemperatures in the range -25C to 100C. The following table gives the specific volume

    (in cm3/g) of three different fluids at different temperatures as indicated by an ideal gas

    thermometer. Which of the three fluids is more suitable?

    Answer:

    For the liquid-in-glass thermometer we can assume that the reading t*

    follows the relation:t*= a x + b

    Wherexis the specific volume of the fluid, the constants a, bare determined such that

    the reading is exact at 0C and 100C, then:

    t*= 100* (x-x0) / (x100-x0)

    Wherex0andx100are specific volumes at 0C and 100C respectively, Applying this

    relation we get t*for all three fluids as indicated in the table:

    water isopropyl alcohol Mercury

    tC x t* x t

    * x t

    *

    -25 - - 1.2167 -18.8 0.073220 -25.0

    0 1.0002 0.0 1.2475 0.0 0.073556 0.0

    25 1.0029 6.2 1.2800 19.8 0.073890 24.9

    50 1.0121 27.5 1.3170 42.4 0.074225 49.9

    75 1.0259 59.4 1.3604 68.8 0.074561 74.9

    100 1.0135 100.0 1.4116 100.0 0.074898 100.0

    Water is clearly the worst of the three liquids; besides yielding very poor accuracy, it

    freezes at 0C. Isopropyl alcohol, although better than water, is also unacceptable because

    its specific volume dependence on temperature is not quite linear in this range. Mercury is

    best, because its specific volume varies linearly with temperature between 0 and 100oC.

    Example 2. 5

    Air enters a 5 cm diameter heating tube at a velocity of 1 m/s and a density of1.2 kg/m3. Because of heating air leaves the tube at a density of 0.8 kg/m

    3, what is the

    mass flow rate of air and the exit velocity?

    Answer:

    Assuming that this is a steady flow process,

    =1v1A1= 1.2 *1.0* *(0.05)2/4 =2.036*10-3kg/s

    v2= /2A2= (2.036*10

    -3)/(0.8**(0.05)2/4) = 1.5 m/s

    Example 2. 6 A thermometer is being designed such as to use a thermometric propertycalledp, which is assumed to have the following relation with the absolute temperature T:

    T= a ln(p/p0) + b, wherep0is a known property value at a reference condition (assumep0= 2) and both aand bare adjustable parameters. The thermometer has been calibrated by

    subjecting it to two temperatures belonging to the international set of standard fixed points:

    point 1 is the freezinc point of tin (231.928oC), point 2 is the freezing point of zinc

    (419.527oC). Thermometer readings were respectivelyp1= 3,p2= 5. Find appropriate

    values for parameters aand b.

    Answer:

    Applying the logarithmic relation at both fixed points: Ti= a ln(pi/p0) + b, where i= 1 or

    2, we get two equations in the unknowns aand b. Note that Tis the absolute temperature,

    which is equal to the Celsius temperature plus 273.15. Hence:

    231.928 + 273.15 = a ln(3/2) + b (1)

    419.527 + 273.15 = a ln(5/2) + b (2)

  • 7/27/2019 Part1_ThermoArab3

    22/137

    22

    By solving above equations we get a= 367.247; b= 356.172.

    Example 2. 7 A barometer is used in an airplane to measure its altitude. At ground level,barometer reading is 758 mm Hg. At a certain height, the same barometer reads 510 mm

    Hg. What is the airplane height, assuming average air density is 1.1 kg/m3?

    Answer:Barometer reading indicates a pressure difference of:

    Pbarometer = (758 - 510)/1000 * 13 600 * 9.81 = 33 872 PaAtmospheric pressure difference between the unknown heightHand ground:

    Patmospheric =H* 1.1 * 9.81 = Pbarometer = 33 872 PaHence H = 3 066.2 m.

    Example 2. 8 In a refrigerator, pressures at evaporator inlet (which lies within the freezingcompartment) as well as at compressor outlet (which is also at inlet of the serpentine lying

    behind the refrigerator) were measured giving respectively 120 mm Hg vacuum and 25 psi.

    What is the pressure difference in kPa?

    Answer:Since evaporator pressure is vacuum, i.e. negative compared to atmospheric pressure,

    then pressure difference is:

    P= 25 / 14.504 * 105+ (120/1000 * 13 600 *9.81) Pa= 172 370 + 16 010 Pa = 188.38 kPa.

  • 7/27/2019 Part1_ThermoArab3

    23/137

    23

    3.

    3.. Energy . .

    . .

    ) ( .

    . reference level (Datum) .

    . ) ( )

    ( .

    3.. Kinetic Energy Potential Energy

    Newton. Conservative Force Field .

    . ) .(

    Earth Gravitational Field. mdz d (PE) :

    d (PE)= m g dz

    1 2 : ( )122

    112zzmgmgdzPEPEPE ===

    z1 z :PE = m g z

    .

    (KE) m a:=2

    1dxmaKEdx

    . v Referencesystem of coordinates. .

    . :

  • 7/27/2019 Part1_ThermoArab3

    24/137

    24

    KE = m (dv/dt) dx = m vdv= m v2

    Rotational Kinetic Energy KEr:KEr= I2I Moment of Inertia Angular Velocity.

    3.. Internal Energy

    . .

    . . . N m. :M=Nm. i

    vi. . :NN iavg = 1 vv

    . . :

    vi* = vi vavg. :

    ( ) ( ) ( ) ( ) ++=+==N

    avg

    N

    avg*i

    N *i

    N

    avg*i

    N

    i mmmmmKE 1

    2

    11

    2

    1

    2

    1

    22222 vvvvvvv

    .

    :( ) ( ) ( ) bodyavgavgN

    avg KEMmNm ===22

    1

    2222 vvv.

    :( ) ( ) 011

    === avgavgN

    avgi

    N *

    i N vvvvv.

    KEmolecules . . .

    .

    .

    . .

    . . .

    . .

    .

    ) (

  • 7/27/2019 Part1_ThermoArab3

    25/137

    .

    .

    . .

    .( . W&Power

    Fsys

    msysW vF =&

    === msys dtdtWW vF&

    nposi

    )( :( )= rnvm

    25

    ) (

    . .

    .

    ) .

    Scalar Product

    :

    msys dxF (

    ion vector r

    )3..(nr |r| sin . vm

    3.

    .

    3.. Work .

    .

    vm.

    xm)

    nr

  • 7/27/2019 Part1_ThermoArab3

    26/137

    ( ) == TW sys rnF&

    (F =sys

    T. :

    === TdtTdtWW &

    Space Distribution .

    Earth Gra

    Elect .

    z

    z(.

    .

    3..

    0>

    W

    . .

    . )3.:(

    26

    :

    TorqueT :)r

    vitational Force

    El ic Field Magnetic Field

    m

    :=2

    112 mgdzW

    :

    ) ( Fext D:Fext= k xk) stifness(

    Fsys= Fext = kx.

    0>

    W0